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A new analytical approach for calculation of white dwarfs characteristics that accounts for
two important competing factors — axial rotation and Coulomb interparticle interactions,
is proposed. The feature of our approach is simultaneous usage of differential and integral
forms of equilibrium equation. In dimensionless form the differential equilibrium equation
is strongly nonlinear inhomogeneous equation of the second order in partial derivatives
with two dimensionless parameters — the relativistic parameter in stellar center xy and
dimensionless angular velocity €. In inner stellar region, rotation is taken into account
as perturbation in the linear approximation for Q2. In stellar periphery rotation is con-
sidered as the main factor. Usage of the integral equation provides correct calculations of
integration constants. Dwarf’s mass, moment of inertia relative to the axis of rotation,
equatorial and polar radii, equatorial gravity in the following parameter space 1 < xo < 24,
0 < Q < Qmax(xo) have been calculated based on the solutions of equilibrium equation.
For the first time it was calculated the total energy of dwarf as function of these parame-
ters. By the extrapolation, it was calculated the maximal values Qyax (o), as well as the
observed angular velocity wmax (o). The considered model is generalized by taking into
account Coulomb interparticle interactions. Also, we provide the examples of application
of obtained results. It was shown that the characteristics of observed massive dwarfs do
not contradict the calculated values for the model with consideration of solid body rotation
and Coulomb interparticle interactions.

Keywords: white dwarfs, azial rotation, Coulomb interparticle interactions, mechanical
equilibrium equation, inverse problem.
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1. Introduction

According to the modern observations, white dwarfs belong to the most numerous types of stars in
the Universe. They are characterized by a wide variety of characteristics, which is a consequence of
influence of various factors on formation of their structure and evolutionary mechanisms. Eleven years
after Adams discovered the dwarf in binary system of Sirius [1], Fowler proposed the electron—nuclear
model of dwarf structure, according to which the stability of these stars is due to the quantum effect
— degeneracy of electron subsystem. For the first time, using the Fermi statistics and considering
the electron subsystem as a non-relativistic electron gas, Fowler proved that at low temperatures the
pressure of electron subsystem is weakly dependent on temperature and is determined by the number
density of electrons [2]. Chandrasekhar generalized this model, describing a completely degenerate
electron gas within special relativity theory [3].

For the last three decades, in Solar vicinity there were discovered thousands of white dwarfs of
different spectral classes with small and intermediate masses, with different radii, luminosities and
effective temperatures. Their distribution on the mass-radius plane does not correspond to the Chan-
drasekhar model. As was shown in our work [4], this distribution can be considered as a continuous
sequence of mass-radius curves describing a family of dwarfs with close effective temperatures. Correct
calculation of inner structure and characteristics of white dwarfs, interpretation of observed data re-
quire generalization of the Fowler—-Chandrasekhar model by taking into account such factors as finite
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temperature effects (incomplete degeneracy of electron subsystem), Coulomb interparticle interactions,
axial rotation, effects of the general theory of relativity (GTR), spatial heterogeneity of chemical com-
position, magnetic fields, as well as thermodynamic processes, which affect the evolution of white
dwarfs. Among the above factors there are competing ones — their influence leads to mutually op-
posite consequences, which requires their simultaneous consideration. Usually, the influence of these
factors is small, allowing us to consider them within perturbation theory. Recent publications with
observations of white dwarfs with rapid axial rotation in binary systems [5-7| reveal the relevance of
such studies.

In the last century there were published works on the characteristics of white dwarfs that used the
Chandrasekhar model in the presence of rotation [8,9]. The purpose of most of them was trying to
prove the possibility of existence of white dwarfs with the masses exceeding the Chandrasekhar limit.
The Chandrasekhar theory is based on an ideal electron—nuclear model without taking into account
of Coulomb interparticle interactions, consideration of latter ones leads to decrease of the internal
pressure and therefore lowers the Chandrasekhar limit. Axial rotation and Coulomb interparticle
interactions are competing factors. While the angular velocity for a given white dwarf can vary in a
wide range, Coulomb interparticle interactions remain a constant factor. In the presence of a large
amount of observed data about masses, luminosities, radii and angular velocities of white dwarfs,
it is actual problem to choose adequate models providing a satisfactory stellar characteristics for the
corresponding observed data. In turn, it will yield knowledge about the thermodynamic state of matter
and the parameters of models for specific white dwarfs.

The purpose of our work is to calculate the characteristics of cold white dwarf in model taking into
account two competing factors — solid body rotation and Coulomb interparticle interactions. This
model corresponds to existing white dwarfs where the process of neutronization is unlikely. We also
aim to find out whether the characteristics of the observed white dwarfs do not contradict the proposed
model. In methodological terms our approach differs from the other works in the way of determining
integration constants with help of the integral form of equilibrium equation to increase the accuracy
of calculation.

2. General relations

The distribution of white dwarf matter in the model with axial rotation is determined by the equilibrium
equation [3,10]
VP(r) = —p(r){V®grav(r) + V&c(r)}, (1)

where ®gray(r) is the gravitational potential created by the distribution of density p(r),

p(r')dr’
P r)=— —_ 2
grav( ) /‘/ ’I‘ _ r/’ Y ( )
and ®.(r) is the centrifugal potential. In the spherical coordinate system, the angular velocity of which
is relative to the axis Oz and coincides with the angular velocity of a star,

P ——122'29——”—221—13 3
o(r) = 2wr sin“ @ = 37’{ g(t)}, (3)

where 6 is the polar angle, t = cos @, P»(t) is the Legendre polynomial, w is the stellar angular velocity.
The matter density is convenient to rewrite with the number density of electrons
 Myfle (MpC\3 3

p(r) = ne(x){mo + mupch = 5 (55) (0()?, (4)
where mg is the electron mass, m,, is the atomic mass unit, m, . is the fraction of nuclear mass per
electron in a fully ionized atom (pe = (A/z), A is the mass number of a nucleus, z is its charge), c is
the speed of light, z(r) = fi(moc)~ (3m%n(r))"/? is the local value of so-called relativistic parameter
(dimensionless electron momentum on the Fermi surface) at the point with radius—vector r.
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The proposed model consists of the completely collectivized degenerate relativistic electron gas in
the field of static nuclei. In such model, the equation of state [11]

mmac®

P(r) = — 5= {F (@) - f(z(r)]2)}, (5)

where

F(z) =2(22* - 3)V1+22 +3In [z + 1+ 2?] (6)
is the contribution of an ideal completely degenerate electron gas, and f(xz(r)|z) is the contribution of
Coulomb interparticle interactions (see Section 4).

Considering that influences of rotation and Coulomb interparticle interactions are small and to
some extent compensated, both of these factors can be taken into account within perturbation theory.
Substituting expression (5) in equation (1), we obtain a complex nonlinear partial differential equation
for the local value of the relativistic parameter. At the first stage we consider the equilibrium equation
in the model with rotation, but without Coulomb interparticle interactions (f(x|z) = 0).

3. Model with solid body axial rotation

In the dimensionless form

€=r/Mao). Y(€,0lz0) = 3 {(1+22(x)"? — 1) ™
the equilibrium equation is as follows
5 3/2
Bea (€ 0lan) = 2~ { V(€ oloo)] + 2 (e 0lan) | ®
where m
0% = ow2x2 | Mulle o () = (14 2R)V? -1, (9)

(o) m062€0 ’
and the scale A(zg) is determined by expression

32m%G 2

W{muuemoc2)\(a:0)a(ajo)} =1. (10)
In equation (8) two dimensionless parameters appear: xg is the relativistic parameter in stellar center,
Q is the dimensionless angular velocity. According to definition (7) Y(0,6|x¢) = 1, and regular solutions
satisfy the condition 9Y (&, 60]x)/0f = 0 at £ = 0. In the presence of axial symmetry, the Laplace
operator is
1 10 0 0 0
—Ng, Ae=—=— (=), Ag==(1—-t*)=, t=cosh. 11
ahe =g (€0). Ba=g1-P)2, 1= (1)

Asymptotically equation (8) is close to the equation of mechanical equilibrium for the rotational

polytrope. This allows to use the linearization method of equation (8) with respect to the angular
velocity, representing the solution in the form of expansions for the Legendre polynomials [12]

Yi(6, 0l0) = y(€lo) + 92{¢o<s|xo> s azz($0)P21(t)¢2l(€|ﬂfo)} (12)
>1
and using in the role of zero approximation y(&|xg) — the solution of mechanical equilibrium equation

in the Chandrasekhar model (at = 0)

A&g = Af +

-y
€0

3/2
A5y<g>=—{y2<5>+ 2 (g)} , (13)

where y(§) = y(&|xg). Equation (13) corresponds to the boundary conditions y(0) = 1, dy(§)/d§ =0
at & = 0. One-parametric equation (13) was solved numerically. From the condition y(£) = 0 we find
the dimensionless radius of white dwarf &;(xo) in the scale A(z), and dimensionless mass of white
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dwarf is determined by expression

€1(zo) ) 2 3/2 )
M) = [0+ 2ue ] e (14)
As the result, stellar mass and radius are the following functions of the model parameters
My Ro &1(z0)
M (zo, pe = —M(x , R(zo, pe) = — ) 15
(%o, pte) 2 (o),  R(xo; pte) e 20(20) (15)
where the scales of mass and length are combinations of physical constants,
3\Y2 1 [he\P? 1
My= (= — = — 2. oM
0 <2> i <G> m2 88665 for
(16)

3\Y2 1 /m3\"?* 1 _2
Ro—<§> E(E) - A L1623 107 Ro,

and A(zg) = Ro(eo(zo)pe)™t. The dependence of mass and radius on the relativistic parameter is
determined by asymptotics

3/2 —-1/2
M(ag) = 3:0/ at o < 1, &1(xo) _ )z 2 at T K 1, (17)
2.01824 at zo> 1: eo(zo) gt at x> 1.

Two main conclusions of the Chandrasekhar’s theory can be stated — limit on the maximum mass
of white dwarf (M (zo, pte) < Mmax = 5.76Mg /puZ) and specific mass-radius relation (M (2o, pe) —
Mmax, R(20, pte) — 0 at g > 1; M (xq, pte) - (R(z0, pte))® = const at zo < 1).

In expansion (12), ag(zp) are integration constants, Py (t) is the Legendre polynomial of order 27 of
the variable ¢ = cos 0, ¥ (&|zo), Y2 (£|xo) are unknown functions. Due to the fact that the real solution
of equation (13) exists only in the range 0 < < &1(x0), the expansion (12) makes sense only in the
inner region of white dwarf. Substituting expression (12) in equation (8), in linear approximation for
0?2 one can obtain the ordinary differential equations for unknown functions

Aetho(§lwo) = 1 — @(&|z0)1b0(€lT0),

Agtha(Eleo) = {2@5—?1) - <I><srxo>}w2l<srxo>, I>1, (18)
where ) 5 1/2
B(¢|x) = 3{y<s\xo> n 6—0}{y2(§’$0) n ;Oy<srxo>} . (19)

The function 1y (&|zo) has asymptotics £2/6+. . .
at &€ <« 1, and asymptotics of the function 1] ¥(Ehvo)
o9i(&|xo) in this region coincide with the asymp-
totics of spherical the first kind 2l-order Bessel

0.8 1
function: g (&|zg) = jou(§6) + ..., where § =
®/2(0|xg). Therefore, in the numerical integra- 06 |
tion of equations (18) there is used normalization

Yor(Elwo) = {(Al+ DN} 12 4 at e < 1. 04 |

In Fig.1 is shown the function y(&|xg), and in
Figs. 2-3 are given functions ¥g({|xo), ¥2(&|zo),
Pa(€|zo) for the different values x.

In the stellar periphery (£ > &i(x¢)), where
Y (£, 0|ro) < 1, solutions of equation (8) are
close to solutions of equation

0.2 -

0

0O 05 1 15 2 25 3 35 4 45 5
Fig.1. The solution of equation (13), obtained nu-

merically. Curve 1 corresponds to zo = 1, curve 2 —
Ag,QYH(g,mn) = Q27 (20) xg = 5, curve 3 — xo = 10.
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16
O]_ ] LIJQ(E;IXO)V WZI(E_,I-XO) (l—’o(élxo)« Lpzz(glxo)
14 A
0.08 A 1 12 1
1 ] 1
0.06 A
0.8 A
0.04 - 0.6 A
04 A
2
0.02 A
0.2 A 2
3 3 3 g
O T T T T T 0 T T T T T T T
0 0.2 04 0.6 0.8 1 0 0.5 1 15 2 25 3 35 4
Fig.2.  Functions ¢g(&|zg) (curve 1), v¥o(&|xg) Fig.3.  Functions o(&|ze) (curve 1), ta(&|xo)
(curve 2), ¥4 (&|xo) - 10 (curve 3) at zp = 1. (curve 2), ¥4 (&|xo) (curve 3) at xg = 5.
general solution of which can be presented in the form
9262 b [ x()
Y]](f,@’xo) = (1 — PQ( + Q ZCgl i) f Pl —|- Q2 Z §1+2l Pgl (21)
1=0
where co;(xg) and boy(xg) are integration constants, satisfying the stltchlng condltlons
0 0
Y1 (€, 0lzo) = Yir(§, 0lz0), a—gyf(&@’ﬂ?o) = a—gyn(&e’ﬂfo) (22)

at & = & (xp) for the known constants ag () by equating the coefficients for the same polynomials
Py (t). For the first time, in the work [13] it was proposed breaking the stellar volume into inner
region and periphery for the rotational polytropes. There was used the approximation corresponding
to small angular velocities: a9y = byy = 0 at | > 2, coy = 0 at [ > 0. Non-zero integration constants
were determined from the stitching conditions using the fitting parameters in order to make obtained
values of radii and masses to agree with the results of numerical integration of equilibrium equation
in work [8]. Unlike this work we determine integration constants as, a4 from the integral form of
equilibrium equation (8), and constants cy;, by from the stitching conditions at the boundary of
Chandrasekhar sphere without using fitting parameters.

3.1. Determination of integration constants ag;

Using the same approach to find constants ag(xg) as in works [12,14,15] for the rotational polytropes,
we have used integral form of the equilibrium equation
52 2

Yr(&,0|z0) =1+ T(l — Py(t)) +

/ 2 / / 3/2 /!
i | ecer{e s + Zne e} o

1 2 3/2
L Q(&E/){Yzzz(ﬁ/79/|$o)+55/11(5/,9/@0)} ae', (23)

A Jy,,
with the next kernel
QEE) =lE-¢17 - (), (24)
and integration is performed over the stellar volume. Equation (23) is equivalent to equation (8),
herewith V; denotes the volume of inner part, and Vj; — the volume of periphery, integration is
performed over variables (¢/,60') over the stellar volume. The region V7 is the part of volume of
rotational star inside the Chandrasekhar sphere (§ < &1(xg)), and region Vis is the part of white dwarf

outside this sphere. As density of matter in region Vi is small, the integral over Vs in equation (23)
of the order Q3 can be neglected.
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Substituting solution (12) in equation (23) and neglecting the second integral term, in the linear

approximation for Q2 one can obtain equality

y(€lro) + Q?{%(ﬂxo) + 37 (o) Pat)bElo)

>1

52 2
}—1+—6 (1- P(1) + Q(&,€)
Vi

Am

9 3/2
x { [y%’m) n gy(f/mo)] T 0%(¢ (x0) [¢o<s'|xo> ; Zazl(ﬂfo)Pm(t/)?/m(€/|$0)] } ae'. (25)

>1

Integration over variables (¢,6’) performed over the unshaded region Fig. 4.
Herewith &y(t') is the equation of stellar surface, & (z¢) is the radius of Chandrasekhar sphere,
&e(xo) is the equatorial distance, and &,(x¢) is the polar one. The region V7 is given by relations

\5 \50( ) at 1>
0 <& <& (x0)

where the polar angle 6(xg) is determined by the
intersection of Chandrasekhar sphere and the sur-
face &y(t') close to the surface of rotational ellip-
soid, therefore

&p(wo) {1—=€2(wo) [1=t2(x0)] } 7/ = &1 (o), (27)

where e(zg) is the eccentricity of ellipsoid. The
values &.(x0), &(x0) and e(zo) depend on angular
velocity Q. To clarify, the inequality determines
the region Vi (darkened):

§1(wo) <& < &()  at

Simplification of equality (25) is performed in
the same way, as in the works [12,14,15] for the
rotational polytropes. For this purpose is used the
integral form of equations for functions y({|xg),

Yo (&|xo)
B [ (¢)?
Mﬂm)—1+A {?f

0 <t <t(xg). (28)

t' > t(xo),
at 0 <t < t(x),

t(zp) = cos O(xg), (26)
£ (0) |-
EI(XO)i T Trmeil "-""--.
&) L T
] Vl \ |:| \:‘\‘l
0(x,) 4
M~ %

&30 &y(xp) Eolxg)
Fig.4. Schematic representation of quarter part of
the meridional section of white dwarf: V; bounded
by a solid curve and coordinate axes, Vi; is located
between a solid curve and a bold dotted line.

/ 2/ ¢! 2 / 3/2 /
¢ } {y (€hao) + 2 (e |330)} ac’

vo(élen) =~ [ Q&)1 (€ea)vn(€ o)} d€ (29)

- [ -eJe-

D (& wo)vo (¢ |0) } dE,

0 < € < &i(wo).

As the result, in equation (25) terms of type ag (o) Py (t)thg(€|zg) are mutually reduced and it takes

the form

Z P2l(t)§21{a2l(330)52l,2l(330) + Z (1- 5m,z)a2m(ﬂfo)52m,2l(ﬂfo)}

>1 m>1

ZP2 521{121 ) n Loy (o) +D21(a:o)} (30)

=1

02

Equating coefficients at the same products P2l(t)§2l in left and right parts of the equality, we obtain
the system of the linear inhomogeneous algebraic equations for integration constants ag (o)
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az2(70)S2,2(wo) + Z a2m(0)S2m,2(T0) = —é (1 + 312(2130)) - L2§(;230) — Da(xo),
m>=2

In(zo)  Lau(wo)
2 92

(31)

ag(x0)Sa,21 (o) + Z a2m (20)(1 — 8p1) Som,21(x0) = —

m>1

— Dy(x0),

at [ > 2. In formulae (30), (31) are used the following notations

1 &1 (o)
So1.0m (o) = /t( )P2l(t/)P2m(t/)dt// (5/)1_%{%22;1)

So(t")
Suu(o) = (41 + 1)~ {<2z + 1har(€alao) + 51%2'%)}

1
+ / Pé(t){sa” [(21 + 1) (€olo) + 50%?':”0)}
! 0

(z0)
— g7 [(21 + Db (&1]wo) + 51%2'%)} } "

1 &1(zo)
e G N {y2(5/|$0)+ 2

-y
(wo) &o(t) €o

o (€' 0) — Aml(s’rxo)}df',

3/2
<£’|xo>} @'

1 &1(zo)
Doy (o) :/t dt/Pm(t/)/ ()2 Agpo (€ |2o) }at,

(wo) ) &o(t) (32)

Ir(zg) = —2 ” )P2(t/){1n§0(t/) —In&; (o) }dt’,
1

In(xo) = (l—l)_l/ Py (t){ [€o(t))* ™ — [€1(x0)]* ' }at'.

t(zo)
For the known constants ag (o) from the stitching conditions (22) there are found expressions for
integration constants, which appear in the function Y7(€, 0|z¢)

2 !
co(z0) = {vo(&1lmo) + &by (&nlmo) } — % + fl%,
2
bo(zo) = 51{7/)0(51|3fo) - %1 - Co(ﬂfo)},
ca(xo) = é + a25(g:20) {3¢2(€1|$0) + £1¢é(£1|$0)}7
i
2
ba(wo) = &7 az(xo)2(&1]zo) + %1 - 5%62(330)}7 (33)
ca(zg) = 6149(621;0) {5¢4(€1|$0) + £1¢£1(£1|$0)},
1

ba(xo) = 5?{%(%0)1/14(51\960) - 04(330)511}7 &1 = &i(xo),

In fact, systems of equations (31) and (33) are not independent, because coefficients Sy 9i(z0),
Som,21(z0), La(zo), Day(zo) and Iy(xo) (I > 1) depend on the shape of stellar surface {y(t), which is
determined by functions Y7(§,0|xo) and Y77(&,6|zp). Therefore the system (31), (33) was solved by
the iterative method. In zero approximation for the surface of rotational white dwarf we accept Chan-
drasekhar sphere (§o(t) = &1(z0)). In the same approximation only coefficients Sy 2;(z0) are non-zero,

constant ago) (x0) is determined by expression

) (w0) = ~{6822(z0)} ™" = ~ 2 €} (w0) {Ba(€alro) + vy (€alwo)} (34)
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(0)

and does not depend on angular velocity. All other constants as’(x¢) at [ > 2 are equal to zero.
Such approximation corresponds to the Milne-Chandrasekhar approximation in the polytropic theory

and is usable for small angular velocities. From the system (33) we find non-zero constants co0 (x0),
b(()o) (x0), cgo) (x0), bgo) (o). Found constants determine zero approximation of functions YI(O) (&,0|x0) and

YI(?) (&,0]zp). Since the surface of rotational white dwarf is close to the surface of rotational ellipsoid,
then in the next iteration for £y(t) we accept the surface of such ellipsoid, and its polar and equatorial
radii are determined from the conditions YI(O) (&,0]zg) = 0 and YI(?) (&, m/2|z) = 0 respectively. In such
approximation coefficients Ig(x0), Loi(xo), Dai(xo) and Sopm 2i(zo) at [ > 1 are already non-zero, and
coefficients Sy 9/(zo) are found in new iteration. From the system (31) we obtain constants aél)(ajo),
afll)(ajo), ..., which yield the opportunity to obtain solutions for the constants bg)(:po), cg)(xo). It
is used to obtain new iteration for the surface &y(¢) and etc. As is shown in our calculation, it is
enough 4 — 5 iterations to reach the convergence limit. In result, we have found functions Y7 (¢, 0|xo)
and Y77(,0|zo) with integration constants depending on angular velocity, as well as the surface of
rotational white dwarf (not only polar and equatorial distances as functions Q and ).

3.2. The white dwarf characteristics in the model with rotation

In this subsection we consider the white dwarfs characteristics in the model with rotation, but without
taking into account Coulomb interparticle interactions. Determining the surface of rotational white
dwarf from the condition Y'(&,0|xy) = 0, we obtain the expression for its volume as function of the
parameters o and {2

3
V(2o|©) = V(20]0)d(z0[2),  V(20]0) = %T (%)

6(xO‘Q) _ /1 < 50(75) >3dt (35)
o \&i(zo)
Mass of the star is determined by integration of matter density p(r) over volume
My fle [MOC\3 2 3/2 M,
Manl) = 22 () 03 (an) [ (V2(601e0) + 2 (E01an) ) d = ZEM(aol),
v 0 ¢ (36)
1 £o(t) ) N 2 3/2
Mok = [ ar [ (Ve tlon) + Z¥(Etlen)) de
0 0
Moment of inertia relative to the rotational axis is
2 ~
Hanl9) = [ ol sind o = 20707 2 ),
14 He 37)
- 1 [t ) €o(t) s 9 3/2 (
Fanl) = [[1=ar [T (vHetlon) + Zvieitlon)) ae
€0 J0 0 €0
The value of equatorial gravity is
GM (x0|$2 GMy [ M(zo|Q2 e
Re RO ge

The condition g(zo|€2) = 0 determines the limit of stellar stability relative to the rotation — maximal
value of angular velocity for fixed value of the relativistic parameter Qax (o).
The total energy of white dwarf equals to the sum

E(x()]Q) = W(Z’O‘Q) + Ekin(x()]Q) + Erot (x()’Q), (39)

where W (xo|Q2) is the energy of gravitational interaction, Eyn(x0|S2) is the kinetic energy of electron
subsystem without rotation, Fyt(xo|Q2) is the energy of white dwarf rotation as a whole. According to
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formula (4) the energy of gravitational interaction

3/2
W(UT?O’Q):—EOEO e //{ (€1,01|m0) + Y(§1791’w0)}

212 (
3/2 (40)
X {Yz(f% O2)z0) + %Y(§2,92|330)} &1 — 52|_1 dg§,d€,,
where 1o P
2 3/2,.7/2
By = Mo _ (3)"7 LA Tmg (41)
R(] 2 4 G3/2m2

is the natural scale of stellar energy.
For the calculation of average value of kinetic energy of electron subsystem the volume density of
energy is written as

2 1 pr(r) 2 2\2 2 211/2 2
1) = 2 Enp() = s | p{{moc)? 4 5772 = moc?dp
P

(42)
micd 4.5

z(r) mnC
= 2 /0 {1+ 7)Y = 1y = o5 {:Cg(r)[ Lt a2(r) — 1] - %ﬂx(r))}’

where ny(r) is the local Fermi distribution, n = pr/mgc, x(r) is the local value of the relativistic
parameter, and function F(z) is determined by expression (6). The kinetic energy of the whole
(inhomogeneous) electron subsystem we obtained by integration over the stellar volume

Buanlaol®) = [ ctryir =t [ o) [VIT@ 1] - Ften e,

Eole 4m

where according to definition (7)
9 1/2
o6 =ao{Ve0) + Zyien)} (49)

The gravitational energy W (z(|€2) also can be represented in the form of double integral as well as
Exin(x0]€2) with help of the integral form of equation (23). According to this equation and definition
of kernel (24)

1 2 3/2 2002
= {Y2(§2,92)+—Y(€2,92)} & — &7 de, =Y (€1,61) — 1 — (1= Pa(t1)) + C(wo|),
\% €0
(45)
where X , 3/2 "
ol = - [ {reo+2ren) . (46)

Equations (45), (46) allow us to express W (zo|Q2) via double integrals

3/2 2002
Wanl) =~ [{reo+ 2reol {veon- S50 nw) - 1+ oo b
3/2
—-o s [ren |reo s 2reo|

02 .
ol — UM (ap]2) — 77(!E0|Q)53}-

The energy of rotation for a star as a whole is

I(z0|Q Ey Q2
Lol _ B2 Fwole) (47)

e

Erot ($0|Q) =
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The total energy of rotational white dwarf can be represented in the form

(o)) = 2 {E—O [reo {Y2<£,9> " E—iY(é,e)}g/Q de

T3 | 167
M(z0|©2)
4

€0

-2 [C(0]Q) — 1] M (o]02) — + g—fﬂzj(xolﬂ)

31Y9Y292Y91/21
r 5 [[areren (Ven+ 2vien) 3

1 ) 2 1/2 Eo
——In [1 +e0Y (&€,0) + eo <Y (&,0) + —Y({,H)) ”d{} = —&(w0|Q).
€0 €0 He

In the absence of rotation from this expression we obtain the total energy of white dwarf in the
Chandrasekhar model. Using first of the equations (29) at £ = &1 (zo)

C(zg) = C(x0|0) = ;\;1((:;2)) +1, (49)
because of ) . "
Blaolo) = 2o M) M0 20 [ ey (94 Zuig)) e
3 €1(z0) ) ) 9 1/2
o[ e <y ©+ 5y<s>) e (50)
3 [abo) ) 9 1/2
o [ e [1+eoy<£>+so (y ©+ %y@) }d&},

where M(z9) = M(x0|0). The function E(x(|0) is a negative monotonically decreasing function of the
parameter xg with asymptotics

E(x0|0) x():;l —N(z0)moc?, (51)
where
N, (zg) = M 20) (52)

determines the number of electrons in white dwarf.

3.3. The results of numerical calculations

Using solutions (12) and (21) we performed calculations of characteristics of the model with axial
rotation in the parameter space 1 < zp < 24, 0 < Q < Qax(x0). In expansion (12) terms proportional
to Py(t) and Py(t) are taken into account. Obtained results are shown in Appendix. In Tablel
dependence of integration constant as(zp) on the model parameters is illustrated. It is negative with
weakly dependence on angular velocity, but significantly depends on the relativistic parameter xg. The
constant a4(xg) is positive monotonically increasing function of angular velocity, is small for small
angular velocities, and equals to 1 only at large enough values of 2 and small xy (see Table 2).

In Table3 are shown results of calculation of white dwarf mass in units My/u? for values 2 <
xo < 24 with increment Axzy = 2 in whole parameter space of angular velocity for fixed . Mass is
monotonically increasing function of the parameters xg and 2. In the case 2 = 0 it has asymptotics
2.01824 ... at o > 1. As can be seen in Table 3, mass equals 2.07972... at x¢g = 24 in the vicinity
Qmax (7o), so that its relative increase due to rotation is close to 4%. However, the maximal relative
increase of mass under influence of rotation achieved at small values xg, which corresponds to white
dwarfs with small and intermediate masses: at x¢ = 2 the maximal increase of mass is 10%, at zg = 10
it equals 5% and etc. It follows that the bound on maximal mass is determined by the value of angular
velocity Qmax(zo) at xo > 1, when maximal mass can exceed the Chandrasekhar limit approximately
on 4%.
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Moment of inertia relative to the axis of rotation in units MoR3/u? (Table4) is monotonically
decreasing function of the parameter xy and monotonically increasing function of angular velocity. Its
relative increase under influence of rotation approximately equals 30% at zg = 2; 20% at z¢ = 10; 15%
at g = 20 at Qax (o).

Dimensionless values of equatorial and polar radii in the scale A(zg) = Ro[ueco(0)]
in Table5 and Table6. Therefore & (x0,2) and &,(zo,2) are monotonically increasing functions of
the parameter xg. Herewith &.(x0,) is monotonically increasing function of €2, and &,(zo,) is
monotonically decreasing one. In the scale Rg the values of dimensionless radii &.(,) (20, ) - [tec0 (w0)] 7t

—1 are shown

are monotonically increasing functions of the parameter zg at zg < v/3, and monotonically decreasing
in region g > v/3. The boundary of regions of the parameter zo is determined by the condition
go(zo) = 1.

In Table 7 is given the dependence on model parameters of the equatorial gravity in units GMy/R3
according to formula (38). As was shown in Table, g.(xg, {2) is monotonically increasing function of the
relativistic parameter xy and monotonically decreasing function of angular velocity 2. The maximal
value of angular velocity Qpax(zo) is determined from the condition ge(xg, Qmax(z0)) = 0.

For the first time we calculated the dependence of total energy of white dwarf on the parameters
7o and 2. Dimensionless energy (in units GMZ[Rou?]~!) is represented in Table8. It is monotonically
decreasing negative function of the model parameters. As was shown in Table, the relative change of
energy under influence of rotation decreases with increasing parameter xo: at xg = 2 it is close to 14%,
and at g = 24 only 11%. It follows that the energy is much more sensitive to the influence of rotation
than mass.

As can be seen in Tables, the dependence of white dwarf characteristics on the angular velocity in
the vicinity its maximal value increases at fixed value of the relativistic parameter. Because of that,
the largest values of ) given in Tables, in fact, are slightly less than the maximum value for a given
xg. Equatorial gravity turns out to be the most sensitive. Extrapolating the obtained dependence
9e(z0|S2) to zero, we obtain the maximal values of dimensionless angular velocity Qmax (o), which are
shown in Table9. There are also given the maximal values of observed angular velocity according to

formula (9

©) 9\ 1/2 me 2, 3/

— max :Qmax - o )

() womattn) = aslon) (2] el oo (53

where ¢ is speed of light.

In the work [8] the characteristics of white dwarfs were calculated numerically (mass, equatorial
and polar radii, equatorial gravity, moment of inertia relative to the axis of rotation) only for some
values of parameters within the region

0< 20 <6245..., 0< Q< Qnax(0), (54)

which corresponds to white dwarfs with small and intermediate masses. The deviation of values
calculated by us from the results of work [8] at small angular velocity are very small. In the region
0 < 2 < 0.5Qmax (o) deviations are smaller than 1% for all values of the parameter xy. With increasing
xo the deviation decreases: at xg = 4.359 the deviation of mass values is less 1%; at xg = 6.245 the
relative deviation at Qpax (7o) is 0.25%), and deviation of equatorial radius at this z¢ is smaller than 1%.

4. Influence of Coulomb interparticle interactions

The role of Coulomb interparticle interactions is one of the least studied questions in the theory of
white dwarfs. Although they have a very simple electronic structure, construction of state equation
is complicated because of the high density of matter which leads to relativistic electron subsystem
of white dwarf. In the second half of the last century there were proposed approximate methods for
calculation of electron liquid model — electroneutral homogeneous model N, consisting of interacting
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non-relativistic electrons on the background of uniformly distributed positive charge in volume V in
the region of densities, which corresponds to real metals at zero pressure. One of these methods is so-
called reference system approach based on the summation of infinite series of diagrams of perturbation
theory, created on two-, three- and four-particle correlation functions of ideal degenerate model of
electrons [16,17]. This approach was generalized on the case of relativistic degenerate electron gas
in works [11,18]. The energy of ground state of spatially homogeneous electron-nuclear model with
relativistic completely degenerate electron subsystem is the next

F=FE.+FE + Es. (55)
E. is the energy of electron subsystem,
2
z
By = o %:0 Va{SaS—q — Nn} (56)
q

is the interaction energy of point nuclei on the background of homogeneous distributed negative charge,
where Vq = 4me?/q%, N,, = Nez~! is the number of nuclei, Sq = Zjvznl exp{i[q,R;]} is the structure
factor of nuclear subsystem,

zn
By=-)" e > VarVauSay - Sauttn(Qis - Gn)0ayt. o (57)
n>2 q1,-,qn7#0
is the contribution of electron-nuclear interactions in which uy,(qi,...,qy) is the n-particle static

correlation functions of electron subsystem in the momentum representation. In metal theory Fs is
called the energy of zone structure. The value F; can be rewritten in the form

1
B = —§Nemoczn_1daoz2/3x, (58)

where ag = €2 /hc is the fine-structure constant, = (97/4)'/3, z is the relativistic parameter, and the
value of coefficient d depends on spatial distribution of nuclei: for the Wigner—Seitz cell [19] d = 1.8;
for spatial cubic lattice d = 1.760; for hexagonal closest packed d = 1.79168; for cubic face-centered
and body-centered d = 1.79186 and 1.79172 respectively [20,21].
Energy of electron subsystem is traditionally rewritten in the form
Ee = EéO) + Eur + Ecor, (59)

where

EO) = Nomoc?E(x),

E(x) = (22) 7 {3z(1 + ?)V2(1 + 22%) — 82° — 3Infz + (1 + x2)1/2]}

is the energy of ideal model of electrons,

(60)

3
EHF = —ENGCMQWQC%T (61)

is the contribution of electron interactions in the first order of perturbation theory (the contribu-
tion of ideal correlations). The correlation energy (the contribution of non-ideal correlations) can be
approximated by such expression [22]

Ecor - Nem062a(2)gcor(x)y
bo [* bia + t1/2 1+ ayt + ast?
Eeor(T) = ——= dt,
2 Jo t3/2 +thia +t1/2bsa? + b3ad 1+ dpt (62)
a=(aon)/?, a5 =2.25328, ay=4.87991, dy=0.92402,
bo = 0.062181, by = 9.81379, by = 2.82214, bz = 0.69699.

At a1 = ay = dy = 0 expression (62) coincides with the correlation energy of non-relativistic degenerate
electron liquid [23].
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In the case of simple cubic lattice of nuclei and in the approximation of two-electron correlations,
the term (57) is approximated by expression [22]
I Nemoc2a(2)z4/352(a;\z),
Ex(z]2) = =2y + 12 + coa®*H{1 + dyz} !
at co = 0.10582, ¢; = 0.11136, co = 0.15535, d; = 1.29493. As was shown from formulae (61)—(63), all
contributions caused by interactions are negative, and at x > 1 they are proportional to the non-ideal

parameter. The contributions of the first order of perturbation theory (Eyp and Ep) are proportional
to ay, and correlations contributions are proportional g and higher degrees of fine-structure constant.

(63)

4.1. The model without axial rotation

The expression P = —dFE/dV allows us to rewrite the state equation of homogeneous non-ideal electron-
nuclear model in the form (5) at
2 4d 8 dEcor() d&s(z|z)
f(z|z) :ao{;Jr%z2/3}$4—§a3{7+z4/37 zt, (64)

The derivatives d€qor(x)/dz and d€(x|z)/dx are negative, then the function f(z|z) is positive, there-
fore, the interactions between the particles decrease the internal pressure. The contributions of
Coulomb interparticle interactions to the state equation were approximated in the work [24]. At
the same time the contributions .o (z) and Ea(x|z) were calculated for non-relativistic model: Eqor ()
in the random phase approximation [19], and &(z|z) — in the Thomas-Fermi approximation [25].

Taking into account, that influences of rotation and Coulomb interparticle interactions to some
extent are self compensated, both of these factors can be taken into account within the perturbation
theory. In the model without rotation, but with Coulomb interactions there are three parameters: xg,
e and z. Using state equation (5), (64) in local approximation, for this model we obtain the following
analog of equation (13)

Acy(Elzlzo) = —{312(§|z|$0) +2y

3/2
(f|z|$o)} T Ly(g]zleo),

1/2
<§rz\a:o>] (65)

(€lelan)| /}

The same dimensionless variables as in equation (13) are used and introduced the following notations

1 df(z]z)

Ly(lleo) = @1 (1) Ae [zﬁ(srz\xo) +2y

+<,o2<s|z>{d% [y%azuo) 2

)
€0

d (1df
9 1/2 (66)
z=x(§) =¢o <y2(f|z|xo) + %y(£|z|x0)> )

Equation (65) satisfies the same boundary conditions as in equation (13). The root of equation
y(&|z|zo) = 0 determines & (xglz) — the dimensionless stellar radius in the scale A(xg), therefore,
expressions for radius and mass are analogous to expressions (14) and (15)

Ry My
e = ) M e = 5 9
R(wo|pel2) p 6051(3:0\2) (@o|pe|2) 2 M(zol2)

€ €

&1(zol2)
M(zolz) = /0 {y2<§rz\xo>+ 2

)
€0

3/2 (67)
<srz\xo>} .

The solution of equation (65) was found numerically by integration in the region of parameters 1 <
zo < 30 at z = 2; 6; 8; 12.

Mathematical Modeling and Computing, Vol.9, No.2, pp.278-302 (2022)



White dwarfs with rapid rotation 291

Dependence of dimensionless mass M (zp|z) and dimensionless radius &;(xg|z) on the model pa-
rameters is shown in Table 10: the relative decrease of mass, taking into account interactions, is a
monotonically decreasing function of xg and monotonically increasing function of charge z. The mass
limit value at zg > 1 depends on chemical composition, unlike the Chandrasekhar model, and is close
to 1.4287 M, at z = 2; 1.4114 Mg, at z = 6; 1.3918 M, at z = 12 and p. = 2.0.

For large values of the parameter zy equation (65) can be simplified, using the approximation for
term Ly(€|z|zo), namely by introducing a replacement {y*(&lz|wo) + 2/e0 y(£|z|$0)}1/2 — y(&|z|zo)
and ©2(£]z) = 0. Indeed, at large values of the relativistic parameter x~3df(x|z)/dx approaches a
constant, in connection with which ¢y(£|z) is small value. We will also perform the replacement
01(&]z) = p1(x0|z) = ¢1(0]z), because in linear approximation for oy the value 1 (£|z) equals constant
3/8ap{2/m + 4d/(377)z2/3}. In this approximation, equation (65) can be simplified to the form

3/2
(§|z|$0)} . (68)

Rewriting variable € with variable 7 for expression £ = kn at k = {1 — o1 (20|2)}"/2, equation (68) can
be given in the form

(1 - g1 (zo]) Aey €l lwo) = —{y2<s|z|:co> +2y

3/2
(knlzlwo)} : (69)

Because the resulting equation coincides with equation (13), therefore y(kn|z|zg) = 3(n|zo), where
9(n|zo) is the solution of equation (13). From the condition 3(n|zg) = 0 we obtain the dimensionless
stellar radius 71 (x0) = &1 (zg). From condition y(§|z|zg) = 0 we obtain radius & (zolz) = k&1 (zo).
The white dwarf mass and radius described by the equilibrium equation in approximation (68) are
determined by expressions

2
Ay (knzly) = —{y2<kn|z|xo> + 2,

My 4 ~ Ro&i(o)
M (xo|pelz) = 2 k°M(zo),  R(wo|pe|z) = k’iﬂeeo(%), (70)

where M(xo) and &;(zg) correspond to the Chandrasekhar model, and k = k(xq|z).

According to formulae (55), (59)—(63) the volume density of non-gravitational homogeneous
electron-nuclear model (kinetic energy of electron subsystem + energy of Coulomb interparticle in-
teractions) is

L 2 3 2 2 4/3 3 (moc)’
7 = moc {E(x) - [E + o }x + af[Ecor(z) + 2 / Ezl2)] + ... px TR (71)

To find non-gravitational energy in the considered white dwarf model, we replace x with z(r) in
formula (71) and integrate over the stellar volume

By (GGl (3 5
Blaol) = oty [ e Salta) (1 20%) - = S (ot [+ 47)
Hegs Jo 8 8
3 2234
_QO[E+ 2 }”4”3[&@(@+z4/352<w\z>1w3}d£, (72)

where

1/2
. $(5)550{y2(§|z|$0)+2 (f|z|$o)} | (73)

)
€0
In approximation (68), expression (72) takes the form

£1(xo)
E(zo|e|z) = u§23 k5/ 52{295[1 + 222 (14 20%) — 28 — gln (z+[1+ x2]1/2)}d§, (74)
e<0 0

where

1/2
$=€0{y2(f|$0)+ 2 (f|$0)} | (75)

-y
€0
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For the gravitational energy we obtain the expression in approximation (68),

3 E €1(zo)
Waaliels) = =5 5t k0 [ o) e, (76)
8 He€o 0
where x is determined by formula (75). Inertia moment relative to the axis of rotation is
2 MaR2 [&1(zol?) 2 3/2
Haolplz) = 22070 M e Lypelefan) + Zoteleton)} e ()
He€h Jo €0
and in approximation (68)
2 Mo R2 €1(xo0) 2 3/2
Mookl = 305018 [ ¢ {1 cn) + Zotelan) | e (78)
He€p 0 €0

It follows from expressions (70), (74), (78), that Coulomb interparticle interactions cause decrease of
kinetic energy of electron subsystem, as well as the module of gravitational energy, moment of inertia
and etc. Since k is the function of parameters zg and z, then all the white dwarf characteristics are
functions of three dimensionless parameters of model.

Of course, approximation (68) introduces errors in the calculation of the white dwarf characteristics,
but they are small. Equating the value of mass, calculated for expressions (70) with values in Table 10,
we can see that at xg = 5 the error equals 0.12% at z = 2; 0.25% at z = 6; 0.35% at z = 12. At
xog = 10 there are, respectively 0.03%, 0.06%, 0.08%. The error in the radius determination at zg = 5
equals 0.6% at z = 2; 0.9% at z = 6 and 1.2% at z = 12. At 2o = 10 we have, respectively 0.3%, 0.5%,
0.66%.

4.2. The model with axial rotation and Coulomb interparticle interactions

In the dimensionless variables (7) the equilibrium equation of model with axial rotation and Coulomb
interparticle interactions in approximation (68) takes the form

3/2
[1— @1(z0, 2)] Ag Y (€, Olao|2) = Q° — {YQ(E, Olzolz) + %Y(é, 9|330|Z)} - (79)

Introducing new variable 1 instead of ¢ and taking into account that Y (kn,6|zglz) = Y (n,80|xo),
we reduce the equation (79) to the form (8), where it is necessary to replace & — 7. The same
replacement should be performed in all the following formulas in sections 2 and 3. To obtain the
white dwarf characteristics in the model with axial rotation and Coulomb interparticle interactions, it
is necessary to renormalize the data of Tables 3-8, namely the values of radii & (xo, ) and &,(xo, )
multiply by %, the value of mass M (zg, Q) multiply by k%, the value of moment of inertia 7 (g, ) and
energy |e(wg, Q)| — on k°. The angular velocity £ cannot be renormalized. The values of multiplier
k = k(xo|z) as functions of the parameters zy and z are shown in Table 11.

5. The discussion of results and their application

1. Axial rotation of white dwarfs is an attribute of their existence. It is believed that the effect of
rotation is small, because the ratio of rotation energy to the modulus of gravitational energy is
small [9]. However, this criterion is not strict. The point is that the kinetic energy of electron
subsystem and gravitational energy of nuclear subsystem are largely mutually compensated, and
their algebraic sum is a small value. This is clearly seen from the asymptotics at zg > 1, when
Fygn ~ Eop;3(xo—4/3+...), W ~ —Eouz3zo+. .., and their sum in this limit does not depend on
xg. Therefore, the effect of rotation is determined by the ratio of rotation energy to the modulus
of total energy. According to formula (47) and Tables4 and 8, the maximal value of the expression
0.2502,. (0)ed T (20, Q)|e(x0, Qmax(20))| " equals 10% at zo = 1; 12.5% at o = 10 and 14% at
xo = 20. Accordingly, the maximal increase of white dwarf mass under the influence of rotation
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is close to 14% at o = 1; 5% at xg = 10 and 4% at 2o = 20. For example, the dependence
of dimensionless mass M (zo,(2) on the parameter xo at some values of angular velocity from the
region 0 < Q < Quax(zp) is shown in Fig. 5.

2.1 0
, | g 02 NHEEKIQE,
19 | -04
18 067
’ -0.8 1
17 - 1
1.6 1 -1.2 A
15 4 -1.4 A
-1.6 A
1.4 1
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5 10 15 20 25 5 10 15 20 25

Fig. 5. The region of change of dimensionless white Fig.6. The region of change of dimensionless to-
dwarf mass M (xg, ) under influence of rotation.  tal energy e(zg,?) under the influence of rotation.
Lower curve is envelope.

Lower curve corresponds to the model without rotation, and upper curve (envelope) determines the
region of change of white dwarf mass under the influence of rotation. Also, because of the influence
of rotation the Chandrasekhar limit changes — the maximal value of white dwarf mass at x¢ > 1.
The region of change of dimensionless total energy of white dwarf at fixed x¢ under the influence
of rotation is shown in Fig. 6.

At the same time Coulomb interparticle interactions decrease the values of stellar characteristics
by values independent on the angular velocity but dependent on chemical composition. At zg =1
mass decrease equals 2.5% at z = 2; 5% at z = 6; 8% at z = 12; at o = 5 respectively 1.5% at
z=2;28% at z = 6; 4.2% at z = 12; at 29 = 10 we have 1.4% at z = 2; 2.6% at z = 6; 4% at
z = 12. It follows from these estimates, that influence of rotation exceeds the influence of Coulomb
interparticle interactions for 2 < z < 15. In the region z > 15 prevails the influence of interactions
and even at Qpax (o) the maximal white dwarf mass in the model with rotation and interactions
are smaller for white dwarf mass in the Chandrasekhar model.

2. Since at zg > 1 the increase of white dwarf mass under the influence of rotation reaches 4%, and
decreasing of mass due to Coulomb interparticle interactions do not exceed 2% at z = 8, then the
maximal mass of carbon-oxygen white dwarfs can exceeds the Chandrasekhar limit and reaches the
value

4 4
— - 1.444 - 1.02Mg = — - 1.473M.
e e
A typical feature of massive white dwarfs in binary systems is slight decrease (~ 1%) of the

parameter p. with increasing mass. Apparently this is caused by the presence of hydrogen on
white dwarf periphery due to accretion. Thereby, the maximal mass of carbon-oxygen white dwarfs
in binary systems according to the electron-nuclear model with solid body rotation can be estimated
as 1.5M. However, observations have not yet revealed such white dwarfs.

3. We have established that the deviation of white dwarf characteristics calculated in the frame of
given model from the analogues values in the Chandrasekhar model are the result of competitions
of the influence of rotation and Coulomb interparticle interactions. Peculiarities of this effect are
determined by values of the relativistic parameter xg and averaged nuclear charge z. In the region
1 < 29 < 2 (for white dwarfs on intermediate masses) the compensation is partial — significantly
prevails the influence of rotation, and the influence of interactions can be considered as correction.
For massive white dwarfs, when zy = 10, there is almost complete compensation, although for the
region z < 10 however, prevails the influence of rotation, if the angular velocity is close to the
maximal one for fixed value x.
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4.

Obtained results of calculations allow us to make qualitative conclusions about influences of axial
rotation and Coulomb interparticle interactions on white dwarfs characteristics in general. Such
approach was typical for works performed in last century. In recent years arose the concept, when
detailed observations or detailed calculations are made for one specific star or binary system. An
example of this approach is work [26] devoted to observations of the Sirius system, or works [27,
28|, where the polytrope characteristics calculated for the model corresponding to the observed
data of the star on main sequence « Eri (spectral type B3V) with high angular velocity (w ~
3-107°s7!). The results of calculations obtained by us in this work is a preparatory stage for
solving the inverse problem — determination the model parameters according to the available
observed data for specific white dwarfs and calculation of such their characteristics which are
not determined from observations. For example, we consider the recently discovered white dwarf
LAMOST J024048.51+195226.9, which is the component of binary system and has a period of axial
rotation P = 25s (w = 0.251s7!) [5]. Due to the fact that its other characteristics are unknown,
based on our tables, we can only estimate the model parameters for this white dwarf, as well as
its mass, radii, moment of inertial and etc. High angular velocity of this white dwarf allows us to
make assumptions that it is close to maximal one for some value of the parameter zg. Substituting
in expression (53) wpax(z9) = w and approximating Qmax(xo)ag/ 2 (o) as function zy for data of
Table 9, we find that the root of equation (53) is xg ~ 1.383 at pue = 2. This value z( corresponds
t0 Qmax (o) = 0.469. In Table 3 we find dimensionless mass M (zo|Qmax (o)) = 1.07886. It follows
from here, that white dwarf mass in the model with rotation, but without Coulomb interparticle
interactions equals approximately 0.779M. Dimensionless equatorial radius & = 1.9422 (R, =
10.67-10° km), dimensionless polar radius &, = 1.3732 (R, = 7.56- 103 km), eccentricity e = 0.7072,
dimensionless moment of inertia J = 1.1004 (I = 2.401 - 107°MyR%). Taking into account
Coulomb interparticle interactions somewhat decreases the value of characteristics, in particular,
mass satisfies inequality 0.740M; < M < 0.761M (minimal value corresponds to z = 8, maximal
z = 2). For the known constants in expansions (12), (21) and functions 1o (&|xo), ¥2(&|x0), ¥a(&|z0)
we built meridional section of this white dwarf (solid curve in Fig. 7). Also it is shown that its surface
deviates from the surface of an ideal rotational ellipsoid, the axes of which are equal to smallest
and greatest distance of the points of surface from the origin (dashed curve). Such surface shape
is typical for polytropes with rapid rotation [15,27,28|.
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Fig. 7. Meridional section of white dwarf LAMOST J024048.51+195226.9.

Given values of characteristics for white dwarf LAMOST J024048.51+195226.9 can be treated as
an upper bound. Substituting in equality (53) w = 0.9wmax (o), we obtain following results for the
model with rotation and without interactions: zo = 1.510, Q(xo) = 0.424, M (xo|Q(zp)) = 1.14760,
M = 0.828 My, R, = 10.12 - 103 km, R,=721- 103 km. In the model with Coulomb interparticle
interactions — 0.787TMgs < M < 0.809M .

We performed similar estimates for white dwarf CTCV J2056-3014 with rotational period P = 29.6 s
(w = 0.212s571) [6]. Substituting in equality (53) w = wWmax(70), we found that zo = 1.209.

0
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It corresponds to Qumax(zg) = 0.549. In the model without Coulomb interparticle interactions
we found that M(zo|Qmax(z0)) = 0.966456, M (zo|Qmax(z0)) = 0.697Mg, & = 1.7271 (R, =
11.79-10° km), £, = 1.1915 (R, = 8.14-10%km), e = 0.7239, J = 1.1843 (I = 2.585-10~° My R2).
Assuming that w = 0.9wmax (o), we found the following values xy and characteristics: z¢g = 1.318,
M(20|Qmax(20)) = 1.04094, M (20|Qmax(20)) = 0.751My, & = 1.8983 (R, = 11.27 - 10° km),
& = 1.3053 (R, = 7.75 - 10°km), e = 0.7261, J = 1.1405 (I = 2.490 - 107° My R2).

The description of white dwarfs equilibrium with help of equation (8) with three independent
parameters xg, pe and €2, — it is traditional approach. If the angular velocity w and mass of
white dwarfs M are known from observation, then we can get more accurate solution of the inverse

problem by transforming the equilibrium equation. If we accept pu. ~ 2 and introduce the function

w Ry ((my 1/2
Q(z0) = - 32 <%> ) (80)
o

then in equation (8) will appear only independent parameter xy. This simplifies solving of equilib-
rium equation and eliminates the need for tabulation over two parameters. Then each white dwarf
with known angular velocity corresponds to the equilibrium equation with its function Q(zg). The
parameter xq for observed white dwarf with given angular velocity is determined from the condition,
that the observed mass M coincides with the calculated one,

M = kg(xo\z)%/\/((xom(xo)). (81)

For example, let us consider white dwarf V1460 Her, with rotational period P = 38.9s (w =
0.162s~!) and mass M = 0.869M, [7]. In the case of model without Coulomb interparticle inter-
actions, the root of equation (81) equals 3:(()1) = 1.85, Q(xg) = 0.155. Such value z( corresponds
to the values of radii £, = 1.9891 (R, = 7.006 - 103km), &, = 1.9010 (R, = 6.696 - 103 km) and
moment of inertia I = 1.50 - 10_5M@R<29. By taking into account Coulomb interparticle interac-
tions, we obtained the following values of characteristics: at z = 2 we have xg = 1.91, & = 2.0394
(Re = 6.854-10% km), &, = 1.9561 (R, = 6.575-10% km); at 2z = 8 respectively zo = 1.99, & = 2.1049
(Re 2 6.665 - 102 km), &, = 2.0275 (R, = 6.419 - 10° km).

Obtained approximate semi-analytical equilibrium equation solution for the model with axial rota-
tion and Coulomb interparticle interactions can be used as a zero approximation for search of more
accurate solution with help of the integral form of equilibrium equation using standard methods
for solving nonlinear integral equations [29]. This would simplify the problem of finding of equilib-
rium equation solution, eliminating the need to divide the volume of white dwarf into inner and
peripheral regions.
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Appendix. Tables of calculated white dwarfs characteristics
Table 1. Dependence of integration constant |az(x¢)| on the model parameters.

Q 0 2 4 6 8 10 12 14 16 18 20 22 24
0.01 9.79148 | 10.3094 | 10.5126 | 10.6252 | 10.6900 | 10.7304 | 10.7811 | 10.8004 | 10.7897 | 10.7998 | 10.8076 | 10.8136
0.02 9.79111 | 10.2917 | 10.5112 | 10.6235 | 10.6879 | 10.7282 | 10.7549 | 10.7736 | 10.7871 | 10.7972 | 10.8048 | 10.8108
0.03 9.79051 | 10.2900 | 10.5088 | 10.6205 | 10.6845 | 10.7246 | 10.7510 | 10.7696 | 10.7829 | 10.7928 | 10.8004 | 10.8063
0.04 9.80327 | 10.2877 | 10.5055 | 10.6165 | 10.6801 | 10.7197 | 10.7459 | 10.7640 | 10.7773 | 10.7870 | 10.7945 | 10.8004
0.05 9.78851 | 10.2849 | 10.5013 | 10.6114 | 10.6743 | 10.7136 | 10.7393 | 10.7575 | 10.7705 | 10.7799 | 10.7872 | 10.7931
0.06 9.78721 | 10.2815 | 10.4964 | 10.6051 | 10.6674 | 10.7060 | 10.7317 | 10.7495 | 10.7628 | 10.7717 | 10.7795 | 10.7851
0.07 9.78563 | 10.2774 | 10.4905 | 10.5987 | 10.6605 | 10.6982 | 10.7239 | 10.7411 | 10.7539 | 10.7641 | 10.7715 | 10.7767
0.08 || 9.78389 | 10.2730 | 10.4841 | 10.5912 | 10.6525 | 10.6906 | 10.7152 | 10.7333 | 10.7474 | 10.7564 | 10.7648 | 10.7707
0.09 || 9.78181 | 10.2680 | 10.4776 | 10.5834 | 10.6446 | 10.6829 | 10.7085 | 10.7299 | — . = .
0.10 || 9.77954 | 10.2624 | 10.4702 | 10.5760 | 10.6375 | 10.6797 | — - - - - -
0.12 || 9.77467 | 10.2499 | 10.4544 | — = = - - - - = -
0.14 || 9.76803 | 10.2372 | - - - - - - - - - -
016 | 9.76233 | 102239 | — - = = - - - - - =
0.18 || 9.75474 | 10.2183 | - - - - - - - - - -
020 | 9.74604 | - - - - - - - - - - -
022 | 973812 | - - - - - - - - - - -
024 | 973013 | - - - - - - - - - - -
026 | 972078 | - - - - - - - - - - -
028 | o7i2i1| - . - - - - - - - - -
030 | 970421 | ~— - - - - - - - - - -

Table 2. Dependence of integration constant a4(zg) on the model parameters.

Q o 2 4 6 8 10 12 14 16 18 20 22 24
0.02 0.00775 | 0.00822 | 0.00834 | 0.00847 | 0.00856 | 0.00842 | 0.00859 | 0.00853 | 0.00835 | 0.00832 | 0.00845 | 0.00831
0.03 0.01680 | 0.01859 | 0.01885 | 0.01897 | 0.01927 | 0.01880 | 0.01915 | 0.01858 | 0.01872 | 0.01871 | 0.01848 | 0.01871
0.04 0.08307 | 0.03267 | 0.03331 | 0.03349 | 0.03330 | 0.03332 | 0.03322 | 0.03326 | 0.03276 | 0.03283 | 0.03255 | 0.03205
0.05 0.04699 | 0.05080 | 0.05193 | 0.05216 | 0.05251 | 0.05153 | 0.05172 | 0.05061 | 0.05011 | 0.05046 | 0.05021 | 0.04962
0.06 0.06661 | 0.07224 | 0.07441 | 0.07607 | 0.07545 | 0.07490 | 0.07387 | 0.07300 | 0.07058 | 0.07171 | 0.06961 | 0.06916
0.07 0.09097 | 0.09904 | 0.10195 | 0.10081 | 0.09893 | 0.09983 | 0.09702 | 0.09713 | 0.09547 | 0.09211 | 0.09062 | 0.09126
0.08 0.11761 | 0.12808 | 0.13191 | 0.13031 | 0.12757 | 0.12481 | 0.12466 | 0.12091 | 0.11485 | 0.11501 | 0.11049 | 0.10889
0.09 0.14996 | 0.16118 | 0.16333 | 0.16275 | 0.15680 | 0.15183 | 0.14819 | 0.13394 — — — —
0.10 0.18601 | 0.19981 | 0.20035 | 0.19436 | 0.18571 | 0.16752 — — — - — -
0.12 0.26289 | 0.28890 | 0.28559 — — — — — — — — —
0.14 0.35588 | 0.38281 - — — - — — — - — —
0.16 0.46560 | 0.49029 - - — — — — - - — -
0.18 0.59648 | 0.55426 — — — — — — — — — —
0.20 0.73343 — - - — — — — - - — -
0.22 0.89507 - - - — — - - — — - —
0.24 1.04326 - - - - - — — — — — —
0.26 1.22838 — — - — — — — - - — -
0.28 1.40768 — — — — — - — — — — —
0.30 1.58462 — — - — - - - - - - -
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Table 3. Dependence of the dimensionless mass Mz, 2) on the model parameters.

o 2 4 6 8 10 12 14 16 18 20 22 24

0 1.24303 | 1.67141 | 1.82404 | 1.89462 | 1.93284 | 1.95581 | 1.97066 | 1.98081 | 1.98804 | 1.99337 | 1.99741 | 2.00055
0.01 1.24314 | 1.67177 | 1.82459 | 1.89530 | 1.93363 | 1.95666 | 1.97157 | 1.98176 | 1.98902 | 1.99438 | 1.99845 | 2.00160
0.02 1.24346 | 1.67284 | 1.82625 | 1.89737 | 1.93599 | 1.95925 | 1.97432 | 1.98463 | 1.99200 | 1.99744 | 2.00157 | 2.00479
0.03 1.24400 | 1.67463 | 1.82903 | 1.90086 | 1.93998 | 1.96361 | 1.97896 | 1.98950 | 1.99704 | 2.00262 | 2.00687 | 2.01018
0.04 1.24476 | 1.67716 | 1.83297 | 1.90581 | 1.94566 | 1.96983 | 1.98560 | 1.99646 | 2.00426 | 2.01006 | 2.01448 | 2.01794
0.05 1.24575 | 1.68044 | 1.83812 | 1.91230 | 1.95314 | 1.97805 | 1.99439 | 2.00570 | 2.01386 | 2.01995 | 2.02462 | 2.02828
0.06 1.24695 | 1.68451 | 1.84454 | 1.92046 | 1.96258 | 1.98847 | 2.00557 | 2.01748 | 2.02612 | 2.03261 | 2.03762 | 2.04156
0.07 1.24838 | 1.68940 | 1.85233 | 1.93043 | 1.97420 | 2.00136 | 2.01946 | 2.03218 | 2.04149 | 2.04854 | 2.05401 | 2.05835
0.08 1.25005 | 1.69515 | 1.86159 | 1.94241 | 1.98829 | 2.01713 | 2.03659 | 2.05043 | 2.06070 | 2.06856 | 2.07474 | 2.07972
0.09 1.25195 | 1.70181 | 1.87248 | 1.95670 | 2.00532 | 2.03644 | 2.05786 | 2.07346 — - — —
0.10 1.25409 | 1.70945 | 1.88521 | 1.97370 | 2.02604 | 2.06060 — —

0.12 1.25913 | 1.72800 | 1.91734 - — — - - — - - —
0.14 1.26523 | 1.75170 — — — — — — — — — —
0.16 1.27247 | 1.78210 — - — — - - — - - —
0.18 1.28095 | 1.82257 — - — — - - — — - —
0.20 1.29080 — — — — — - - — — — —
0.22 1.30218 - — - — — - - — — - —
0.24 1.31532 — — — — — - - — — — —
0.26 1.33049 - — - — — - - — — - —
0.28 1.34812 - — - — — - - — — - —
0.30 1.36886 — - — — - — — — - — -

Table 4. Dependence of the dimensionless moment of inertia J (z0,€?) on the model parameters.

0 2 4 6 8 10 12 14 16 18 20 22 24

0 0.59875 | 0.27662 | 0.15112 | 0.09372 | 0.06334 | 0.04549 | 0.03418 | 0.02658 | 0.02124 | 0.01735 | 0.01443 | 0.01219
0.01 0.59936 | 0.27702 | 0.15139 | 0.09391 | 0.06348 | 0.04560 | 0.03426 | 0.02665 | 0.02129 | 0.01740 | 0.01447 | 0.01222
0.02 0.59984 | 0.27760 | 0.15186 | 0.09427 | 0.06376 | 0.04582 | 0.03444 | 0.02679 | 0.02141 | 0.01750 | 0.01456 | 0.01230
0.03 0.60064 | 0.27858 | 0.15265 | 0.09488 | 0.06423 | 0.04620 | 0.03474 | 0.02704 | 0.02162 | 0.01767 | 0.01471 | 0.01242
0.04 0.60176 | 0.27995 | 0.15378 | 0.09576 | 0.06492 | 0.04674 | 0.03518 | 0.02740 | 0.02192 | 0.01792 | 0.01492 | 0.01261
0.05 0.60321 | 0.28175 | 0.15527 | 0.09692 | 0.06583 | 0.04747 | 0.03577 | 0.02789 | 0.02233 | 0.01827 | 0.01522 | 0.01287
0.06 0.60500 | 0.28399 | 0.15714 | 0.09841 | 0.06701 | 0.04841 | 0.03654 | 0.02852 | 0.02286 | 0.01873 | 0.01561 | 0.01321
0.07 0.60712 | 0.28670 | 0.15945 | 0.10026 | 0.06849 | 0.04962 | 0.03754 | 0.02936 | 0.02357 | 0.01933 | 0.01613 | 0.01367
0.08 0.60960 | 0.28992 | 0.16223 | 0.10254 | 0.07035 | 0.05116 | 0.03882 | 0.03045 | 0.02451 | 0.02015 | 0.01685 | 0.01430
0.09 0.61243 | 0.29368 | 0.16558 | 0.10534 | 0.07271 | 0.05316 | 0.04055 | 0.03197 — - — —
0.10 0.61564 | 0.29805 | 0.16958 | 0.10883 | 0.07577 | 0.05593 — - — - - —
0.12 0.62322 | 0.30891 | 0.18028 - — —

0.14 0.63247 | 0.32338 — - — — - - — - - —
0.16 0.64357 | 0.34316 — - — — - - — — — —
0.18 0.65673 | 0.37273 — — — — - - — — — —
0.20 0.67228 —

0.22 0.69059 — — — — — - - — — — —
0.24 0.71224 - - - — — — — — — — —
0.26 0.73802 - — - — — - - — - — —
0.28 0.76916 — — - — — — — — - — —
0.30 0.80784 - — - — — - - - - — —
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Table 5. Dependence of the equatorial radius & (g, 2) on the model parameters.
Q o 2 4 6 8 10 12 14 16 18 20 22 24
0 2.06029 | 3.30745 | 4.02371 | 4.49390 | 4.82860 | 5.07994 | 5.27602 | 5.43347 | 5.56278 | 5.67094 | 5.76277 | 5.84173
0.01 2.06054 | 3.30884 | 4.02650 | 4.49815 | 4.83417 | 5.08680 | 5.28400 | 5.44242 | 5.57255 | 5.68153 | 5.77401 | 5.85364
0.02 2.06141 | 3.31311 | 4.03519 | 4.51133 | 4.85154 | 5.10782 | 5.30845 | 5.46989 | 5.60282 | 5.71419 | 5.80893 | 5.89046
0.03 2.06290 | 3.32039 | 4.04991 | 4.53368 | 4.88116 | 5.14421 | 5.35083 | 5.51776 | 5.65554 | 5.77139 | 5.87010 | 5.95540
0.04 2.06489 | 3.33067 | 4.07119 | 4.56629 | 4.92466 | 5.19791 | 5.41396 | 5.58949 | 5.73516 | 5.85819 | 5.96352 | 6.05474
0.05 2.06750 | 3.34408 | 4.09941 | 4.61037 | 4.98451 | 5.27273 | 5.50288 | 5.69162 | 5.84949 | 5.98384 | 6.09966 | 6.20072
0.06 2.07084 | 3.36106 | 4.13574 | 4.66826 | 5.06459 | 5.37484 | 5.62649 | 5.83585 | 6.01359 | 6.16696 | 6.30090 | 6.41912
0.07 2.07469 | 3.38173 | 4.18128 | 4.74318 | 5.17156 | 5.51543 | 5.80181 | 6.04674 | 6.26059 | 6.45046 | 6.62133 | 6.77702
0.08 2.07917 | 3.40663 | 4.23830 | 4.84101 | 5.31770 | 5.71792 | 6.06917 | 6.38913 | 6.69112 | 6.98775 | 7.29267 | 7.63219
0.09 2.08438 | 3.43630 | 4.30958 | 4.97151 | 5.52963 | 6.04457 | 6.57338 | 7.25054 — - — -
0.10 2.09032 | 3.47140 | 4.40019 | 5.15555 | 5.88580 | 6.92818 — — - - - -
0.12 2.10431 | 3.56273 | 4.68395 — — — — - - - — -
0.14 2.12160 | 3.69669 - — - — — — — — — —
0.16 2.14262 | 3.91722 — — — - — — — — — —
0.18 2.16804 | 4.61011 — - — — — — — — - —
0.20 2.19878 - - - - — - - - - - -
0.22 2.23634 — — — — — — — — — — —
0.24 2.28297 — — - — — — — - — - -
0.26 2.34285 — — — — — — — — — — —
0.28 2.42401 — - - - - - - - — - -
0.30 2.54900 — - - - - - - - - - -
Table 6. Dependence of the polar radius &,(xzo, ) on the model parameters.
Q o 2 4 6 8 10 12 14 16 18 20 22 24
0 2.06029 | 3.30745 | 4.02371 | 4.49390 | 4.82860 | 5.07994 | 5.27602 | 5.43347 | 5.56278 | 5.67094 | 5.76277 | 5.84173
0.01 2.06014 | 3.30684 | 4.02260 | 4.49235 | 4.82667 | 5.07770 | 5.27350 | 5.43072 | 5.55985 | 5.66783 | 5.75951 | 5.83834
0.02 2.05971 | 3.30501 | 4.01929 | 4.48773 | 4.82094 | 5.07102 | 5.26605 | 5.42259 | 5.55112 | 5.65859 | 5.74983 | 5.82826
0.03 2.05900 | 3.30199 | 4.01381 | 4.48008 | 4.81146 | 5.06001 | 5.25373 | 5.40916 | 5.53674 | 5.64339 | 5.73390 | 5.81170
0.04 2.05799 | 3.29777 | 4.00619 | 4.46949 | 4.79836 | 5.04481 | 5.23676 | 5.39069 | 5.51696 | 5.62249 | 5.71202 | 5.78894
0.05 2.05670 | 3.29238 | 3.99651 | 4.45607 | 4.78181 | 5.02563 | 5.21538 | 5.36742 | 5.49209 | 5.59624 | 5.68456 | 5.76042
0.06 2.05514 | 3.28586 | 3.98484 | 4.43996 | 4.76199 | 5.00274 | 5.18989 | 5.33975 | 5.46249 | 5.56506 | 5.65190 | 5.72652
0.07 2.05329 | 3.27823 | 3.97128 | 4.42128 | 4.73906 | 4.97633 | 5.16051 | 5.30794 | 5.42859 | 5.52916 | 5.61443 | 5.68772
0.08 2.05117 | 3.26953 | 3.95590 | 4.40021 | 4.71330 | 4.94662 | 5.12767 | 5.27223 | 5.39032 | 5.48905 | 5.57237 | 5.64399
0.09 2.04878 | 3.25980 | 3.93878 | 4.37691 | 4.68483 | 4.91387 | 5.09128 | 5.23224 - - — -
0.10 2.04612 | 3.24910 | 3.92009 | 4.35145 | 4.65380 | 4.87768 — — - - - -
0.12 2.04001 | 3.22493 | 3.87835 — — — - - - - — -
0.14 2.03290 | 3.19729 - — - — — — — — — -
0.16 2.02482 | 3.16662 - - - — - - - - — —
0.18 2.01584 | 3.13241 — - — — — — — — - —
0.20 2.00598 - - - - — - - - - - -
0.22 1.99534 — - - - — — — — — — -
0.24 1.98387 — — - — — — — — - — -
0.26 1.97175 - — - - — - - — - — —
0.28 1.95891 — — - — — — — - - - -
0.30 1.94540 - — - - - - - — — — —
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Table 7. Dependence of the equatorial gravity g.(xo,€2) on the model parameters.

o 2 4 6 8 10 12 14 16 18 20 22 24

0 0.44741 | 1.49028 | 2.91059 | 4.67910 | 6.78953 | 9.24003 | 12.0300 | 15.1592 | 18.6275 | 22.4351 | 26.5818 | 31.0677
0.01 0.44719 | 1.48774 | 2.90224 | 4.66073 | 6.75683 | 9.18813 | 11.9543 | 15.0552 | 18.4907 | 22.2600 | 26.3644 | 30.8025
0.02 0.44645 | 1.48000 | 2.87670 | 4.60476 | 6.65695 | 9.03094 | 11.7251 | 14.7397 | 18.0740 | 21.7282 | 25.7020 | 29.9961
0.03 0.44521 | 1.46697 | 2.83383 | 4.51073 | 6.48872 | 8.76427 | 11.3361 | 14.2031 | 17.3652 | 20.8214 | 24.5724 | 28.6167
0.04 0.44352 | 1.44864 | 2.77287 | 4.37648 | 6.24785 | 8.38166 | 10.7754 | 13.4276 | 16.3373 | 19.5034 | 22.9258 | 26.6044
0.05 0.44132 | 1.42492 | 2.69334 | 4.19974 | 5.92805 | 7.87068 | 10.0229 | 12.3814 | 14.9450 | 17.7114 | 20.6800 | 23.8490
0.06 0.43857 | 1.39543 | 2.59368 | 3.97614 | 5.51988 | 7.21223 | 9.04438 | 11.0107 | 13.1063 | 15.3268 | 17.6702 | 20.1341
0.07 0.43536 | 1.36007 | 2.47250 | 3.69999 | 5.00781 | 6.37359 | 7.77927 | 9.21048 | 10.6546 | 12.1000 | 13.5361 | 14.9518
0.08 0.43164 | 1.31839 | 2.32694 | 3.36123 | 4.36495 | 5.29103 | 6.09507 | 6.72948 | 7.13724 | 7.24003 | 6.92756 | 5.97797
0.09 0.42737 | 1.26998 | 2.15373 | 2.94429 | 3.53712 | 3.81064 | 3.56903 | 2.27676 — — — —
0.10 0.42255 | 1.21433 | 1.94707 | 2.41788 | 2.37960 | 1.01052 — —

0.12 0.41130 | 1.07765 | 1.38649 - — — - - — - - —
0.14 0.39770 | 0.89693 —

0.16 0.38159 | 0.64373 — - — — - - — - - —
0.18 0.36271 | 0.10799 — - — — - - — — - —
0.20 0.34074 — — — — — - — — — — —
0.22 0.31513 - — - — — - - - - — —
0.24 0.28512 — — — — — - — — — — —
0.26 0.24936 - — - — — - - — - — -
0.28 0.20537 - - - - - - - - — — —
0.30 0.14663 — - - — — — — — - — —

Table 8. Dependence of the dimensionless energy |e(zo, )| on the model parameters.

o 2 4 6 8 10 12 14 16 18 20 22 24

0 0.34331 | 0.81173 | 1.10103 | 1.28497 | 1.41005 | 1.49993 | 1.56736 | 1.61968 | 1.66139 | 1.69536 | 1.72355 | 1.74730
0.01 0.34335 | 0.81198 | 1.10155 | 1.28578 | 1.41112 | 1.50127 | 1.56895 | 1.62151 | 1.66344 | 1.69764 | 1.72605 | 1.75001
0.02 0.34346 | 0.81271 | 1.10312 | 1.28820 | 1.41437 | 1.50530 | 1.57373 | 1.62702 | 1.66965 | 1.70453 | 1.73360 | 1.75822
0.03 0.34365 | 0.81395 | 1.10576 | 1.29228 | 1.41985 | 1.51212 | 1.58184 | 1.63635 | 1.68018 | 1.71623 | 1.74643 | 1.77216
0.04 0.34392 | 0.81569 | 1.10951 | 1.29809 | 1.42767 | 1.52188 | 1.59345 | 1.64976 | 1.69532 | 1.73305 | 1.76491 | 1.79225
0.05 0.34427 | 0.81796 | 1.11440 | 1.30573 | 1.43800 | 1.53479 | 1.60887 | 1.66759 | 1.71550 | 1.75552 | 1.78961 | 1.81915
0.06 0.34469 | 0.82077 | 1.12052 | 1.31533 | 1.45105 | 1.55119 | 1.62851 | 1.69039 | 1.74136 | 1.78438 | 1.82141 | 1.85383
0.07 0.34520 | 0.82415 | 1.12794 | 1.32709 | 1.46713 | 1.57152 | 1.65298 | 1.71891 | 1.77385 | 1.82076 | 1.86162 | 1.89781
0.08 0.34579 | 0.82813 | 1.13679 | 1.34123 | 1.48666 | 1.59642 | 1.68318 | 1.75435 | 1.81447 | 1.86651 | 1.91245 | 1.95370
0.09 0.34646 | 0.83274 | 1.14719 | 1.35810 | 1.51026 | 1.62686 | 1.72058 | 1.79882 — —

0.10 0.34722 | 0.83803 | 1.15935 | 1.37816 | 1.53886 | 1.66464 — — — — — —
0.12 0.34900 | 0.85089 | 1.18997 - — —

0.14 0.35116 | 0.86730 - - — — — — — — — —
0.16 0.35373 | 0.88825 — - — — - - — - - -
0.18 0.35674 | 0.91567 — - — — - - — — — -
0.20 0.36023 —

0.22 0.36427 - — - — — - - - — — —
0.24 0.36892 — — — — — - - — — — —
0.26 0.37428 - — - — — - - - — — —
0.28 0.38048 - — - — — - - — - — —
0.30 0.38772 — — - — — — — — - — —

Table 9. Dependence of the maximal angular velocity on the parameter xg.

\ ) I 2 [ 4 ] 6 [ 8 [ 10 [ 12 [ 14 [ 16 [ 18 [ 20 | 22 [ 24 |
Qmax (o) 0.3242 | 0.1815 | 0.1439 | 0.1258 | 0.1098 | 0.1019 | 0.0980 | 0.0927 | 0.0914 | 0.0884 | 0.0858 | 0.0836
Wiax (7o), s~1 ] 0.4027 | 0.9055 | 1.4905 | 2.1342 | 2.7021 | 3.3795 | 4.1693 | 4.8832 | 5.8052 | 6.6309 | 7.4757 | 8.3468
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Table 10. Dependence of the dimensionless mass M (zy|z) and
dimensionless radius & (zo|z) on the model parameters xy and z.

. M(@]2) & (wol?)
z=2 | z2=26 |z:12 z=2 ‘ z2=26 |z:12
1.0 || 0.689037 | 0.673304 | 0.65581 | 1.00101 | 0.98801 | 0.97401
2.0 1.22092 1.20126 | 1.17904 | 2.02501 | 2.00601 | 1.98501
3.0 1.49465 1.47331 | 1.44912 | 2.74601 | 2.72401 | 2.70001
4.0 1.64646 1.62426 | 1.59907 | 3.27001 | 3.24701 | 3.22001
5.0 1.73843 1.71573 | 1.68996 | 3.67001 | 3.64501 | 3.61701
6.0 1.79816 | 1.77515 | 1.74901 | 3.98601 | 3.96001 | 3.93101
7.0 1.83909 1.81586 | 1.78948 | 4.24301 | 4.21701 | 4.18701
8.0 1.86832 1.84495 | 1.81839 | 4.45601 | 4.43001 | 4.39901
9.0 1.88992 1.86645 | 1.83976 | 4.63701 | 4.61001 | 4.57901
10.0 1.90633 1.88277 | 1.85599 | 4.79101 | 4.76401 | 4.73301
15.0 || 1.94943 | 1.92567 | 1.89863 | 5.32201 | 5.29401 | 5.26301
20.0 || 1.96651 1.94268 | 1.91554 | 5.63501 | 5.60701 | 5.57501
25.0 1.97495 1.95108 | 1.92389 | 5.84201 | 5.81401 | 5.78201
30.0 || 1.97972 1.95583 | 1.92861 | 5.98901 | 5.96101 | 5.92901
Table 11. Dependence of multiplier k(z¢|z)
on the model parameters xy and z.
? 2 6 8 12
Zo
1.0 0.991427 | 0.983823 | 0.980958 | 0.975228
2.0 0.994035 | 0.988671 | 0.986626 | 0.982537
3.0 0.994711 | 0.989954 | 0.988138 | 0.984506
4.0 0.994999 | 0.990507 | 0.988791 | 0.985360
5.0 0.995154 | 0.990804 | 0.989142 | 0.985818
6.0 0.995248 | 0.990985 | 0.989355 | 0.986096
7.0 0.995310 | 0.991102 | 0.989494 | 0.986279
8.0 0.995351 | 0.991184 | 0.989591 | 0.986404
9.0 0.995383 | 0.991246 | 0.989663 | 0.986498
10.0 0.995407 | 0.991289 | 0.989715 | 0.986567
15.0 0.995466 | 0.991405 | 0.989851 | 0.986743
20.0 0.995488 | 0.991451 | 0.989905 | 0.986812
25.0 0.995499 | 0.991472 | 0.989930 | 0.986845
30.0 0.995506 | 0.991486 | 0.989946 | 0.986865
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Bupopa>keHi kapnankun 3i WuBUAKUM obepTaHHSAM

Baspyx M., /Izikoscekuit ., Cmepeaurcekuii C.

JIveiecorutl nayionarvruli ywisepcumem iment leana Pparka,
eyn. Kupuaa © Megodin, 8, 79005 Jlveis, Ykpaina

Ha ocnoBi piBHsiHHST piBHOBArm po3paxOBaHO XapPAKTEPUCTUKU XOJOMHUX OIIMX KapJiu-
KiB 3 OCHOBUM ODEPTAHHSM i KYJIOHIBCBKUMHU Mi2KYACTUHKOBAMHU B3AEMOJISIMHU Y PAMKaX
€JIEKTPOH-AJIEPHOI MO/IeJI1 3 MOBHICTIO BUPOJIZKEHOIO €JIEKTPOHHOIO MiJICUCTEMOIO 1 CTaTHY-
HOIO sifiepHOIo Tijcucremoro. Ha mepromy ertami 3HaliieHo HaOJMXKeHI PO3B’sa3Ku ude-
PEHIIAILHOTO PIBHSIHHS PiBHOBaru, B koMy (irypyrorh JBa 0€3pO3MipHI mapaMeTpu: Ty
— mapaMeTp peJISITHBI3MY y IeHTpi 30pi Ta {2 — 6e3po3MipHa KyTOBa IMBUIKICTH. 3 METOO
KOPEKTHOT'0 PO3PaXyHKY HAOOPY CTAJUX iHTerpyBaHHS BUKOPUCTAHO IHTErpajbHY (hopmy
1nporo piBugnHgA. Ha 1iit ocHOBI 00YHCIEHO Macy KapJinKa, eKBaTOpIaJbHUil 1 MOJsIpHMit
pajiiycu, MOMEHT iHepIlil, IOBHY €Hepriio, TPUCKOPEHHs Ha, eKBATOPi IK DYHKIIT mapaMeT-
piB ¢ Ta . IIpoaHaJizoBaHO 3MiHy XapaKTE€pPUCTHK IIij] BIIMBOM obepranHs. Onucany
MOJIeIb y3araJbHEeHO MIJISXOM BpPaXyBaHHS KYJIOHIBCHKUX B3aeMOiil. JlocmiKeHo KOHKY-
PEHIIif0 MizK 00epTaHHSAM 1 Mi)KIYaCTUHKOBUMHE B3aeMo/lisimu. Ha ocHOBI pesysbraTiB po3pa-
XYHKY BUKOHAHO OIIHKM XapaKTEePUCTUK HEJABHO BIIKPUTUX OLINX KAPJHMKIB 3i MBUIKAM
obepTaHHSIM 33 BiTOMOIO 3i CIOCTEpEXKEeHb IXHBOIO KyTOBOIO MIBUIKICTIO a00 K KyTOBOIO
MIBAIKICTIO Ta MacCoOIO.

Knrouosi cnoBa: supodoiceni Kapauku, 0cvbose 06epmanis, KYAoHiBCOKE MINCHACTMUHKOG]
83a€M00ii, PIBHAHHA METAHITWHOT PIGHOBA2U, 0bEPHEHA 3a0aY4a.
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