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Abstract. A modified Fog-based trust method to prevent third-party interference in establishing trust relationships between 

sensors and cloud service providers in multi-sensor systems is considered. Trust in behavior between nodes is established at the 

level of wireless sensor networks; in the nodes and objects data at the Fog layer. With more detailed data analysis of the latter, it 

becomes possible to monitor the trust status of the entire network, detect data attacks and recover from misjudged nodes. Fog layer 

can be built as a reliable third party. Experiment results show that the proposed trust mechanism is inherent in advantage due to 

reducing energy consumption and ensuring the trust state of Edge nodes and whole the network as well as detecting hidden attacks 

on data and recovering nodes. 
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1. Introduction 

Recent advances in electronic and wireless 

communications have revolutionized the IoT with the 

development of miniaturized, multi-sensor systems that can 

harness and manage data collection and sharing. These 

advantages have made it possible to design small, cost-

effective, and low-power multifunctional sensor platforms 

capable of monitoring and transmitting information in such 

sectors as automotive, healthcare, industry, etc. [1]. 

The IoT approach is combined with machine 

learning based on innovative algorithms to obtain valuable 

information useful for intelligent cyber-physical systems 

(CPS) that contain physical and cyber parts connected 

through a network [2-3]. The physical part consists of 

sensors and actuators that collect the data and perform 

tasks based on the collected information. The collected da-

ta is sent over the network to the cyber part, where is sto-

red and processed. Advanced machine learning algorithms 

are implemented to produce information for the physical 

part. CPS is presented in a variety of industries including 

manufacturing, logistics, oil/gas, transportation, energy/ 

services, mining, metallurgy, and aviation [4-5]. Industrial 

CPS can build autonomous self-service machines and 

improve inventory management through machine lear-

ning. It is the basis of Industrial IoT, which can collect 

transaction data and send it over the network to cloud 

servers, where it is analyzed and stored. The main tasks of 

IoT in this case are focused on storing and manipulating 

data of IoT devices equipped with sensors that are charac-

terized by low computing power and small memory. 

2. Disadvantages 

Due to the rapid growth and diversity of IoT-

connected devices, the traditional centralized network 

architecture must meet new service requirements, and 

challenges, and effectively identify and provide large 

amounts of data concerning security, integrity, and 

privacy. It is important to develop methods for cleaning 

data in such networks [6]. To solve the mentioned 

problems and achieve a better quality of service (QoS) 

and quality of experience (QoE) by performing data 

storage and processing operations physically near the 

data source in a distributed infrastructure, Fog/Edge 

computing is applied [7-8]. 

3. Goal of the Work 

The goal of this work is the modification of the 

trust method based on Fog computation to prevent third-

party interference when trust relationships are establi-

shed in a network with a multi-sensor configuration, as 

well as to detect hidden attacks on data and recover 

nodes of incorrect evaluation. 

4. Industrial Cyber-Physical System 

A typical scheme of an industrial CPS for 

efficiency and productivity of industrial processes [9] is 

shown in Fig. 1. It is based on the combination of IoT, 

and machine learning. Typical IoT applications are based 

on wireless networks of sensors that collect and transmit 

data to a measurement storage center. 

 

 
 

Fig. 1. Typical structure of Industrial CPS 

 

IoT applications involve different types of data, 

including emergency response, real-time video surve-

illance, computer vision, and autonomous driving, the 
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whole of which have quality requirements for the 

processing of received data that can change over time, 

such as latency, and bandwidth. IoT must be able to 

adapt to these variations and provide each device with 

the services it needs. The network information shared 

may be confidential, require protection, and provide 

limited and controlled access to the data. 

 

 
 

Fig. 2. Fog computing architecture 

 

Most IoT devices are vulnerable because they have 

limited security capabilities and can be relatively easily 

compromised by accessing stored information or sending 

incorrect data to the cloud. The security of the IoT system is 

important and should be guaranteed both at the network 

level (transmission channel) and at the level of the storage 

system (cloud server). Therefore, Edge and Fog computing 

now can offload the cloud. Fog computing can be 

considered an extension of the cloud computing paradigm 

[9], presented in the aligned service structure, as shown in 

Fig. 2. It allows more local monitoring of data obtained 

from multi-sensor CPS systems in real-time and their 

modification IoT applications, while the cloud provides 

global optimization and other advanced services. 

In general, the Fog architecture consists of three 

layers: 1. End-device layer. It includes IoT end-user devices 

that manage data generation. Their main task is to perceive 

surrounding objects and events and transmit data to upper 

levels for storage and processing. 2. Fog level, the middle 

level, which has a significant number of Fog nodes (further 

FNs) - servers, routers, and switches, which are located at 

the Edge level of the network   and   distributed   geographi- 

cally. FNs are connected to the end-device layer via 

wireless technologies (Wi-Fi, 4G, Bluetooth).  They 

analyze and store the received data and send only valuable 

data to a cloud server for further data processing. 3. The 

cloud layer, is inherent in capabilities for computational 

analysis and permanent storage of big data. For optimal 

efficiency, only a few computing and storage operations are 

performed by the cloud layer. 

5. Multi-leveled architecture  

There we consider a platform that is a multi-level 

architecture for analyzing data coming from intelligent 

IoT-based devices. It consists of a cloud computing 

layer, Fog systems, and sensors that operate together. It 

is known that Fog computing is a virtualization 

technology that offers storage and computing between 

end devices and the cloud layer [10]. The schematic 

diagram of this architecture is shown in Fig. 3. 

The first physical layer consists of an IoT device 

set and several different sensors which collect data and 

send it to Fog/Edge gateways. Once the data arrives at 

the Fog/Edge gateways, it needs to be filtered and pre-

processed for further processing. This process removes 

30–70% of incorrect data from further analysis. Due to 

this the load on the data transfer channel and the increase 

in the processing speed of data analysis can be reduced. 

This layer acts as a server. The data volume is delivered 

to the Fog/Edge servers and then distributed among the 

different Fog/Edge devices according to the data 

computation requirements to reduce real-time latency. 

Work on unloading requests should be carried out using 

the proposed efficient algorithm. Fog computing makes 

it easy to pre-process data before it even enters the 

cloud, minimizing communication time and reducing the 

need to store massive amounts of data through filtering. 

The described approach is closely related to the Fog 

computing architecture. Fog/Edge devices work offline. 

For the set of computing tasks within the proposed 

architecture, data analytics and an offloading node were 

introduced. If tasks exceed resources from a given 

Fog/Edge server, the last offloads to another Fog/Edge 

server on-premises or in the cloud. 

 
 

Fig.3. FN Architecture 
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An FN, which provides data analysis methods and 

capabilities for IoT devices has to be able to 

communicate and collaborate with the cloud layer and 

devices at the Fog layer. It provides capabilities for Fog 

data to and from the cloud, as well as a gateway. The 

latter allows end devices not directly connected to the 

Internet to access cloud services. Although the “gate-

way” provides a specific networking-oriented function, it 

is also a concern to a group of end devices that manage 

and process data on behalf of their clustering  

Fig. 4 is shown an algorithm for analytical data 

processing using the FN with an exponential increase in 

the volume and size of data [10]. Streaming data is 

analyzed locally at the FN, while data of the last is 

collected and transmitted to the cloud for offline 

analytics and further processing. Data analytics nodes 

deployed on FNs are updated periodically taking into 

account policies adopted and communicated by cloud 

analytics. 

The raw data is pre-processed, filtered, and 

cleaned in the FN before being uploaded to the cloud 

nodes, the amount and size of the uploaded data are 

smaller than the data generated by IoT devices. In 

addition, analytics on the FN is performed in real-time, 

while analytics in the cloud is performed offline. An FN 

has limited computing power and storage capacity 

compared to the cloud side but cloud-side processing and 

management require higher latency. An FN offers a high 

level of fault tolerance, as tasks can be handed over to 

other nearby FNs in the event of a failure. With the 

advent of a resource-based IoT that enables high-speed 

real-time applications, the best approach seems to be to 

move analytics to the data source and make possible 

real-time processing. In the future, an FN can host many 

different hardware components, such as a multi-core 

processor, and a high-detail graphics processor, 

compared to a cluster of similar nodes in the cloud. 

Recent research indicates that Fog/Edge computing 

technology provides an opportunity to overcome the 

hardware limitations of the end-user device. Limitations can 

be provisioning by offloading computationally intensive 

tasks to powerful Fog/Edge servers for further processing. 

Execution on Fog/Edge servers meets task requirements 

and delivers results to end devices. The Fog computing 

paradigm brings both computing and network resources 

closer to the user. An FN deploys a multi-FN offloading 

network architecture. The offloading scheme was proposed 

keeping in mind the selection of FNs according to task 

scheduling metrics, and then offloading tasks to FNs that 

require the minimum task delay. Whenever a compute task 

is created on a terminal node. The number of FNs is 

selected according to the performance requirements and 

characteristics of those nearest FNs. Instead of computing a 

task locally, it is split into multiple subtasks and offloaded 

to these selected FNs for computation. After that, the 

calculation results are sent back to the terminal node. 

 
 

Fig. 4. Data Analytics on the Fog level before sending  

to the cloud level 

 

The nearest FNs with the most powerful computing 

capabilities were selected to achieve the minimum task 

delay and the best performance [11]. The cycle of 

acquisition, processing, and activation in applications is 

performed with the help of sensors that transmit the 

received data to the cloud side, where it is processed, and 

executive mechanisms are notified of the need for action. 

The cloud layer was primarily responsible for complex, 

resource-intensive tasks and rule updates for fog-level 

detection. The data collection stage is the main aspect of 

these solutions, which establishes communication 

protocols between IoT software platform components, 

global data analysis, and overall resource monitoring. 

Cloud provides an approved FN model that was a user 

attribute. Depending on the IoT application, in case of 

limited access to power, the Fog core can run on battery 

power and must be energy efficient, while the cloud is 

supported by a constant power supply. 

6. Design of modified trust method 

Many behavioral characteristics can be applied to 

evaluate the true state of nodes during the commu-

nication process between them. However, some features 

that resulted in complex-system implementation due to 

software and hardware limitations should be considered, 

such as energy consumption, network load, and others. 

For the modified trust method, we choose packet loss 

rate, route failure rate, and forwarding delay as 

parameters to evaluate the trust state of a node. 

Truthpacket loss rate refers to the ratio of the 

number of data packets lost by the receiver to the total 

number of data packets in the communication cycle. This 

is a piece of evidence that can indicate the state of a node 

or whether a node is compromised [12]. The route error 

rate is the ratio of the number of routing packets rejected 

by the receiver to the total number of routing packets 

sent by the sender during a certain time interval. This is 

evidence that can indicate the state of the network. 

Delayforwarding refers to the time interval between 

receiving data and forwarding data when the relay node 

transmits the data. This is evidence that can indicate the 

node is compromised or has a serious fault. The source 

node can apply this evidence to establish direct trust 

relationships on shared nodes. Moreover, the observed 
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value of a node's behavior may fluctuate with the change 

in environment and network load. So, the value of the 

Truthhistory trust history is added to the direct trust 

calculation to reduce the rate of misjudgments of 

common nodes and the unnecessary consumption of 

network resources. Direct trust is calculated according to 

equation (1) [12]: 

Truth
direct   = (w

1
Truth

packet + w
2
Truth

history
) × 

×Delay
forwarding  ,                                            (1) 

where Delayforwarding is an important indication of a 

serious security problem if the relay node has changed 

the data. When the time interval exceeds the threshold, 

Delayforwarding is set to 0, otherwise, it is set to 1. If a 

Delayforwarding exception occurs, the Truthdirect value is 0. 

Otherwise, the Truthdirect value is determined by the 

Truthpacket and Truthhistory based on a weighted algorithm. 

For weighted values w1 + w2 =1. To reduce the energy 

consumption of a node during data transmission, the 

trust discovery period between nodes is maximized 

within an acceptable range. In this case, the trust value 

may become too old to currently reflect the current trust 

state of the node. So, the weight of Truthhistory can be 

reduced using equation (2): 

w2 = real1 × Periodnetwork × 

× exp(−real2 × Periodnetwork),                  (2) 

where Periodnetwork is the period from the last update to 

the present time; real1 and real2 are two real numbers 

that are set during initialization. 

We take the derivative of a function to check its trend of 

change. Then find the region of the decline of this 

function. Finally, an appropriate descent region is 

selected to adjust the Periodnetwork weight: 

(w2)

’

= (real1 × Periodnetwork × 

× exp(- real2 × Periodnetwork)) =  

=real1 × (1- real2 × Periodnetwork) × 

× exp(- real2 × Periodnetwork) (w2)= 0, 

sthen Periodnetwork = ( 1/real2 )         (3) 

The dependence was decreasing if Periodnetwork 

exceeds (1/real2), it decreases sharply in the 1st part and 

smoothly decreases in the 2nd part. To achieve an almost 

perfect result, the value of real2 can be set to [0.7,1], and 

the value of real1 is set according to real2, which can set 

different weights of coefficients for truth history according 

to the different periods [11]. In this layer, the source 

node requests recommendation values from its trusted 

neighbors when it finds some neighbor exceptions. 

Meanwhile, the source node also sends these exceptions 

to the fog layer to analyze the trust status of each node in 

that region. If these abnormal nodes are determined to be 

malicious, the Fog layer notifies the cluster to isolate the 

malicious nodes. 

Exceptions in a sensor network are divided into 3 

categories: route error rate exception, forwarding delay 

exception, and difference value exception. Routing error 

is a normal phenomenon in sensor networks, but it is 

considered an exception when the route error rate 

reaches a threshold value in a certain period. While the 

forwarding delay exceeds the threshold, a forwarding 

delay exception occurs. A difference value exception is 

when the difference value between the new confidence 

value and the historical confidence value is outside the 

reasonable range. The equation for calculating trust in 

recommendations had the form (4): 

 

 ,        (4) 

where set(neighbor) is a set of trusted nodes of the 

source node, Truth(j,k) is the trust value of node j to node 

k. However, the source node has different trust values for 

different neighboring nodes. In this case, there should be 

some mechanism to properly mitigate the impact of low-

performing nodes. Then the trust table was sorted of the 

source node from small to large by trust values, and then 

calculate the weighted value of each neighboring node 

using the arithmetic progression of equation (5): 

 ,                              (5) 

where i is the location value of the nodes in the ordered 

trust table, n is the set(neighbor) node number. 

Truthrecommendation gives the source node an advisory 

opinion and the source node's final decision about 

Truthdirect and Truthrecommendation, as shown in (6). The 

weighted value of Truthdirect is greater than 

Truthrecommendation, and w3 + w4 =1 

Truth
synthesis = w

3 × Truth
direct + w

4 × 

× Truth
recommendation                 (6) 

The most reliable source node has the largest 

weighted value, which is . The value of the difference 

between the weighted value of two adjacent nodes in the 

trust table is . When n is in [2, 3…, n], the 

corresponding largest weighted value is in [   ,   

…, ]. The larger n, the smaller the weighted value of 

each node. 

It is known that there are 3 types of data analysis in 

the Fog layer. The 1st type recovers faulty nodes and 

detects attacks on hidden data based on trust tables, 

historical sensor data, and network topology. The 2nd type 

checks for malicious sensor network nodes based on trust 

tables, recommendation tables, historical sensor data, and 

network topology. The 3rd type concerns edge node trust, 

which is based on trust tables and sensor data correlations. 

Whole sensor nodes send the change values of the 

trust table together with the sensor data to the fog layer 

within a certain period. The source node sends the 

recommendation table together with the sensor data to 

the Fog layer after completing the recommendation trust 

calculation. The Fog layer periodically analyzes the 

global trust state of each node and determines whether 

there are misjudged nodes and hidden data attacks. In 

addition, we can predict a certain state of the network, in 

particular, network load, residual energy of nodes, etc. 
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These nodes are harder to find because they 

behave normally when communicating with other nodes. 

Certain data correlation phenomena are observed within 

the same area or cluster. For example, sensor data from 

multiple nodes in the same geographic location are 

similar, and sensor data from multiple nodes moving 

together have a trajectory correlation. The Fog layer can 

simultaneously process sensor data from multiple nodes 

and analyze the presence of incorrect nodes with some 

indicators of data correlation phenomenon, such as 

change trend, and similar trajectory. We perform a 

multipath operation to analyze sensor data from different 

nodes. Here we mainly consider nodes that implement 

the same function. 

The structure of the process [12] is shown in Fig. 

5. Basically, nodes that implement the same function in 

the same geographical location are considered, and 

described by the system (7): 

  (7) 

An array is applied to store the vertex, west and 

degree. Countcrest indicates the crest of the sensor data 

curves, which is written as 1. Counttrough indicates the 

trough of the sensor data curves, which is written as -1. 

The degree is the value of the difference between two 

adjacent sensor data. Peak/trough detections are continu-

ous negative/positive values, and continuous peak/trough 

continues when the sensor data change value is zero after 

the peak/trough is recorded. At each point in time, the 

Array writes the state value (1, -1, 0) and the degree value 

to the Array. Fog/Edge nodes have less communication 

with other nodes relative to internal nodes. In the sensor 

network, we set a short period for Fog/Edge nodes. In 

addition, the Fog layer scans and analyzes the true state of 

the Fog/Edge nodes in a short period. 

 

 
 

Fig.5. Structure of sensor data analysis 
 

The trust relationship between CSP and SSP is 

divided into two parts. The first is the trust relationship 

between CSP and SSP, and the second is the trust 

relationship between SSP and CSP. Cloud service 

providers (CSPs), expect data from sensor service 

providers (SSPs) to meet certain requirements such as 

timeliness, integrity, and accuracy. However, the service 

user may not demand service providers to meet 

requirements. It means that service providers only have 

to meet the service user's specific requirements. 

Therefore, there should be some recommendation 

mechanisms to find CSPs that offer good services in 

specific aspects. Fog computing can handle these 

problems satisfactorily. A third party based on Fog 

computing can provide the reliability of a three-part SSP 

as shown in equation (8): 

Truth SSPs = w5
Truth

service + 

+ w6
Truth

sensor network + w7
Truth CSPs ,          (8) 

where Truthservice is the truth value for service 

parameters. Before a service transaction, the SSP and 

CSP agree on service parameter standards. The Fog layer 

then monitors these service parameters during a real-

time transaction and compares these service parameters 

with standard values. If the value of the monitored 

service parameter is in the acceptable range, the entry for 

that parameter is 1, otherwise 0. Finally, the Truthservice is 

calculated from the various weighted values of the 

service parameters. Truthsensor network is the truth value 

for the sensor network and is appropriate to the 

exception information records of the sensor network. If a 

sensor network has more exceptions in a transaction, it 

was assigned a lower value. TruthCSP is a type of truth 

value that is calculated according to the information 

record of other CSPs in the Fog layer. 

There are 2 steps for deciding on the choice of 

CSP: Rgeneral and Rsimilar. Some CSPs are short-listed 

candidates whose service records contain requested 

service parameters. Rgeneral assigns selected CSPs to 

different sets, which are classified by the number of 

redundant parameters. Then, the truth value of each SSP is 

separately computed in different sets. Finally, some 

anomalous CSPs are excluded from the candidate list 

according to the rule of changing the confidence value 

between different sets. Rsimilar is an optimal selection 

strategy based on the principles available for service 

selection. TruthCSP is calculated using these selected CSPs. 

Here w5, w6, and w7 are 3 weighted values that are set 

during initialization according to different requirements, 

and w5 + w6 + w7 =1. The value of Truthservice 

Truthsensornetwork and TruthCSP is between 0 and 1. 
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SSPs expect services provided by CSPs to meet 

certain criteria such as reliability, security, convenience, 

controllability, and stability. These indicators are 

important for SSP to establish veracity in CSP. Fog level 

can monitor these indicators in real-time. The true 

relationship between SSP and CSP contains two 

components, as shown in formula (9): 

Truth
SSPs = w8

Truth
service1 + w9

Truth
SSPs ,           (9) 

where Truthservice1 is the truth value of CSP service 

parameters similar to Truthservice. TruthSSP is computed 

with some selected SSPs whose selection process is 

similar to TruthtCSP. There are several databases in the 

Fog layer for storing time-based maintenance records. w8 

and w9 are two weight values that are set during 

initialization according to different requirements, and w8 

+ w9 =1. The Truthservice and TruthSSP values are in the 

range of 0 to 1. 

7. Results of Issue and Discussion 

Research of the proposed modified method of 

monitoring the truth of network data during resource 

allocation at the level of Fog in multi-sensor systems 

was carried out using the MATLAB R2016b application 

package. Eight cluster structures with more than 300 

nodes randomly deployed at the level of WSNs are 

presented. Each cluster is divided into 4 layers, where 

the outer layer has more nodes than the inner layer. In 

each clustering structure, cluster cores can receive sensor 

data packets from eight nodes simultaneously. The 

maximum delay time from the WSN to the fog layer is 

set as 10 communication cycles. The described 

parameters are listed in Table 1. 

 

Table 1. Simulation parameters 

Parameters Values 

Network protocol The Ladder Diffusion 

Algorithm 

The number of Clusters 8 

The number of Cluster Heads 46 

The number of Cluster Nodes 350 

The number of levels 4 

The maximum delay 10 

 
As mentioned above, there are 2 types of trust 

mechanisms: periodic and non-periodic updates. For 

aperiodic updating, nodes update the trust state of their 

neighboring nodes when abnormal behavior is detected. 

Here there are some shortcomings in aperiodic updating, 

for example, not enough attention is paid to edge nodes, 

and no updated trust states of nodes. The results of 

research for four levels of the aperiodic update are 

shown in fig. 6, a. Aperiodic update cannot detect 

malicious nodes in time. For periodic updating (Fig. 6b), 

nodes update the trust values of their neighboring nodes 

after the end of the period. There are also some 

drawbacks to periodic updating, such as much memory 

and computing resources, reducing network 

performance, etc. The proposed design is reliance on 

periodic updating (Fig. 6c). We have established that the 

truth update cycle at the outer layer is the same as the 

periodic update, which can be found in Fig. 6(b) and fig. 

6(c). We can extend the ground-truth update cycle 

internally by using Fog computations, which can avoid 

additional resource costs for periodic detection, as shown 

in Fig. 6(c). 

Three experimental results are presented, 

considering the number of truth updates at each level. 

The load on the network increases based on the number 

of nodes that generate data. Fig. 6(d) shows the total 

number of truth updates in a shorter test time. From 

these experimental results, we can obtain the following 

information: 1) for the non-periodic update, the amount 

of truth update time increases gradually with more 

random nodes selected to transmit data; 2) a steady state 

is maintained for the periodic update, but there is a slight 

reduction from 8 to 40 on the x-axis, the reason being 

that the direct truth update reduces the number of 

periodic updates; 3) for a specific design, we can get 

more advantage when the update cycle is extended. 

When the network is congested, the network bandwidth 

decreases and the truth update time increases due to 

frequent routing failures. Compared with the periodic 

update, proposed in this work design can save network 

energy and maintain network performance by reducing 

the number of periodic updates. 

There is no need for frequent updates since 

internal attacks occur at a certain point in time and 

frequent updates take more transmission and computing 

resources. We compare the detection rate of malicious 

nodes between our design and a periodic update. 

Defective nodes can be detected relying on 2 

parameters: at the WSN level and the Fog level. Since 

the delay time at the Fog layer is longer than that at the 

WSN layer, the detection of malicious nodes at the Fog 

layer is introduced as an auxiliary detection. The speed 

of detection of the periodic update is shown in Fig. 7(a), 

and Fig. 7(b) shows the detection rate of our design. In 

the experiment, we separately placed corrupted nodes at 

different levels of the network during initialization, 

which spend more time than during the operation of the 

mechanism.  

The experimental results show that the detection 

rate of malicious nodes increases, except for the outer 

layer, because the true state of the nodes is updated more 

often when the network load is growing. In Fig.7(c), we 

randomly placed the corrupt nodes in 4 levels, indicating 

a more intuitive downward trend. Despite some latency 

issues with speed detection, we can take advantage of 

Fog computing to get the full true state of the network 

through data analysis, such as hidden data attack 

detection and anomaly detection. 
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Aperiodic Update (a)                                                                         Periodic Update (b) 

 

Modified Design (c)                                                                            After Data Processing (d) 

Fig.6. Comparison of three schemes of truth updates at different levels 

 

 

Table 2. The information record of SSPs in the Fog level 

CSP Service  

requirement 

Interaction 

Record 

Recommendation 

Record 

Number of 

accepted 

Check-in 

time 

CSP1 Integrality precision 

SSP1 (60) 

SSP2 (90) 

SSP3 (96) 

CSP2      CSP4 96/97 15 

CSP2 Integrality     precision 

SSP2 (90) 

SSP3 (94) 

SSP4 (93) 

CSP1   CSP4 60/80 9 

CSP3 
No tampering 

integrality precision 

SSP1 (86) 

 
CSP1 CSP2      CSP4 26/29 7 

CSP4 
No tampering integrality timeliness 

precision 

SSP1 (74) 

SSP2 (72) 

SSP3 (85) 

CSP3 72/73 2 
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Periodic Update (a)                                                      Modified Design (b) 

 

The result after Data Processing (c) 

 

Fig.7. Comparison of two schemes  

of truth updates at different levels 

 

For Truthservice, this can be obtained by comparing 

real-time values and standard values. For the Truthsensor 

network, it can be calculated based on some exception 

records that the Fog layer detects and records. Before 

calculating the TruthSSP, there are some scoring 

mechanisms, for example, the score is reduced by one 

level when the service parameters are one less than the 

required service parameters. Table 2 lists some important 

parameters for the example. A service request stores a 

record of the service parameters of the CSP that requested 

those parameters in a previous transaction. The interaction 

record stores the SSPs and their truth values that provided 

the CSP data. A referral record is maintained by CSPs 

who have received services from a CSP. The number of 

accepted requests corresponds to the number of accepted 

recommendations. The registration time preserves the 

CSP existence time at the fog level. 

A service request stores CSP service parameter 

records. The fuzzy layer selects service records that are 

within an acceptable time range, as shown in Table 2, 

where integrity and timeliness depend on different sizes 

of service requirement sets, such as set 1 (CSP1, CSP2), 

set 2: (CSP3), set 3: (CSP4). SSP1 is without obstacles, 

integrity), SSP2 - integrity, timeliness, SSP3 - without 

obstacles, integrity, accuracy, SSP4 is integrity, time-

liness. When calculating Rgeneral, the mean confidence 

value of each SSP is calculated in different sets, for 

example [SSP1(60), SSP2(90), SSP3(96)] in set 1, 

[SSP1(86), SSP3(94), SSP4 (82) ] in set 2 and 

[SSP1(74), SSP2(72), SSP3(85)] in set 3. The true value 

of an individual SSP in the smaller set must be greater 

than or equal to the value in the larger set. So, with this 

rule, we can find some abnormal scores, for example, 

CSP1 may be a wrong choice. After removing the non-

standard recommender, optimal options such as 

familiarity, popularity, and risk are considered. Referral 

records, SSP location, and reputation affect referrals. 

Popularity refers to the number of referrals received by a 

single CSP. The risk focuses on whether there were any 

losses if a new recommender is chosen. 

8. Conclusions 

The Fog-based trust method has been modified to 

compensate for existing shortcomings and solve con-

sumer problems such as data overload and insufficient 

network resources for real-time processing and imple-

mentation in systems with a multi-sensor configuration. 
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It is shown that trust in behavior between nodes is 

established at the level of wireless sensor networks. The 

trust in the data of nodes and objects is installed in the 

Fog layer.  

The consideration shows that we can monitor the 

trust status of the entire multi-sensor network, detect 

data attacks, and recover incorrectly evaluated nodes in 

the case of increased network load, in a situation when 

data needs to be parsed in real-time. Compared with the 

periodic update, our design can save network energy and 

maintain network performance by reducing the number 

of periodic updates. The Fog layer can be constructed as 

a reliable third party. Experimental results show that the 

modified trust method has certain advantages in ensuring 

the state of trust of boundary nodes and the network, 

restoring nodes with an incorrect assessment. 
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