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Abstract. The article is directed on metrological characteristics increase and extension of the optical thermometry field of 
use, including two-color compensative thermometry with a priori averaged adjustment.   

The investigations have been performed for the tungsten. This metal studied in thermometry and metal optics has tabulated 
quantitative estimations of emissivity which are similar to the most widespread in metallurgy iron-carbon alloys. To increase the 
reliability and extend the field of use of obtained results, approximated and linearized spectral distributions of tungsten, as well as 
their mirror representations with decreasing and increasing, convex, linear, and concave distributions of emissivity have been 
researched.  

The influence of qualitative and quantitative characteristics of the spectral distributions of emissivity on their nonlinearity 
coefficient has been studied. The equation of nonlinearity has been obtained. This equation connects the nonlinearity coefficient at 
the middle wave with the emissivity value at one of the boundary waves through the measured one-color radiation temperatures at 
3 operating waves. With a priori knew quantitative estimates of the nonlinearity coefficient at the middle wave and measured one-
color radiation temperatures, the obtained equation can be used for the calculation of emissivity values at the boundary waves. For 
example, in the linear spectral distributions of emissivity, the nonlinearity coefficient is equal to 0. The number of solutions for 
linear distributions of emissivity varies from 1 to 2, and for nonlinear – from 1 to 3.  

The influence of measurement errors of one-color radiation temperatures at operating waves on the errors of emissivity 
determination by nonlinearity equation is established. The metrological advantages of two-color compensative thermometry using 
the emissivity values, corrected by the nonlinearity equation, are proved. It was found, that at the nonselective distribution of 
measurement errors of one-color radiation temperatures, measurement errors of the object temperature for two-color compensative, 
spectral ratio, and energy thermometry are insignificant for technical measurements. Under conditions of selective distribution of 
measurement errors of one-color radiation temperatures, these errors respectively are 0.04-0.25 %; 1.66-9.30 %; 0.18-0.34 %. 

For nonlinear emissivity spectral distributions, real for tungsten and iron-carbon alloys, the methodical component due to 
the nonlinearity doesn’t exceed 0.48 %, which is also acceptable for technical measurements. The method has been developed for 
practically acceptable conditions of primary pyrometric information obtaining. 

Key words: Two-color compensative thermometry, Temperature, Spectral distribution of emissivity, Equation of 
nonlinearity. 

 
 

1. Introduction 

Optical thermometry has no alternative for 
continuous temperature measurements in high-tem-
perature, including metallurgical, processes. Therefore, 
the first optical thermometers were created and 
implemented in metallurgy almost simultaneously with 
the development of the theory of thermal radiation. 

At that time, the concept and term "radiation 
temperature" were not used, which led to the terms 
"conditional temperature" or "pseudo-temperature". 
They do not correspond to the physical content and 
definition of temperature in thermodynamics, molecular-
kinetic theory, and statistical physics. For example, if we 
consider the fundamental direction of heat transfer by 
radiation, then a body with a lower "pseudo-
temperature" under certain conditions can transfer 
energy to a body with a higher "pseudo-temperature" and 
heat it. This contradicts the definition of temperature in 
physics, which determines the direction of heat transfer. 

Therefore, L. Zhukov has proposed to apply in optical 
thermometry a physically well-founded “radiation tem-
perature” concept in due time [1]. The proposed concept 
is also followed by the authors in this article. 

Classical energy radiation thermometry (ERT) 
and spectral ratio thermometry (SRT) in terms of 
instrumental errors are not worse than thermoelectric 
thermometry. These thermometry methods are widely 
applied for reference measurements, including the 
building of thermodynamic and practical temperature 
scales. Classical thermometry is used, without 
temperature corrections, in cases of the blackbody for 
ERT and black– and gray-bodies for SRT. Classical 
thermometry can be implemented for any colored bodies 
with stable optical characteristics with temperature 
corrections. With the increase of the operating length-
waves number, the possibilities of optical thermometry 
expand. Thus, recently the investigations were reoriented 
on spectral and other "non-classical" technologies that 
improve the metrological characteristics of optical 
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thermometry under conditions of randomly changing 
optical characteristics of the radiating surface.  

According to Wien's law, for 3 operating waves 
the system of pyrometric equations has the following 
form 
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where S1, S2, S3, K  are the one-color radiation 
temperatures;  λ1, λ2, λ3, m  are the operating length-
waves of the pyrometric system; ε1, ε2, ε3  is the object 
emissivity at the different operating length-waves; 
C2=0,014388 K·m  is the Plank’s second constant; T is 
an object temperature. 

The system (1) is not solved concerning T (has 
the infinite number of solutions), because 3 equations 
have 4 unknowns: ε1, ε2, ε3, and T. The number of 
unknowns and equations can be balanced by the mutual 
replacement of the emissivity values using the dependent 
quantitative characteristics of the emissivity spectral 
distribution [1-4].  

2. Disadvantages  

Previously proposed such solutions demand high 
accuracy of the primary pyrometric information 
(δS<0,1δT), and also have the following disadvantages.  

Linear symmetric-wave thermometry [1] is based 
on the ε2=(ε1+ε3)/2 dependence for objects with linear 
ε=f(λ), when operating waves are placed symmetrically 
on the spectrum. It excludes methodical errors of 
temperature measurements for objects with any linear 
emissivity spectral distributions and reduces them in 
other cases. However, the application of 3 fixed waves is 
not sufficient for the algorithmic determination of the 
system (1) correct solution.  

In [3] three-color method of temperature measu-
rement is considered. The method has the following 
disadvantages. A priori information about the spectral 
distribution of the object emissivity is required. 
According to this information, it is necessary to find λ2, 
for which ε2=(ε1+ε3)/2. The temperature is determined 
by the iteration method following the given formula. The 
proposed relationships complicate the analysis of the 
influence of measurement conditions on errors. Due to 
this, it is difficult to determine the application fields and 
metrological support of the proposed method.  

As the development of [3], the method [4] is 
proposed, according to which the temperature is 
calculated by analytic formula without iteration method. 
However, to determine λ2, where 

2 1 3ε ε ε= ⋅ , except the 

case of ln(ε)=f(λ) linear dependence, it is necessary to 
know a priori the quantitative characteristics of ε=f(λ). If 

we know these characteristics, it is possible to calculate 
T according to the pyrometric equations (1). There are 
also no requirements for the accuracy of λ2 deter-
mination, as well as its connection with measurement 
error and the possibilities of modern optoelectronic 
technologies.  

In [5] the directions and results of the deve-
lopment of spectral thermometric technologies and their 
metrological support are given. The authors argue that 
the "main errors" of primary pyrometric information 
obtaining in spectral thermometry should not exceed 
0.3%. At the same time, it should be taken into 
consideration that the instrumental error of spectral 
thermometry depends on the distribution of errors of the 
primary pyrometric information over the operating 
spectral channels. For example, for any number of spect-
ral channels, the relative error of spectral temperature 
measurements does not exceed the relative errors of 
radiation temperatures, in the case of their uniform 
distribution over the spectrum. 

There are two known methods of double spectral 
ratio, based on the algorithm of primary pyrometric 
information processing for linear emissivity distri-
butions. We have found that the used simplification, 
even for linear ε=f(λ), leads to an additional component 
of the methodical error (-0.53 and -0.54 %). For objects 
with linear ε=f(λ), this component is excluded only for 
gray distributions of ε.  

The authors of [6] proposed a system of 3 
equations. The system relates, through the emissivity, the 
brightnesses of the object on two operating waves with 
its temperature. An algorithm for the numerical solution 
of this system for T is given. But, in essence, the system 
of two equations and identity is proposed. It includes 
three unknowns. Therefore, the conclusion about the 
infinite number of solutions can be done.  

To unambiguously determine the temperature of 
colored objects for the two-color thermometry, the 
relationship between emissivities on the operating waves 
is required. Such conditions take place for some 
production processes in metallurgy. For example, the ε2 
on ε1 dependence for “galvanized steel specimens” was 
experimentally determined in [7]. The authors estimated 
the error of such measurements in “± 3 K on λ1=1.6 μm 
and λ2=3.0 μm in the temperature range 700-800 K”.  

There is a known three-color method. The main 
problem, that excludes its practical use, is the infinite 
number of solutions (for T) of the proposed pyrometric 
equations system.   

Another 3-color method, parameters, and the 
concept of "relative emissivity εf=f(λ, Tf)" and "fictitious 
temperature Tf" have been also proposed. The method is 
purposed for the objects with linear emissivity 
distributions. The author states that the function 
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has no physical meaning. 
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Thermometry is a branch of physics and metrology. 
Therefore, to understand, evaluate, use and develop new 
solutions, it is necessary to physically justify the 
introduced parameters and terms. Also, to determine the 
correct solution (Tf=T) of the generalized equation, the 
author proposed to scan the registered radiation spectrum 
of the object by the operating range λ1-λ3 with all 
following consequences. He also does not provide an 
analysis of the errors of his method, but only compares 
its result (2504.5 K) with the result of the "reference 
method" (2504.7 K). As a "reference method", a 
previously developed method is used; its error is 
estimated at 0.88 K, with a confidence level of 0.95.  

The authors of this article have proposed the 
method and algorithm of two-color compensative 
thermometry (TCCT) earlier. They are based on the 
established relationship between the measured and 
mirror two-color radiation temperatures of the object and 
its temperature. Performed in the conditions of 
selectively changing emissivity, the complex of 
investigations has confirmed much higher metrological 
characteristics of TCCT in comparison with SRT and 
ERT [8]. However, when the emissivity significantly 
non-selectively changes under conditions of a priori 
average adjustment, the errors of TCCT reach significant 
and even unacceptable values.  

3. The aim of the work 

The work is directed on enhancing the metro-
logical characteristics of optical thermometry, including 
two-color compensative thermometry, in conditions of 
significant non-selective changes of emissivity.  

4. Derivation of the nonlinearity equation 
of the emissivity spectral distribution  

The method is based on the obtained nonlinearity 
equation of monotonous spectral emissivity distributions.  

This equation determines the dependence of the  nonline-
arity coefficient Kn2 [1] on the previously measured 
radiation temperatures of the object S1, S2, S3, and the 
emissivity ε1 or ε3, respectively, at the operating λ1, λ2, λ3, 
and boundary λ1 or λ3 waves. The physical sense of Kn 
and other quantitative characteristics of ε=f(λ), i.e. the 
selectivity coefficient Ks and the average emissivity εsr., 
follows from Fig. 1.  

Kn1=Kn3=0 at the boundary waves λ1 and λ3. For 
convex and concave spectral distributions of ε, Kn2>0 
and Kn2<0, respectively, and for any linear distributions 
of ε, Kn2=0.  

The dependence of λ2 on λ1 and λ3, which 
excludes the influence of T on Kn2, is determined  

2 1 3
1 3

1 ), 1( ) 2 / (λ λ
λ

λ
λ
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Quite obviously, that the operating waves should be 
selected in the parts of the spectrum with the most stable 
optical characteristics, that do not violate the 
monotonicity of ε=f(λ).   

Kn2 of the emissivity spectral distribution is 
determined by formula  

2 2 2ε ε= − lKn ,    (3) 
where ε2  emissivity on λ2, ε2l  linearized, in the spectral 
range λ1-λ3, emissivity on λ2. 

Formula for ε2 can be obtained from equivalent 
emissivity definition 1 3
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ε2l is expressed via ε1 and ε3 by the following expression 
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Substituting (4) and (5) into (3), we obtain  
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Figure 1. ε=f(λ) for decreasing convex, linear and concave emissivity distributions  
in operating spectral range λ1-λ3.    
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To reduce equation (6) to one unknown ε3, ε1 can be 
expressed via ε3 and color emissivity 1
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Substituting formula (7) into (6), we can write the 
nonlinearity equation of the ε spectral distribution  
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To find the equation in the final form, it is 
necessary to express εeq. and εcol. via S1, S2, S3. At random 
value λ2, Kn2 can depend on T, because εeq= 
f(E1,E2,E3,T)=f(S1,S2,S3,T). If we substitute (2) in (9), εeq 
dependence on T will be excluded. This can be 
demonstrated as follows  

22

31

2

2

5 5
1 3 1 3 1 3

. 2 2
2 2 5 2

2

/
)

,
(

CC
ТТ

eq C
Т

E E e e
E

e

λλ

λ

ε ε λ λ
ε

ε
λ

−−
⋅⋅− −

−
⋅−

⋅ ⋅ ⋅ ⋅ ⋅
= =

⋅
      

(9)

 where E1, E2, E3 object brightnesses on λ1, λ2,  λ3  in 
accordance with the Wien’s law  
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C1=3,7413·10-16 W·m2  Plank’s first constant.
 After logarithm of (9), we find the expression, 

which determines λeq.=f(λ1, λ2, λ3) and T influence on εeq.  
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Under the condition of (2) 
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 and εeq. does not depend on T. 

After potentiating of (13) and substitution of (10-12) into 
(13), we obtain εeq., expressed via S1, S2, S3 

1 3 1 3 2 2 2
2 2

2 2 1 1 3 32 2

2ln( ) 5 ln( )

.

E E C C C
S S SE

еq e e
λ λ

λ λ λλε
⋅ ⋅ ⋅+ ⋅ − −

⋅ ⋅ ⋅= =     
(14) 

εcol. at the boundary waves, λ1 and λ3 is calculated via S1 
and S3 [9] 
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After substitution of (14) and (15) in (8), we derive the 
nonlinearity equation of emissivity spectral distribution 
in final form  
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Similarly to (8) and (16), variants of the 
nonlinearity equation, which connect Kn2 with ε1, have 
the following form  
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At a priori known quantitative estimates of Kn2 
and measured S1, S2, S3 following equations (16) and 
(18) one can calculate ε3 and ε1. For example, for objects 
with any linear ε=f(λ), Kn2 in (16) and (18) is equal to 0.  

5. The number of solutions of the nonlinea-
rity equation. Determination of the right solution  

The nonlinearity equation in its various variants 
(8, 16, 17, 18) cannot be analytically solved concerning ε3 
and ε1. The equation has the only numerical solution. For 
this purpose, it is necessary to set the values of ε3 and ε1 in 
the range of their a priori known values or in the absence of 
such information – in the range from 0 to 1. The classic 
question for the iteration method is the question about 
multiple solutions. I.e. the numerical values of Kn2 can be 
the same for different qualitative and quantitative 
characteristics of ε=f(λ). Hence we need to study the 
influence regularities of these characteristics on Kn2 (Fig. 2).  

Taking into account the quantitative characteristics 
of ε=f(λ) (from Fig. 1), Table 1 demonstrates the 
classification of possible emissivity spectral distributions of 
the temperature control objects. The classification has been 
performed from the position of three-color thermometry.  

The investigations have been performed for tungsten 
[10, 11], the most studied in optics of metals. It has 
tabulated quantitative estimates of ε, and emissivity spectral 
distribution similar to iron-carbon alloys, the most common 
in metallurgy. To increase the reliability and widen the 
implementation field of the obtained results, we have 
studied the approximate spectral distributions of tungsten, 
as well as their mirror representations with decreasing and 
increasing convex, linear, concave ε=f(λ) [1]. The grey 
distribution of tungsten and thermodynamically equilibrium 
distribution have also been considered (Table 2). 
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a 

dependences Kn2=f(ε3),                dependences Kn2=f(ε1) at εeq., εcol., calculated for: 
1.2 – tDCXaw-distribution; 1.1 – dDCXaw-distribution; 1 – DCXaw-distribution; 2 –

 
DCVaw-distribution; 3 –

 
ICXaw-

distribution; 4 –
 
ICVaw-distribution (Table 2) 

 

 
b 

solutions of equations (8), (17) for: 
– DLaw-distribution;      – ILaw-distribution;      – GRaw-distribution;       – TE-distribution. 

 
Figure 2. The influence regularities of qualitative and quantitative characteristics of spectral real and derivative emissivity 

distributions of tungsten on Kn2 (λ1=0,700 μm, λ2=0,788 μm, λ3=0,900 μm, T=1600 K).   
 

Table 1 

Types of emissivity spectral distributions, their notations, and quantitative characteristics. 

Qualitative characteristics of ε spectral distributions Quantitative characteristics of ε spectral 
distributions 

 
Object 

Type of ε spectral 
distribution 

Notation of ε spectral 
distribution 2Кn  Кs  .srε  

Grey GR 0 1 .0 1srε< <  
Grey  Thermodynamically 

equilibrium TE 0 1 1 

Decreasing convex  DCX >0 >1 
Decreasing linear DL 0 >1 

Decreasing concave DCV <0 >1 
Increasing convex ICX >0 <1 
Increasing linear IL 0 <1 

Colored 

Increasing concave ICV <0 <1 

.0 1srε< <  
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Table 2 

Investigated emissivity spectral distributions and nonlinearity equation solutions at given Kn2. 

Qualitative and quantitative characteristics of ε spectral distributions Solutions of equations (8, 17) 

Notation 1ε  
2ε  

3ε  
2Кn  εeq

 
.εcol
 

First 
1.1

3 31

1

.

;ε ε
ε ε

=
=

 
Second 

1.2

3 .2

;ε
ε

 
Third 

1.3

3 .3

;ε
ε

 

tDCXaw 0.4357 0.4211 0.3989 0.0015 0.98012 0.29291 0.4357; 
0.3989 

0.0773; 
0.0997 - 

dDCXaw 0.4357 0.4206 0.3989 0.0010 0.98246 0.29291 0.4357; 
0.3989 

0.0554; 
0.0803 - 

DCXaw 0.4357 0.4201 0.3989 0.0005 0.98480 0.29291 0.4357; 
0.3989 

0.0380; 
0.0599 - 

DLaw 0.4357 0.4196 0.3989 0.0000 0.98714 0.29291 0.4357; 
0.3989 

0.0205; 
0.0370 - 

DCVaw 0.4357 0.4191 0.3989 -0.0005 0.98950 0.29291 0.4357; 
0.3989 - - 

ICXaw 0.3989 0.4155 0.4357 0.0005 1.00672 0.59336 0.3989; 
0.4357 

0.1247; 
0.1764 - 

ILaw 0.3989 0.4150 0.4357 0.0000 1.00915 0.59336 0.3989; 
0.4357 

0.0919; 
0.1391 - 

ICVaw 0.3989 0.4145 0.4357 -0.0005 1.01159 0.59336 0.3989; 
0.4357 

0.0579; 
0.0971 

0.0021; 
0.0074 

GRaw 0.4173 0.4173 0.4173 0.0000 1.00000 0.41730 0.4173; 
0.4173 

0.0435; 
0.0718 - 

TE 1.0000 1.0000 1.0000 0.0000 1.00000 1.00000 1.0000; 
1.0000 

0.1041; 
0.1722 - 

 
According to the nonlinearity equation in its two 

variants (8, 17), Kn2 depends on ε3 and ε1, as well as on 
εeq. and εcol. Therefore, the regularities have been studied 
for 4 main pairs of εeq. and εcol., calculated by the 
specified emissivity distributions (DCXaw, DCVaw, 
ICXaw, ICVaw). Besides, for the first pair of εeq. and 
εcol., which corresponds to the DCXaw-distribution, the 
influence of ε2 on Kn2 have been researched. For this 
purpose 2 additional pairs of εeq. and εcol. for tDCXaw– 
and dDCXaw-distributions have been introduced. 
Intersections of the graphs of equations (8, 17) and the 
corresponding levels of Kn2 (that Kn2 values of given 
emissivity distributions, for which εeq. and εcol. have been 
calculated) determine the number of solutions of 
equations (8, 17). One solution means a pair of ε1, ε3. If 
we have more than 1 solution, ranges D of ε1, ε3, and 
intervals I between pairs of ε1, ε3 can be determined. 
Moreover, for ICVaw– and DCVaw-distributions there 
are 3 and 1 solutions, respectively (Fig. 2a, Table 2).   

Plane in the coordinate system Kn2–ε1,ε3 by 
values Kn2=0 and εcol.=0.2928, as well as Kn2=0 and 
εcol.=0.5934 is divided into 4 quadrants. In these 
quadrants Kn2=f(ε3), Kn2=f(ε1) dependences, obtained at 
εeq. and εcol. for decreasing and increasing emissivity 
distributions, respectively, are situated. To build 
continuous dependences in the range of ε1, ε3 from 0 to 
1, it is necessary to utilize the appropriate fixed pairs of 
εeq. and εcol. To comply with the requirement of 
constancy of the εeq. and εcol. pair, in each quadrant the 

corresponding types of emissivity distributions are 
denoted. For example, pair of εeq. and εcol.., calculated for 
DCXaw-distribution, can be computed not only on 
DCXaw-distribution but also on other types of 
distributions which have various qualitative and 
quantitative characteristics: DCX (I quadrant), GR (at 
ε1=ε3), ICX (II quadrant), IL (at Kn2=0 between II and III 
quadrants), ICV (III quadrant), DCV (IV quadrant) and 
DL (at Kn2=0 between IV and I quadrants). This can be 
concluded from the formulae for εeq. and εcol.  

To unload Fig. 2a, the main one-dimensional case 
at Kn2=0, which is the subject of this article, is illustrated 
by Fig. 2b. Solutions of the nonlinearity equation in its 
two variants (8, 17) have been investigated for DL-, IL-, 
GR– and TE-distributions. For each of these 
distributions, the corresponding value of εcol. divides the 
field of solutions (values of ε1, ε3) on the left and right 
parts. Moreover, the ε1 and ε3 in the left and right parts 
give the same value of εcol. respectively for IL– and DL-
distributions.  

For example, there are 2 solutions for DLaw– and 
ILaw-distributions: D1DLaw=0.4357-0.3989, D2DLaw=0.0205- 
-0.0370 and D1ILaw=0.3989-0.4357, D2ILaw=0.0919-0.1391. 
Intervals between these solutions respectively are 
ІDLaw=0.3619 and ІILaw=0.2598. For GRaw-distribution: 
D1GRaw=0.4173-0.4173, D2GRaw=0.0435-0.0718, ІGRaw=0.3455. 
For TE-distribution: D1TE=1.0000-1.0000, D2TE=0.1041- 
-0.1722, ІTE=0.8278. The ranges and intervals depend more 
significantly on the ε1, ε2, ε3 values of the investigated linear 
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distributions and are less related to the qualitative charac-
teristics of the distributions.  

The ranges and intervals in combination with 
additional a priori information about the quantitative 
characteristics (Ks and εsr.) of the linear emissivity 
distributions allow the correct solution to be chosen. For 
example, for the DLaw-distribution, such identification 
can be reliably done because the correct pair of ε1, ε3 is 
situated in the field of the corresponding to tungsten 
tenths parts of ε, and the incorrect one is in field of 
hundredths parts of ε. Also, the correct solution is placed 
in the part of the DL-distributions. In general, for DL-
distributions, when Ks increases (>1), D1 expands, D2 
narrows, and I widens. For IL-distributions, when Ks 
decreases (<1), D1 and D2 expand, and I becomes 
smaller.  

Depending on the qualitative and quantitative 
characteristics of the emissivity distributions, including 
linear ones, both solutions may be located in the field of 
really possible values of ε1 and ε3. In addition, both of 
these solutions can be situated in the same part of the 
solution field (at the left of εcol., i.e. in the part of IL-
distributions). For example, for the IL-distribution with 
ε1=0.4670, ε3=0.5675 "correct" D1=0.4670-0.5675, "in-
correct" D2=0.2811-0.3823, I=0.0847. The component of 
the error due to the choice of the incorrect pair of ε1, ε3 
reaches 4.11% at T=1600 K. Partial or complete overlap 
of D1 and D2 is possible, in case of IL-distributions, 
depending on Ks and εsr. This feature can be explained 
due to εeq. and εcol. for IL-distributions always exceed the 
values of εeq. and εcol. for GR– and DL– distributions. εeq. 
and εcol correspondingly, through the equation of 
nonlinearity at Kn2=0, determine the positions of D1 and 
D2. There is a single solution (D1=D2, 1.1 1.2 3.1 3.2;ε ε ε ε= = ) 
at the full overlap. If intervals are sufficient and a priori 
information about Ks and εsr. is available, one can 
determine the correct solution by analytical approach.  

To unambiguously choose the correct solution, 
for example, with the incomplete overlap of D1 and D2, 
insufficient I between them and insufficient a priori 
information about Ks and εsr., an algorithmic method of 
an additional wave (a comparison wave λc) has been 
proposed. λC (Fig.1) is placed between λ2 and λ3 or λ1 and 
λ2 in compliance with the above requirements for λ1, λ2, 
λ3. For variant «between λ2 and λ3», εcol. (λC-λ3) is 
calculated through previously measured one-color 
radiation temperatures Sc and S3 
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From the obtained two solutions we choose, for example, 
the first. The pair (ε1.1;ε3.1) corresponds to this first 
solution. For chosen pair (ε1.1;ε3.1) and linear emissivity 
distribution, we can calculate εc.L1  
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where 
. 0=с lKн   is the nonlinearity coefficient of ε=f(λ) 

on λC. 
Using the value of εc.L1, obtained from (20), we 

can determine εcol.p(λC-λ3)   
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The difference between expressions (19) and (21) 
can be find 

( ) ( ). . 3 . 3         λ λ λ λε ε ε− −∆ = −col col р с col с
.        (22) 

If 
.  0 ε∆ =col

, the chosen solution (ε1.1;ε3.1) is right. 
If 

.  0 ε∆ ≠col
, the other solution (pair (ε1.2;ε3.2)) should be 

right.  
According to the right solution with the specified 

values of ε1, ε3, and the measured S1, S2, S3, we 
determine the T. The pyrometric equations of TCCT, 
SRT, and ERT can be applied for such calculations [8]. 

 Previously performed investigations of the TCCT 
with a priori average adjustment have demonstrated the 
metrological advantages of this method. Under condi-
tions of selectively variable emissivity, the TCCT errors 
are in 4.4-40.2 times lower than the classical thermo-
metry errors. The source of instrumental errors of the 
compared thermometry methods is the errors of 
measurements of S1, S2, S3. At the current level of optical 
thermometry, it is quite possible to measure S1, S2, S3 
with errors δS1, δS2, δS3, which do not exceed 0.2 %. The 
investigations have also been performed for measu-
rement errors of 0.5 and 1.0% and different distributions 
of their signs and modules.  

Analysis of investigations results for DLaw-
distribution shows the following. In case of increasing 
accuracy of S1, S2, S3 measurements and nonselective 
distribution of δS1, δS2, δS3 advantages and 
disadvantages of the studied methods are leveled, as 
their errors are in the range of insignificant for technical 
measurements. For example, for δS1=δS2=δS3=0.2  %, 
δS1=δS2=δS3=0.5 % and δS1=δS2=δS3=1.0 % the errors 
are respectively within 0.005-0.019 %, 0.014-0.048 % 
and 0.028-0.095 %. However, when selective 
distributions of δS take place, the measurement errors for 
TCCT, SRT, and ERT respectively are 0.04-0.25 %, 
1.66-9.30 % і 0.18-1.34 %. If the emissivity distribution 
changes from DLaw to DCXaw, the methodical 
component due to the nonlinearity of ε=f(λ) does not 
exceed 0.48%, which is also acceptable for technical 
measurements.  

6. Conclusions  

As a result of investigations, directed on 
improving the metrological characteristics and widening 
optical thermometry field of application, including two-
color compensative thermometry, under conditions of 
significant nonselective changes of emissivity, the 
nonlinearity equation of emissivity spectral distribution 
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is obtained. With a proper known nonlinearity coeffi-
cient on the middle wave, the equation allows the values 
of emissivity on boundary waves to be determined. The 
methods of identification of the equation correct solution 
have been developed. 

 The equation of nonlinearity has been used to 
correct emissivity values. It has been proved, that under 
conditions of nonselective measurement errors of one-
color radiation temperatures, advantages and disadvan-
tages of two-color compensative, spectral ratio, and 
energy thermometry are leveled, as their errors are in the 
range of insignificant for technical measurements.  

For selective distributions, the measurement 
errors of two-color compensative thermometry are lower 
5-42 times than the errors of classical thermometry. For 
nonlinear distributions of emissivity, real for tungsten 
and iron-carbon alloys, the methodical component due to 
nonlinearity does not exceed 0.48%. The method is 
implemented based on practically achievable accuracy of 
primary pyrometric information obtaining.  
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