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Abstract. The rapid advances in machine learning (ML) and information fusion have made it possible to use 
machines/computers with the ability of understanding, recognition, and analysis of human emotion, mood and stress, and related 
mental diseases. The recognition methods based on physiological modalities are the most performant. Wearable technologies 
enable non-invasive long-term data gathering and analysis. The number of mental health issues are correlated with emotional states 
and can be possibly detected by similar methods to general emotion recognition. The scientific interest in the recognition of mental 
disorders is growing, and most of the available studies are uni-modal based on either ECG or EEG sensor data, while some recent 
studies also utilize multiple modalities and sensor fusion. 
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1. Introduction 

The advancements in affective computing and 
recognition of human emotions, mood, and stress during 
the past two decades bring new opportunities for the 
detection, monitoring, and prevention of mental health 
diseases. The progress and availability of non-invasive 
wearable sensors and mobile technologies for compu-
tation and wireless networking enable long-term data 
collection and real-time sensor data analysis.   

Mental health disorders, although incredibly 
prevalent, remain poorly understood. Anxiety disorders 
(AD) are the most common type of mental illness in the 
world, affecting 264 million worldwide. Post-traumatic 
stress disorder (PTSD), anxiety disorders, and mood 
disorders – such as major depressive disorder (MDD) 
and bipolar disorder (BD) – have distinct symptoms, but 
they overlap significantly. 

According to the American Psychiatric 
Association, traumatic stress is characterized by the 
direct experience or witnessing of actual or threatened 
death or serious injury, or a threat to physical integrity, 
and responses that include intense fear, helplessness, or 
horror. Epidemiological studies indicate that 82% of 
individuals in the U.S. have experienced at least one 
traumatic event in their lifetime [1]. Exposure to trauma 
significantly increases vulnerability to a variety of 
psychiatric disorders, most commonly Posttraumatic 
Stress Disorder (PTSD) and Major Depressive Disorder 
(MDD). Estimates of the conditional risk for developing 
these disorders in the context of trauma vary widely and 
underscore their complex nature. 

Depression is the leading cause of ill health and 
disability worldwide. According to the latest estimates 
from WHO, more than 300 million people are now living 
with depression, an increase of more than 18% between 
2005 and 2015. 

Depression is related to the normal emotions of 
sadness and bereavement, but it does not remit when the 
external cause of these emotions dissipates, and it is 
disproportionate to their cause. The diagnosis of the 
major depressive disorder requires a distinct change of 
mood, characterized by sadness or irritability and 
accompanied by at least several psychophysiological 
changes, such as disturbances in sleep, appetite, loss of 
the ability to experience pleasure, crying, suicidal 
thoughts, and slowing of speech and action [2].  

PTSD involves a range of emotional, cognitive, 
and somatic symptoms that can develop after a person 
has experienced or witnessed a traumatic event in which 
serious harm to the individual occurred or was threa-
tened. Likewise, MDD is characterized by sustained 
negative mood, often associated with biological, psycho-
logical, or social sources of stress. PTSD first appeared 
in the Diagnostic and Statistical Manual of Psychiatric 
Disorders (DSM-III) in 1980 arising from studies of the 
Vietnam war and of civilian victims of natural and man-
made disasters [3]. 

PTSD and depression are highly intercorrelated as 
they are based on shared underlying psychopathological 
processes [4]. 

Given the importance of mental health, rese-
archers are now finding ways to accurately recognize 
human emotions and related states that are connected to 
mental health disorders, to develop intervention schemes 
for mental health. For example, in a healthcare system 
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with a module of emotion recognition, patients’ mental 
and physical states can be monitored in real-time and 
appropriate therapy can be prescribed accordingly. 

2. Drawbacks 
Despite there being significant advances in the 

understanding of mental health diseases from one side 
and Affective Computing in general and particularly 
Emotion Recognition, the number of studies focusing on 
the heavily negative stress states such as sadness, 
depression, and related mental disorders is low. There is 
no general understanding of whether reliable methods of 
automatic recognition of such states from physiological 
signal analysis exist and can be further developed.  Also, 
evidence suggests that this is not common for people 
with PTSD to seek treatment and that, even in academic 
and community mental health settings, rates of recogni-
tion may be low, with a clinical diagnosis of PTSD 
occurring in as few as 4% of individuals with the 
disorder [5-8]. 

3. Goal 
The goal of the current article is to analyze the 

current state of the art in the field of recognition of 
human mental diseases such as depression and PTSD 
from physiological signal analysis, categorize recent 
prior works and the results achieved in terms of reco-
gnition performance, modalities used, methods applied, 
and conclude benefits and limitations of different 
methods. 

4. Affective Computing 
Affective computing is the set of techniques of 

affect recognition from data in different modalities and 
granularities. Affective computing research mainly 
comprises the topics of sentiment analysis and emotion 
recognition. The former performs coarse-grained affect 
recognition (usually a task of binary positive vs. negative 
or 3-class positive, negative, and neutral sentiments 
classification), whereas the latter involves fine-grained 
analysis (usually a multiclass classification of big data 
into a larger set of emotion labels, for example, more 
than 4 classes). Over the past two decades, AI resea-
rchers have attempted to endow machines with cognitive 
capabilities to recognize, interpret and express emotions 
and sentiments. All such efforts can be regarded as 
affective computing research.  

In 1997, Rosalind Picard from MIT published her 
seminal book on affective computing [9], which is 
considered the starting point for the branch of computer 
science known as Affective Computing. 

The general procedure of affective computing 
based on physiological signals is composed of the 
following three steps: 

Step 1 – Feature extraction: Extract features from 
heterogeneous physiological signals from different 

sources including electroencephalogram (EEG), electro-
cardiogram (ECG), galvanic skin response (GSR), 
respiration, pulse rate, etc.; 

Step 2 – Emotion recognition: Recognition of the 
emotional state; and 

Step 3 – Emotional regulation: Regulation/adjust-
ment of emotions through psychological measures. 

5. Emotions and Stress Recognition 

Emotion is a complex psychophysiological pheno-
menon. Due to its complexity, psychologists have not yet 
reached a consensus on a unifying definition of emotion 
or sentiment. There are multiple theories related to 
emotions or sentiments available.  

Emotion is a complex state that combines fee-
lings, thoughts, and behavior and is people’s psycho-
physiological reactions to internal or external stimuli. It 
plays a vital role in people’s decision-making, percep-
tion, and communication [9, 10]. Affective computing 
has a wide range of applications. In an HCI system, if 
the computer can recognize the human emotional state 
accurately and in real-time, the interaction between the 
machine and the operator can be made more intelligent 
and user-friendly. In military and aerospace applications, 
the functional state of soldiers and pilots/astronauts can 
be detected in real-time. Also, if the functional state can 
be monitored over a longer period and correlated with 
soldier behavior in different stressful situations, the 
stress tolerance and overall risk of failing or succeeding 
in real combat could be predicted [11].  

Emotion recognition is the most important 
component of affective computing. It is a field of science 
that combines computer science, AI, psychology, and 
cognitive neuroscience.  Human emotions mostly are 
identified by facial expressions, speech, behavior, or 
physiological signals [12, 13, 14, 15]. The first three 
methods can rely on widely available sensors such as 
cameras and microphones, however, they are subjective 
and the person can conceal real feelings by masking the 
real emotions. In contrast, emotion recognition based on 
physiological signals is more reliable and objective [16]. 

The Affective Computing research group at the 
MIT Media Lab has conducted a significant amount of 
research, demonstrating that certain affective states can 
be recognized by using physiological signals such as 
heart rate, galvanic skin response (GSR), temperature, 
EMG, and respiration rate. For instance, in one study the 
researchers elicited targeted emotions with personalized 
imagery and collected four channels of physiological 
signals (EMG, pulse rate, GSR, and respiration) to 
recognize up to eight classes of emotional states [17]. 
They extracted the time- and frequency-domain features 
from those physiological signals respectively. They 
achieved an overall classification accuracy of 88.3% for 
the 3-class (anger, sadness, and happiness) problem and 
81% for the 8-class problem. 
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EEG signals are generated by the central nervous 
system (CNS) and respond to emotional changes faster 
than other peripheral neural signals. The activation of the 
autonomic nervous system (ANS) is largely unconscious 
and cannot be easily triggered by any conscious control, 
utilizing physiological signals from ANS (such as blood 
pressure, heart rate variability, skin conductivity, or 
respiratory rate) for emotion recognition would be robust 
against social masking.  Heart rate is in part determined 
by influences on the sinoatrial node (SA) pacemaker, 
which is modulated by both the parasympathetic and 
sympathetic branches of the ANS. Additionally, expe-
rimental results revealed significant cross-cultural 
consistency in the ANS physiological response patterns 
among different emotions [18]. While ECG, PPG, GSR, 
Respiration, and EEG remain primary for emotion recog-
nition, some researchers focus on novel approaches, such 
as electrogastrography (EGG) [19] or tongue color 
imaging [20]. 

The rapid development of mobile and wearable 
technologies over the past two decades made it possible 
to gather several physiological signals from the human 
body in real time. The modern smart watch can record 
heart rate and heart rate variability (HRV) from photo-
plethysmograph (PPG) sensors, electrodermal activity 
(EDA), skin temperature (SKT), 2-led ECG, location, 
and movement data via accelerometer and gyroscope. 
Smartphones become ubiquitous personal devices with a 
rich set of sensors embedded, such as an accelerometer, 
GPS, gyroscope, and microphone, for health monitoring, 
pedestrian localization, and navigation. The growing 
popularity of sensors, low-power integrated circuits, and 
wireless networks has led to the development of 
affordable and wearable devices that can measure and 
transmit data for a long period. Wearable devices are 
non-intrusive which is critical for long-term data 
gathering and minimizing observer effect. There is also a 
growing interest in sensor fusion from different 
modalities (e.g., EEG, heart rate, galvanic skin response, 
etc.) for emotion recognition. Over the past decade, 
affective computing researchers also have utilized wea-
rable sensors and phone usage patterns to detect stress, 
mental well-being, and mental disorders.  

6. Detection of Depression and PTSD 
The everyday variations in the human emotional 

state reflect the mood, which can be defined as the 
positive or negative feelings that are in the background 
of our everyday experiences. Mood (anxiety or affective) 
disorders are psychological disorders in which the 
person’s mood negatively influences his or her physical, 
perceptual, social, and cognitive processes. Some 
examples of such disorders include: 

● Major depressive disorder – prolonged and 
persistent periods of extreme sadness 

● Bipolar disorder – also called manic depression 
or bipolar affective disorder, is depression that includes 
alternating times of depression and mania 

● Cyclothymic disorder – a disorder that causes 
emotional ups and downs that are less extreme than 
bipolar disorder 

● PTSD - complex disease, a mental health 
condition that's triggered by a terrifying event, with four 
groups of symptoms: intrusive memories, avoidance, 
negative changes in thinking and mood, and changes in 
physical and emotional reactions 

The relationship between mental diseases and 
emotions is not formally defined. Some symptoms of 
health diseases could be described as patterns of chan-
ging emotions in time (Fig. 1). 

There is a significant overlap between major men-
tal illnesses, such as MDD, BD, PTSD, and Complex 
PTSD (CPSD). 

Depression is the major cause of years lived in 
disability worldwide; however, its diagnosis and tracking 
methods still rely mainly on assessing self-reported 
depressive symptoms, methods that originated more than 
fifty years ago. These methods, which usually involve 
filling out surveys or engaging in face-to-face 
interviews, provide limited accuracy and reliability and 
are costly to track and scale [21]. 

The study of PTSD dates back more than 100 
years. According to the most recent edition of the 
Diagnostic and Statistical Manual of Psychiatric 
Disorders (DSM-IV-TR), the essential feature of PTSD 
is the development of characteristic symptoms following 
exposure to an extreme traumatic stressor characterized 
by: direct personal experience of an event that involves 
actual or threatened death or serious injury, or other 
threat to one’s physical integrity; or witnessing an event 
that involves death, injury, or a threat to the physical 
integrity of another person; or learning about unexpected 
or violent death, serious harm, or threat of death or 
injury experienced by a family member or other close 
associate. The person reacts to this event with fear and 
helplessness and tries to avoid being reminded of it. The 
principal symptoms of PTSD are the painful re-
experiencing of the event, a pattern of avoidance, and 
often hyperarousal. 

Ghandeharioun et al. [21] developed and tested 
the efficacy of machine learning techniques applied to 
objective data captured passively and continuously from 
E4 wearable wristbands and from sensors in an Android 
phone for predicting the Hamilton Depression Rating 
Scale (HDRS). Input data include electrodermal activity 
(EDA), sleep behavior, motion, phone-based commu-
nication, location changes, and phone usage patterns. 
The depression severity was predicted with relatively 
low error. It was suggested that poor mental health was 
accompanied by more irregular sleep, less motion, fewer 
incoming messages, less variability in location patterns, 
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and higher asymmetry of EDA between the right and the 
left wrists. 

 

 
 

Fig. 1. Relations between emotions, MDD, and BD. 
 

Minassian et al. [11] assessed four battalions of 
male active-duty Marines (N=2430) 1-2 months before a 
combat deployment. HRV was measured during 5 
minutes of rest. Depression and PTSD were assessed by 
the Beck Depression Inventory and Clinician-Adminis-
tered PTSD scale respectively. After accounting for 
covariates including traumatic brain injury (TBI), a 
regression indicated that lower levels of high frequency 
(HF) HRV were associated with a diagnosis of PTSD 
(beta = -.20, p=.035). Depression and PTSD severity 
were correlated (r= .49, p <.001), however participants 
with PTSD but relatively low depression scores 
exhibited reduced HF compared to controls (p=.012). 
Marines with deployment experience (n=1254) had 
lower HRV than those with no experience (p = .033). 

Previous studies also have reported lower HRV in 
psychiatric disorders such as schizophrenia, depression, 
bipolar disorder, panic disorder, and PTSD [22-24]. 
Multiple studies indicate that individuals with PTSD 
have lower HRV, as compared to healthy controls, both 
at rest and during stress [25]. There is reduced 
parasympathetic activity (due to reduced RMSSD, HF-
HRV, and LF-HRV) in individuals with PTSD, as 
compared to control groups. Also, the negative effect of 
SDNN correlates with diminished total variability in 
PTSD. The positive effect size in the LF/HF ratio 
possibly suggests changes in sympathovagal balance in 
PTSD, and increased HR in PTSD at baseline and during 
stress may indicate higher SNS activity. Results suggest 
that changes in the ANS in individuals with PTSD are 
not restricted to pure vagally-mediated HRV parameters 
but may rather indicate a general ANS dysregulation. 
Despite multiple studies suggesting a high correlation 
between low HRV and PTSD, it is still unconfirmed, 
whether lower HRV constitutes a risk factor for 
developing PTSD, or if lower HRV is a factor that 

develops during PTSD. Hence, no causal relationship 
can be derived.  

Zhu et al. [26] propose a content-based multiple 
evidence fusion (CBMEF) method for the detection of 
mild depression, which fuses EEG and eye movement 
data at the decision level. The experimental results show 
that the proposed method outperforms other fusion me-
thods as well as the single modality results. The highest 
accuracies achieved 91.12%, and sensitivity, specificity, 
and precision were 89.20%, 93.03%, and 92.76. 

The increasing number of studies confirms the high 
accuracy of the detection of depression from ECG signals 
with ML [27]. Among the included studies, the highest 
classification accuracy was up to 99.5% [28], which offers 
the potential for screening and prevention of early clinical 
depression. Historically, brain activity studies were focused 
on magnetic resonance imaging (MRI) -based depression 
detection. However, EEG-based ML has achieved better 
performance in depression diagnosis in terms of both cost 
and classification accuracy [29].  

PTSD affects 9% of the world population, and 
interestingly, seems to be less investigated in comparison 
to other anxiety disorders such as personality disorder 
(PD) [30]. Three out of four studies confirmed the 
correlation of HRV frequency-domain features such as 
high frequency (HF) and low frequency (LF) with PTSD 
symptoms with similar results confirmed by a medical 
Holter monitor (small, wearable device that records the 
heart's rhythm continuously over 24h) devices and Polar 
watch (not clinically approved). Despite some progress, 
many of the published results that discussed the corre-
lation between ECG features and AD are contradictory, 
and many of the studies had very small sample sizes. 
The majority of studies are based on ECG signals only, 
and a few are based on ECG along with other biosignals.  

The summary of the results of the studies, focused 
on the recognition of mental disorder states via analysis 
of physiological signals is presented (Table). 

7. Conclusions 
1. A review of the development and progress in 

methods and technologies in the recognition of human 
depressive states and PTSD from the physiological 
signal analysis is presented. There is a trend toward data 
collection from wearable physiological sensors to 
improve the detection of mental health diseases. While 
biosensors are widely utilized for capturing human 
emotions, the current studies on the automatic detection 
of mental illnesses such as depression and PTSD in most 
are based on a single modality such as PPG/ECG or 
EEG. The sensor fusion techniques are often part of the 
general emotion recognition pipeline, but these 
techniques are not as popular for mental disease 
detection. The timely detection of mental health issues is 
of great importance, as early detection and intervention 
can improve the outcomes of any mental disorder.  
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Table. Summary of selected studies in automated recognition of mental disorders 

Author Year # Labels Modalities Analysis Rec. Rate 

Jang et al. [31] 2022 71 PD EDA, SKT, RESP, PT SVM, Random forest, MLP 75.61% 

Zang et al. [32] 2022 74 MDD ECG CNN 93.96% 

Long et al. [33] 2021 36 MDD ECG, PPG LightGBM 85.32% 

Movahed et al [34] 2021 64 MDD EEG n/a 99% 

Wu et al [35] 2021 400 MDD EEG SVM 84.16% 

Cho et al [36] 2019 55 MDD, BD PPG Random forest 6%-94% 

Duan et al [37] 2020 32 MDD EEG CNN 94.13% 

Tazawa et al [38] 2020 41 MDD, BD ECG, ACC, SKT XGBoost 76% 

Shah et al [24] 2017 459 PTSD ECG (HRV) GEE p <0.001 

Valenza et a [39] 2016 14 BD ECG (HRV) SVM 69% 

Minassian et al [11] 2014 2430 PTSD PPG ANOVA beta = -.20, 
p=.035 

Agorastos et al [23] 2013 15 PTSD ECG (RR) ANOVA n/a 

 
Research, which is currently ongoing, is required 

and it is expected that its results would enable the 
development of new methods and technologies. 

2. Current research on relations between physio-
logical signals is limited and the following directions for 
future research are suggested: 

• Collection of multiple biosignals simulta-
neously and application of sensor fusion to merge infor-
mation from multiple signals.  

• Extraction of advanced features of ECG sig-
nal such as waveform morphology features. 

• Application of nonlinear signal analysis and 
wavelet transform to extract more features. 

• Collection of biosignals from wearable 
devices along with clinically approved devices such as 
ECG monitors for validation purposes. 

• Building databases with a big number of 
subjects (>100) and from a diversity of subjects by age, 
ethnicity, and gender. 

• Producing publicly available physiological 
databases that contain time-synchronized sensor data.  

Although some public databases exist, these 
datasets are limited and most are focused on emotional 
states rather than mental disorders. 
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