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This paper proposes the homogenization for a stratified viscoelastic media with free edge.
We consider the effect of two-dimensional periodically stratified slab over a semi-infinite
viscoelastic ground on the propagation of shear waves hitting the interface. Within the
harmonic regime, the second order homogenization and matched-asymptotic expansions
method is employed to derive an equivalent anisotropic slab associated with effective
boundary and jump conditions for the displacement and the normal stress across an inter-
face. The reflection coefficients and the displacement fields are obtained in closed forms
and their validity is inspected by comparison with direct numerics in the case of layers
associated with Neumann boundary conditions.
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1. Introduction

There is increasing demand for methods to estimate effective parameters of viscoelastic composites,
e.g. vibration and noise control in structures. An effective model associated with shear waves scattering
by a periodically stratified slab in viscoelastic with free edge and satisfying ¢ = Krh < 1, where Kg
being the real part of the complex shear wavenumber K* and h the periodicity of the structure, is
studied. It is easy to understand that in these cases, the numerical calculation of the solution would
become prohibitive on a small scale, since the mesh used must accurately resolve the rapid variations.
In order to overcome this difficulty, we will derive so-called effective boundary and jump conditions
of the displacement and normal stress through an equivalent homogeneous anisotropic slab. The
numerical discretization of the homogenized problem should be much less expensive than the exact
mesh, since the mesh used does not have to be constrained by the small scale. There are several works
that deal with the same kind of problem, for example, if the whole (or a large part of) the propagating
medium has a micro-structuring whose smallest scale is below the wavelength, it is possible to simplify
the model by using classical homogenization which derives an equivalent homogenized problem, see
for example [1,2]. In other situations, if only a small or thin region contains micro-structuring; they
are originally developed in the context of solid mechanics [3-5], the homogenization of interfaces has
been studied on some problems, especially in electromagnetism [6, 7], and acoustics [3-8]. In this
article, we used asymptotic analysis and the same homogenization approach that was applied in the
case of shear wave scattering by a periodically stratified slab in elasticity [9]. We noticed that in
the case of viscoelastic media, the wave equation of the real problem takes the same form, except
that in our case, the coefficients of physical parameters entering the equation are complex. That is
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Homogenization of subwavelength free stratified edge of viscoelastic media including finite size effect 11

why the homogenization procedure is the same and even the form of the homogenized wave equations
obtained at different orders. Evenly, we establish that the second order homogenization reveals interface
parameters, which enter into the jump conditions at the boundaries of the equivalent free edge slab
(Figurel). It is also showed that scattering parameters of effective model accurately describe those
of the actual structure and in general the homogenized solution at the second order is even more
significant than that at the first order. The paper is organized as follows. In Section 2, we summarize
the result of the asymptotic analysis in the case of two viscoelastic media of a free stratified edge and an
infinite substrate with a common interface boundary in welded contact, whose main steps of derivation
is given in the Appendix 4. The resulting system (10) represents the homogenized problem associated
with effective boundary and jump conditions of the displacement and of the normal stress across an
equivalent homogeneous anisotropic slab. In Section 3, the accuracy of the effective model is inspected
by comparison with direct numerics based on multimodal method [10] for a shear wave incident. The
reflection coefficients as a function of the frequency Kprh and thickness of the stratified structure e/h,
I are exemplified and the agreement between the
actual and effective problems is discussed. We finish the study in Section4 with concluding remarks
and perspectives.

and as a function of the reciprocal quality factor QQ~

2. The actual problem and the effective problem

Below we summarize the main results of the analysis developed in the Appendix4 and which provides
the so-called (Effective problem) where the stratified medium is replaced by an equivalent anisotropic
slab associated with the effective boundary at X; = 0 and the jump conditions for the displacement
and the normal stress across an interface at X; = e (Figure1).

Freeedge  Continuity conditions Effective boundary Jump conditions
C g\ N
¥ \F \¥ ¥ ¥
Q
le X2|
H H
(0] X 0 x 1
th Homogenization
€ _— (]
effective
medium

Fig. 1. On the left, the actual configuration of an viscoelastic body (in grey) with a viscoelas-

tic stratified medium 5. On the right, the homogenized configuration where the stratified

medium is replaced by an equivalent homogeneous anisotropic slab, which associated with
effective boundary and jump conditions apply at the boundaries of slab.

2.1. The physical problem

We consider the shear wave scattering by a welded boundary between a free stratified edge and an infi-
nite isotropic viscoelastic substrate. The scalar displacement field U (X) written in the harmonic regime
wave (Figure 1), with X € € the spatial coordinates and Q = {(X1, X3) € (0,400) x (—H/2,H/2)},

div(MVU) 4 pw?U =0 (1)
with M and p being the complex shear modulus and the mass density respectively, and w is the

frequency. Equation (1) can be written using the non-dimensional parameters,

M(X X

ot (X) = 75\47:0) and [(X) = —p/(Jm)
with M, the complex shear modulus and p,, the mass density of the substrate beside the stratified
medium occupying the region Q5 = {(X1,X2) € (0,¢e) x (—H/2,H/2)}; with K* = wy\/pm/M,, the

complex wave number in the substrate /€, we get

Mathematical Modeling and Computing, Vol. 10, No. 1, pp. 10-29 (2023)



12 Belemou R., Sbitti A., Marigo J.-J., Tsouli A.

div(e*VU) 4+ BK**U = 0. (2)

What allows us to write the Helmholtz equation in the substrate as follows:
AU + K**U = 0.
In the harmonic regime, we consider viscoelastic waves with a minimum wavelength 27/Kp larger
than the typical periodicity of the stratified structure h (Kg being the real part of the complex shear
wavenumber K*), such that
e =Kgrh < 1.

To be consistent, we shall work in dimensionless coordinate x = (z1,z2) and on a problem simplified
with respect to that in (Figure 1) in the sense that we can determine the effective boundary conditions
at 1 = 07 and the jump conditions at 1 = e.

2.1.1. Stratified structure ending with Neumann boundary condition

To determine the effective boundary conditions at z1 = 07 with (x; = KrXjy, 20 = KrXs), we
consider the first actual problem for x = (z1,22) € (0,+00,) x (—-KrH/2, KpH/2) and 05(07,22) =0
(Figure 2), where the infinite stratified medium occupies the half space 21 > 0 with Neumann boundary
condition at z1 = 0. We denote

£\ 2
a*¢(x) = o (X), b*e(x)EB(X)<K>; uwi(x) = UX), o°(x) =Kz la*(X)VU(X),

Kr
where the functions a* and b* are 1-periodic and complex, such that
*E % g *E g% g
a(x)-a(g) and b(x)-b(s). (3)

(u*,65) continuous on I’

G%ZOL‘;‘ _______ n——

I
I
|
1 KrH
|
I
I

|

+€

Fig. 2. Stratified medium occupying the region z; > 0 and the substrate occupying the region
x1 > 0 with a free edge at x1 = 0. The usual continuity conditions apply at the boundaries '
between the layers (u¢, 05) and Neumann boundary condition ¢ = 0 applies at z; = 0.

Also, we indicated explicitly the dependence of (u®,0°) on e being the periodicity of the stratified
medium in non dimensional form. Now (2) reads

dive®(x) + 0" (x)u®(x) =0, x1 >0,
0f(x) = a™* (x)Vu'(x),
O’f (O+,x2) = 0,
u® and o° - n continuous on I
with x € (0,400) X (—KrH/2, KrH/2) and I" the boundaries between two layers within the stratified
medium (Figure 2); finally, appropriate boundary conditions at x; — +o00 and xo = +KrH/2, often

referred to as radiation conditions, apply once the wave source has been defined. For the time being,
we do not need to specify their form.

(4)

2.1.2. Welded boundary between an infinite layers and substrate

To derive the jump conditions between the stratified medium and substrate, we focus on a region near
the boundary of the stratified medium at X; = e; and to do that, we assume that the stratified medium
occupies the region 1 < 0 with (1 = Kr(Xy —e), 2o = KrXs). Doing so, we assume implicitly that

Mathematical Modeling and Computing, Vol. 10, No. 1, pp. 10-29 (2023)



Homogenization of subwavelength free stratified edge of viscoelastic media including finite size effect 13

the wave passing through the stratified slab in the configuration of (Figure 3) feels the boundaries and
the bulk of the stratified medium. This means that the slab is thick enough, and thick means that the
evanescent fields at both boundaries of the slab do not interact.

(u®, %) continuous on I’

KrH

1ﬁ,

Fig. 3. Single interface between the stratified medium occupying the region 1 < 0 and the substrate
occupying the region x; > 0. The usual continuity conditions apply at the boundaries I' between
the layers (u®, 05) and at the boundaries between the layers and the substrate (u¢,0§) at z; = 0.

The second actual problem for x = (21, 22) € R x (—KrH/2, KrH/2), reads as
divo®(x) + b**(x)u’(x) =0, |z1]| >0,
0°(x) = a™ (x) Vus(x), (5)
u® and ¢° - n continuous, Iz =0
where in this case, the functions a* and b* are 1-periodic and piecewise complex constant, such that
a*®(x) = { . n b*e(x) = { A (6)
a* (£), z1 <0, b (2), x<0.

£
The boundary conditions at |z1| — +00 and z9 = £KrH/2 are considered the same of (4).

2.2. The effective problem
Firstly, we shall determine the homogenized problems of the first and second actual problems (4)—(5).
The homogenized problem of stratified structure ending with Neumann boundary condition (4), is
done by defining the fields (u”, o") satisfying the following problem:

dive" + 0*)uh =0, o= ( <%> <1/£k>_1
O'1h (0+,:E2) =0.

and the average over yo € Y for any function f, is defined by

(f)(x) = /Y dys F(x, ).

The second homogenized problem of a welded boundary between an infinite layers and substrate (5),
reads as

h
)Vu, z1 > 0, (7)

< _h s\, h h_ [ (a) 0 h
dive” + (" )u" =0, o —< 0 (1/a)"! >Vu, r1 <0,
K*\?
divah—i-(K ) u =0, o=Vl x1 > 0,
R

<8

[u"] 5 [a{‘ (07, z2) + J{‘(Oﬂm)},

hy _g 82uh _ 82uh +
fof] = =557 | G 0+ G 0|
where (B,C) are the interface parameters and we defined
[f1=f (0", 29,7) — (07, 29,7) 9)

for any outer terms f being discontinuous across an equivalent interface at x; = 0, with (f~; fT) its
values on both sides.
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Finally, from (7)—(8) and coming back to the real space with a welded boundary is considered at
X1 = e, in the X = x/Kp coordinate and with U"(X) = u"(x), ©"(X) = Kro"(x), we get an effective
problem

. vh * 2r7h _ h _ (a*) 0 h
divy" + (b")Kr“U" =0, E-( 0 <1/a*>_1>VU’ 0< X <e,
divy" + K*?Uuh =0, ¥'=vU", X >e,

hB _
[U"] = =5 [Ehem, X2) + (et X)) (10)
hC [02U™" 92uh

hy - "~ (Y Y - +
et = -5 | G X0+ g et
21h(0+,1‘2) =0.

3. Numerical validation of the effective problem

In this section, we address the error of the homogenized solution when compared to the solution of the
actual problem, we shall consider the particular scattering problem of the reflection of rectangular voids,
free of stresses (with Neumann conditions on their boundaries), periodically spaced in a homogeneous
matrix being composed of the same linear viscoelastic material as the substrate. In acoustics, this
corresponds to an array of sound hard material in a fluid; in electromagnetism to a (perfect conducting)
metallic array in a dielectric or in the air.

3.1. Solutions of the physical problem

Actual problem Homogenized problem

th

OX1 0X1
e KA e K

Uinc Uinc

Fig.4. Left: Actual problem of the scattering of a plane wave at oblique incidence 6 an array

of rectangular voids, with degree of inhomogeneity v. Right: The homogenized problem involves

a slab of same thickness e filled with a homogeneous anisotropic material, which associated with
jump conditions apply at X; = +e.

We solve numerically the actual problem of an incident shear wave as a Type-II S wave [11], which
coming from X; > e and hitting the array at oblique incidence 6 with degree of inhomogeneity ~
(Figure4). This is done using a multimodal method, which is detailed in [12]. We shall work in the
harmonic regime, the complex fields (and we shall consider the displacement field U (X)) have a time
dependence in 7! and it will be omitted in the following. The incident wave is considered as below

Uinc(X) — e—iwteiK-r — e—iwte—A-reiP-r’ (11)
where 7 = (X1, X3) is the position vector, and K the complex wave vector is given by
K =P +iA = Kgi1 + Kinc®o

and the corresponding propagation and attenuation vectors, are given by

P = |P|cos (0) %2 + |P|sin (0) 2 = Re [Kg] #1 + Re [Kinc] 22,

A =|A|cos (0 — )21 + |Alsin (0 — v) @2 = Im [Kg] @1 + Im [Kinc] ©2,
with (21, 2) are orthogonal real unit vectors for a Cartesian coordinate system, Kj,. the complex
wave number for the assumed general SII wave, and Kg = V K *2 _ Kincz, where “y/ 7 is understood

to indicate the principal value of the square root of a complex number z = zp + 127 defined in terms
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of the positive square root of real numbers by

Vz = @ + isign [z1]

2| — zr
2
with
sign [z7] = { Loif 220,
-1 if zr<o.
Hence, the complex wave numbers Kj,. and Kg reads
Kine = |P|sin (0) +1|A|sin (60 — ),
Kg = |P|cos(6)+i|A|cos (0 —7),
where the magnitudes of the propagation and attenuation are specified in terms of the given material
parameters, the complex wave number K* or wave speed (v,, = w/Kpg) and the reciprocal quality
factors (Qm ™' = M,,;/M,, ), and the given degree of inhomogeneity ~ [11].

The reference numerical solution U™™ is sought in the substrate where the Helmholtz equation
applies and Neumann boundary conditions apply at each free boundary of the viscoelastic body. The
problem actual is set in £ being the region occupied by the substrate and we denote I' the boundary
of the viscoelastic body were Neumann boundary condition applies, the problem reads

AU + K*?U =0, in 0,
3-n=0, on I,
o . .
li — (U -U™) —iKg (U—-U™)| =0
el [o; @ -0 - 0= o ”
H : H

U <X1, 5) = e Kine[y <X1, —3> , X, € RT,
oU H e AU H

X _ — 1I{inc X - X RJ’_
8X2< 172> € 8X2< 1 2>7 1€ )

where the scattered waves (U — U"®) at X; — oo satisfy the radiation condition [13], and are
considered in the low frequency regime [14]. The last condition represents the pseudo-periodicity [15],
which applies in the case where H = nh with n an integer, for the incident wave and for the total field.

3.2. Solutions of the effective problem

We shall inspect the accuracy of the homogenization at the first and the second order, to do so, we
treat tow particular problems of scattering by an array of rectangular voids. Such that in the first case
the free stratified edge is considered elastic and the substrate a viscoelastic media. In the second case,
we consider that the free stratified edge and substrate are the same viscoelastic media.

3.2.1. The case of welded viscoelastic stratified edge with elastic substrate

The homogenized problems can be solved exactly in the limiting case of voids with a = 0 = b (leading
to the Neumann boundary condition at the boundary with any other material). Hereafter, we consider
in this case that a* = 1, b* = 1 in the elastic substrate with reciprocal quality factor Q;,! = 0, and ¢ the
filling fraction of the viscoelastic media in the stratified edge with reciprocal quality factor Qi_nl =0.1,
the bulk parameters in the equivalent medium becomes (a*) = £ with (£ = J\J‘J/{i); (b*) = (p”—;)(g—;)zgo

and (1/a*)~! = 0, whence the homogenized wave equation (30) reads

0 0

with M; the complex shear modulus and p; the mass density of the stratified edge occupying the
region Qs = {(X1,X2) € (0,e) x (—H/2,H/2)}; with K} = w+/p;/M; the complex wave number in
free stratified edge Qg (rectangular voids). It follows that the homogenized problems reads

divEP + oK2Uh =0, =h= < SN > vuh
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82Uh *2711h
e + KU =0 for 0 < Xj <,
AU + Kp2U" =0 for X1 > e,
ouh
X
X (0, X2) =0,
jump conditions(10) at Xj =e, (13)
h inc : h _ rrinc —
th_}]rﬂl_OO [axl (U -U ) :FlKRCOSH(U U )] 0,
H e H
o <X1, 5) = efrsinfyh <X1,—5> , X; € RY,
ouh H oU H
X — ) = 1KR sin 6 X _ X R‘f‘
8X2<1’2> 8X2< 2)’ Le

To obtain the effective parameters (B,C) entering in the jump conditions (10), we use the same method
based on the modal methods (see S1 in [10]) for solving numerically the elementary problems (36) and

(37) in the case of an array of rectangular voids. The solution of (13) with (11) is of the form
U(X) = [aeiKi*(Xl—e) +be—iK;(X1—e)] el Knsin0Xs 0< X, <e,
(14)

U(X) _ |:e—iKRcos€(X1—e) + ReiKRcose(Xl—e)] eiKRsinGXz X, >e

with (R, a,b) are given by using jump conditions (10) with (14). In particular, the reflection coefficient

R reads .
zle_lKi e z*elK e

R= SIKTe  preiRie

(15)
. zZ9€
with

z1 = hK% (B cos 6 sin 0¢€ + C sin 92) + 1K R (cos @ — sin H¢¢) (%thCK% sin 02 + 1) ,
2o = hK% (B cos 0 sin € — C sin 92) + 1K R (cos @ + sin H¢¢) (%thCK% sin 02 + 1) .

3.2.2. The case of stratified edge and substrate are the same viscoelastic media

In this second case, we consider a* = 1, b* = (K*/Kgr)? in the substrate, and ¢ the filling fraction of the
substrate in the layers, the bulk parameters in the equivalent medium become (a*) = ¢; (b*) = ( K; )2
and (1/a*)~! = 0, whence the homogenized wave equation (30) reads

divyh + pK*2Uh =0, Xh = ( 98 8 > vU".

It follows that the homogenized problems reads

o*Uh

*2717h
—8X12 + K*U" =0, for 0 < X1 <e,
AU" + K*2U" = 0, for X1 > e,
ouh

X
X, (0,X2) =0,
jump conditions (10) at Xj =e, (16)
h inc) _ h _ yrincy| _

i [ oo (U = U™) K (U" ~U )} 0,

h iKine7Th H +
U Xl,E = e tineJ Xl,—E s X1 eR™T,
ouh H ouh H

X = e!Kine X X1 €RT.
6X2<1’2> e 8X2<1’ 2>, 1€
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The solution of (16) with (11

U(X) = [ IK*(X1€) 4 po—iK*(Xi— e] i Xz,
e

U(X) - [e_iKS(Xl_e) —|— ReiKS(Xl € lKlncX2

) is of the form

0<Xi<e
(17)
Xi>e

with (R, a,b) are given by using jump conditions (10) with (17). In particular, the reflection coefficient

R reads

with

{ 21 = h (BKgKined€ + CKinc?) +1i(Ks

Zle—iK e delK e
R= —iK*e iK*e’ (18)
z9€ — zje

Kinc¢£) (%h2BCKinC2 + 1) )

20 = h (BKsKincd€ — CKinc®) +1(Ks + Kincg€) (2h2BCKin? + 1) .

3.3. Accuracy of the homogenized solution with respect to the actual solution

To validate the homogenized
problem, we report the fields
U™ calculated numerically and
the fields U of the homogenized
solutions in the case of welded
viscoelastic stratified edge with
elastic substrate (14)—(15), for
¢ = 0.5 and ¢ = 0.9 (Fig-
ureb); in both cases, the recip-
rocal quality factor Q! = 0
for elastic substrate and Qi_nl =
0.1 for viscoelastic free stratified
edge Q, with Krh =1, e/h =
10 and 6 = /3. For the prob-
lem of stratified edge and sub-
strate are considered the same
viscoelastic media (14)—(15), we
reported the fields U™ and
U for reciprocal quality factors
Q! =0.05 in the Low-Loss vis-
coelastic media (Q~' < 1), and
for no Low-Loss media Q™! =
0.2; in both cases, Krh = 1,
e/h = 10, ¢ = 0.5, 8 = 7/3,
and v = /6. Defining AU =
U —umm| /o] (for | Xy >
e/2 and with ||-|| the L? norm),
we get a discrepancy of 0.5%
(o = 0.5) and 0.8% (p = 0.9)
for the first case, and almost the
same discrepancy 0.5% (Q~! =
0.05) and 0.7% (Q~! = 0.2) for
the second case, where the sub-
strate and stratified edge are the
same viscoelastic media. It is in-

Actual problem
(& 5 5 5 5 3 - -

Homogenized problem

[ W
FrFTF™ " W
- - - | — E—

Fig.5. (a) The numerical solution U™™ in the actual problem for

an oblique incident plane wave § = 7/3 with degree of inhomogeneity

v =m/6 and Krh = 1, on a welded elastic substrate Q;,! = 0 with vis-

coelastic stratified edge Q;l = 0.1 made of rectangular voids (e¢/h = 10

and ¢ = 0.5); the right shows the homogenized fields U. (b) Same rep-
resentation as (a) with ¢ = 0.9.

Actual problem Homogenized problem

L

Fig. 6. (a) Same representation as in Figure 5 for a case of the stratified

edge and substrate are the same viscoelastic media (Q~! = 0.05 with

¢ = 0.5). (b) Same representation as (a) with Q~! = 0.2 in the case of
no Low-Loss viscoelastic media.

teresting to note that a very small error is found even if the value kh = 1 is relatively large.
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3.3.1. The error of the reflection as a function of frequencies

In the first time, we shall inspect for Q! = 0 and Qi_nl = 0.1 in the case of welded viscoelastic stratified
edge with elastic substrate, for which we report reflection coefficients R™™ and R as a function of kh
and e/h (with ¢ = 0.1, § = 7/3 and v = 7/6), and the corresponding errors AR = |R™™ — R| /|R™™|.
We considered Krh € [0,2n], where the frequency range includes Krh > 27/(1 + sinf) ~ 1.07m,
corresponding to the Wood anomaly (cut-off frequency) [16]. This interval is outside the range of
validity of any homogenization approach, whereas mode coupling is not possible at an equivalent flat
boundary.

First order homog. Second order homog.

Krh

0 4 0 4

100%

50%

Krh

1%

0 4
e/h e/h

Fig. 7. Up: Reflection coefficients in actual problem |R™™| and homogenized |R| at the first order (B = C = 0),

and at the second order as a function of e/h and of the frequency Kgrh; (Q;,' =0, Q;;' = 0.1, 9 = 0.1, 0 = /3

and v = 7/6) have been considered. Down: Errors AR on the reflection coefficient, which are calculated
numerically. Errors smaller than 1% appear in dark blue, and errors greater than 100% appear in dark red.

In Figure 7, errors smaller than 1% appear in dark blue, and errors greater than 100% appear in dark
red. On average, at the intermediate frequencies for Krh < 7/2 (C3 profile), the error in the reflection
coefficient for Q! = 0.1, is smaller than 1% in the whole range of e/h at the second order, and it is
of 50% on average at the first order (B8 = C = 0); on the other hand, the first order homogenization
wrongly predicts perfect reflections for e/h for vanishing thicknesses e/h, while including the jump
conditions (10) at the second order restores the real scattering properties of an array of flat voids. This
is corresponding to the result of [17], in which the effective permittivity of electromagnetic waves must
depend on the thickness (the effective bulk parameter a in our case).

More precisely, we inspect (i) for a small thickness (C; profile from Figure 7) the profiles of |R™™|
(blue symbols) and its homogenized reflection coefficient |R| (grey lines at the first order and black
lines at the second order), with the corresponding errors AR (grey lines at the first order and black
liens at the second ) as a function of kh for e/h = 0.05 and e/h = 4 (Figure8). We notice that the
homogenization at the first order largely overestimates the reflection, while the homogenization at the
second order recovers the actual reflection of the stratified edge; for a larger free stratified edge (Cs
profile) the first order homogenization is valid for small Kgh; and going up to the second order allows
us to enlarge the interval of validity of the homogenized solution. (ii) The variations of |[R™™| and
|R| (and the corresponding errors AR) as a function of e/h for Krh = 0.67 are reported in Figure9
(C5 profile from Figure 7). We note that the homogenized solution at the second order is even more
significant than that at the first order.
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100 ¢

|

|R|
AR(%)
=

a 0.01¢

i 100 ¢

| / WWwwisns— /V\‘/’\\,M«Y/Jj A

0.01¢

|R|
AR(%)
-

0 T 2m 10 1
Krh Krh

Fig. 8. Left: Reflection coefficients |R™™| and |R| as a function of Krh. C; profile for e/h = 0.05 and

Cy for e/h =4 (|R™™|: blue symbols and |R|: grey lines at the first order and black lines at the second

order). Right: The corresponding error AR of the homogenized predictions, which are shown in percent
(grey lines at the first order and black liens at the second).

YV

4 0 4
e/h e/h
Fig. 9. Reflection coefficients |R™™| and |R| and errors AR as a function of e/h for Krh = 0.67
(Cj5 profile from Figure 7). Same representation as in Figure 8.

AR(%)

3.3.2. The error of the reflection as a function of reciprocal quality factor

Finally, we report the reflection coefficients R™™™ and R as a function of Krh and the reciprocal quality
factor Q! (with e/h =4, ¢ = 0.1, § = 7/3 and v = 7/6), and the corresponding errors AR Figure 10.
We considered Krh € [0,27], Krh ~ 1.077 corresponding to the cut-off frequency exists in the actual
problem.

In Figure 10, errors smaller than 1% appear in dark blue, and errors greater than 100% appear
in dark red. On average, at the intermediate frequencies for Krh < m/2 (Cy profile), the error in
the reflection coefficient is smaller than 1% in the whole range of Q~!; it is of 25% on average at the
first order. More specifically, we inspect the variations of |R™™| (blue symbols) and its homogenized
reflection coefficient |R| (grey lines at the first order and black lines at the second order), with the
corresponding error AR (grey lines at the first order and black liens at the second) as a function of the
reciprocal quality factor Qz_nl of a stratified edge (Figure 11). For the case of the welded elastic substrate
with a viscoelastic stratified edge with (Q,,! = 0, Kgh = 0.67) and (e/h = 4, ¢ = 0.1, § = 7/3).
Also, the first order homogenization underestimates the scattering properties of the structure, the
homogenized solution at the second order is valid for Krh = 0.67 by noting that the AR error is less
than 1% in the whole range of Q1.

Finally, we inspected the variations of | R™™| as a function of the reciprocal quality factor Q;,! of a
substrate (Figure 11), in the event that free stratified edge and a substrate are two different viscoelastic
media, with @, ' = 0.2 and (Krh = 0.6m, e/h =4, p = 0.1, # = 7/3, v = 7/6). The homogenized
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solution is also valid by noting that the AR error is less than 1% in the whole range of Q;,}. We obtain
almost the same results as those observed in the other cases, and in general the homogenized solution
at the second order is even more significant than that at the first order.

Actual problem First order homog. Second order homog.

2n B B ﬁ[ !

=

Second ordre Error

50%

1%
0 1
Qfl
Fig. 10. Up: Reflection coeflicients in actual problem | R""™| and homogenized |R| at the first order (B = C = 0),
and at the second order as a function of @~! and of the frequency Krh; with (e¢/h =4, ¢ = 0.1, § = 7/3 and
~v = m/6). Down: Errors AR on the transmission coefficient, which are calculated numerically. Errors smaller
than 1% appear in dark blue, and errors greater than 100% appear in dark red.

1

Q! Q!
Fig.11. Up: Reflection coefficients |[R™™| (blue symbol), |R| (grey lines at the first order and
black lines at the second order) and errors AR (grey lines at the first order and black liens at the
second) as a function of Q;." for elastic substrate (Q;,} = 0, Krh = 0.67), with (e/h =4, ¢ = 0.1,
0 = 7/3). Down: Same representation as a function of Q! for viscoelastic substrate (Q;,! = 0.1,
Kprh =0.67), with (e/h =4, ¢ =0.1, 0 =7/3 and v = 7/6).

AR(%)

4. Concluding remarks

In this work, we have presented a homogenization model able to replace the physical problem of the
scattering of shear waves at a welded viscoelastic substrate with a free viscoelastic stratified edge. The
problem ends with effective parameters characteristic of an equivalent anisotropic free slab and which
enter in jump conditions for the displacement and the normal stress at the welded boundaries between
a substrate and stratified edge. As in classical homogenization, these effective parameters are obtained
by the solutions of elementary problems. The most significant simplicity in the presented approach is
the derivation of effective bulk parameters which are simply averages of the bulk parameters in each
layer, and these effective bulk parameters enter in the homogenized wave equation. The method has
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been presented in the case of rectangular voids spaced periodically on the surface of a viscoelastic
substrate and associated with Neumann boundary conditions. In acoustics, this corresponds to an
array of sound hard material in a fluid, in electromagnetism to a (perfect conducting) metallic array in
a dielectric or in the air. The model accurately describes the spectra of reflection thanks to an explicit
expression of the reflection coefficients deduced from the effective interface parameters, this accuracy
has specifically been shown for the Low-Loss viscoelastic media and no Low-Loss media, with a range
of validity being Krh < 7/2. While the frequency range includes Krh ~ 1.07w, corresponding to
the Wood anomaly. This range is outside the range of validity of any homogenization approach, since
mode coupling is not possible at an equivalent flat boundary.
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Appendix A. Effective problem in the region of the welded boundary

outer reg | inner reg outer reg
I X2 : 2
______ 0 X | on
R
Fig.12. Left: configuration in the x coordinate; the periodicity along zs is € = Kgrh; the inner region

corresponds to the neighborhood of the boundary between the stratified medium (z; < 0) and the substrate
being a homogeneous medium (z; > 0). Right: the unit cell (inner region) in the y coordinate, with y = x/e,
andy e Rx Y, with Y =(-1/2,1/2).

Let us derive the effective model for two viscoelastic media of a free stratified edge and an infinite
substrate with a common interface boundary in welded contact. From the position of physical problems
(7)—(8), we noticed that the wave equation is identical to the one homogenized in [9,10], except that
in our case, the coefficients of physical parameters entering the equation wave are complex. Therefore,
we obtained by analogy the same form of the homogenized wave equations at different orders; for this
reason, we will quote in this work, only the main steps of this derivation.

A.1. The matched asymptotic expansion

As previously said, we shall apply the same asymptotic expansions technique as in [9] by spearing the
space into three regions.

A.1.1. Inner and outer expansions

The inner region contains the boundary between the stratified medium and the substrate (Figure 12).
Two outer regions for 1 > 0 and z; < 0 are the regions far enough from the interface, where the
evanescent field can be neglected. Next, the inner region and the outer regions are connected using
so-called matching conditions, which will constitute the boundary conditions for the outer solutions.
Owing to this approach, the expansions reads

outer region z1 > 0, u° = u’(x) + eul(x) + -
0° =0%(x) +eot(x)+...,
outer region z1 < 0, u° =’ (x,y2) +eul (x,92) + ..., 19)
0 =0 (x,2) + 0t (x,0) + ...,
inner region, u® = v° (z9,y) + ev! (z2,y) + ...,
0° =70 (22,y) + et (22,y) + ..
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With the outer terms (u",0™) for 1 < 0 and the inner terms (v™,7") being Y periodic with ¥ =
(—1/2,1/2); and now, the second actual problem (5) can be written in the inner and in the outer
regions, owing to the expressions of the differential operator

in the outer region, V — Vy, z1 > 0,

10
V—)Vx—i-g—eg, x1 <0,

9ya (20)

0 1
in the inner region, V — ——ey+ =V,
0xo €
where Vy and Vy means gradient with respect to x and y respectively, such as a macroscopic coor-
dinate x associated with slow variations of the fields (with the typical scale 1/Kg of the wave) and
a microscopic coordinate y = x/¢, associated with rapid variations (the typical scale h of the layers),
and in each region, we keep the coordinates that are relevant to describe the variations of the field.
Finally, from (6), (a**,b*®) can be specified in the outer regions as
outer region z; > 0, a**(x) =1, b (x) = (K*/KR)?,
(21)
outer region z1 < 0, a**(x) =a* (z2/e), b*(x) =0b*(x2/e),
and in the inner region as a**(x) = a*(x/¢) and b*¢(x) = b*(x/e) with

~on_ fat(y2), <0, 5o [0 (y2), y1 <0,
) ={ O s e = { G 22)

with a*(y2), b*(y2) 1-periodic and piecewise complex constant.

A.1.2. Matching conditions

Because of the separation of the space into two regions, something has to be said on the boundary
conditions at |y;| — +oo and for x; — 0%, which are unknown a priori. It is in fact these boundary
conditions that will provide the jump conditions. The missing conditions for the inner and outer terms
are given simultaneously by so-called matching conditions, which tell us that two solutions have to
match in some intermediate region. Following [18] the matching is written for z; — 0% corresponding
to y1 — +oo (and we denote f (0%) the limit values of f for z; — 0%). To do so, we use the Taylor
expansions of u® (z1,z2) = u® (0%, x9) + 210,,u’ (0%, 22) + ... = u® (0%, z2) + ey10,,u® (0F,22) + ...,
same for 0¥. Identifying the terms in €”, n = 0,1 in the inner and outer expansions (19), we get, for
n=>0

UO(O 7552792) = ylli)II_looU (5527?4) (23&)
0/n+ : 0
u' (07, z2) = i (z2,9) (23b)
o’(07,x2,52) = lim 7%(w2,y) (23c)
Yy1——
o0t = i 0 23d
L g (0 7‘T2) yl_l)IEOOT (‘T27y)7 ( )
and forn =1
0
ul(o 7‘T27y2) - 11—i>moo |:y1($2,y) - y18—1(0_7x27y2):| ) (24&)
w0, 29) = lim  |y'(za,y) y18_1L0(0 x2) (24b)
) Y1400 9 8!171 9 )
. 1 80'0 _
o (0 733273/2)_ 11_1>I£100 T (332,}’) yla—(o 7$27y2) ) (24C)
ol (07, z9) = lim |7'(z2,y) —y1@(0+ x2)| - (24d)
’ Yy1—>+00 ’ al‘l ’
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A.2. The homogenized wave equations

We shall start by reporting directly, the outer and inner solution at the first and the second orders,
that will be needed to generate the wave equation, up to the second order, satisfied by the mean fields
(u(x),0(x)) with

ﬂz<u0>+a<u1>, 5’E<O'0>+€<O'1>. (25)
We note that if f does not depend on y9, (f) = f, and using (19) to (22) in actual wave equations (5).
We obtain the homogenized wave equations at the first and the second orders, in the following forms.

A.2.1. Outer solutions
For z; > 0, at the first and the second order (n =0, 1)

divy o™ + <KR> u™ =0, (26)
o" = Vyu".

A.2.2. Inner solutions

For 7 < 0, reads

0 _ 0
at order e { uo(x, v2) = (X)’ (27)

at order ¢

0. oud 0 . (28)

at order e': ul ul (29)
I R e e T R s a )

We got (29) at order ¢! thanks to two following relations demonstrated in [9] (see subsection 2.2.2)

(POt e)) = () (ut) () amd (F()ab(x,)) = (7) (o3) (x) for any even /.
Both relations use the same property: consider a piecewise differentiable function g(y), with ¢'(y) even;
then (g — (g)) is odd, and for any function f(y) being even, f(g— (g)) is odd. Finally, to determine the

homogenized wave equation up to the second order for (u(x),a(x)), it is enough to apply (26), (28)
and (29) in (25)

dive + (b%)a = 0, 5:<<Cg> <1/£*

Next, (26) to (29) with the boundary conditions and the matching conditions will be used to find the
conditions to be applied on an equivalent interface at x1 = 0, so-called jump condition.

= >Vﬂ for x; <O. (30)

A.3. The jump conditions and interface parameters

We start with the jump conditions at the first order [v°] and [¢¥].

A.3.1. Jump conditions at the first order
The actual wave equations (5) for the inner problem at the leading order in ¢! give
Vyvo =0, divy =0,

from which we deduce that v° does not depend on y. With (27), u®(x) does not depend too on s,
thus
w07, x2) = u0(0F, z2) = v0(z2). (31)
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Next, integrating div, 70 = 0 over R x Y (Figure 13), and using (i) the continuity of 77 n between the
layers along yo, and (ii) the periodicity of 79 with respect to yo, we get

/ dy2 [T?(.Z'Q, +007y2) - T?(I’Q, —OO,yQ)] = 0.
Y

Finally, integrating the matching condition (23c) and

12 2 (23d) over Y, we get
(R ] — = =TT T | _
! ! (6?) (07, 29) = 09(07, 2). (32)
e e
o = ! 3;1 By using (9), we deduce from (31)—(32) the jump condi-
AN a*(y2) a* =1 1 tions at the first order
) b= (%) i
1 Kr 1 0 0
BV : 4] = o) =0 )
Fig.13. The domain Y = Y~ UY™, with  From(33), we note that the normal displacement and
}fﬁ = (¥ 0) x Y, YT = (0,4—9?1.) X {/ stress are continued, which requires us to go up to the
a*(y) = a*(y2) and b*(y) = b"(y2) in Y7, gecond order to capture the effect of boundary layers at

anda=1,b= (K*/KR)QiH Y+ x1 = 0.

In order to obtain the jump conditions at the second
order, we need to find the solutions of the elementary problems.

A.3.2. The elementary problems

From the first equation in (5) at order e~ and the second equation in (5) at order €', the matching
conditions (23c)—(23d), it follows that the system satisfied by v!(x2,y) can be written

( B o 0
divy 7° =0 with 7% =a*(y) ai(o, z9)es + Vyv' (v2,y)] ,
Z2

v! and 7° - n continuous,

a* —(1/a*) ou® (34)
i Vo an,y) = (0°)7 (o) 0,ager + LEU WIS 6 e,
yll—ig:oo Vyo! (v2,y) = (o) (0, 22)ey,

with v and 7° periodic with respect to y2. The system (34) is linear with respect to {(a¥) (0,z2) and
Dp,ul(0, z2). Thus, we define V) (y) and V() (y) such that

oud

vl(zg,y) = <a?> (O,ajg)V(l)(y) + a—xz(07$2) [A*(yg) + V(Q)(Y)} + 0(w2),
o b O )0 W) L o (35)
T (x2,y) = (07 (0,22)TH (y) + s (0, z2) —aja ex + T (y)|,
v w o 1a*(y) - (1/a”)
* _ a \Yy)— a
A= [ o
And

T (y) = a*(y)VV U (y), TO(y)=a*(y)VVO(y).

We notice that the field v! in (34) is defined up to a function of 2, and it is denoted 9(z3) in (35); we
shall see that the determination of ©(x3) is not needed. It is easy to see that if (V(l), T(l)) satisfy the
elementary problems,
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divT® =0 with TO(y) =a*(y)vVVO(y),

v and T(l)-ncontinuous,

v 1M periodic with respect to s, (36)
. e .
yll—l>H—loo VV(l) (y) - <ai>7 yll—l>r-|r}oo VV(l) (y) - e
and -
div [T@) + %ez] =0 with T®(y) =a*(y)VV?(y),
v®  and [T(z) + %62] -n  continuous, (37)

V(Q), T periodic with respect to o,

. . 1/a*(y2) — (1/a*)
V@ (y) = @ (y) = —
ylhn_l V (y) =0, ylhm VV < (y) 1/a%) e,

then v'(xy,y) satisfies (34). Next, by integrating the limits of VV®, (i = 1,2), with V) are defined
up to a constants in (36) and (37), we can write

lim [V(l) - ] =B, lim V@ =_p,
Yy1——00 (a*) Y1——00
(1) lim V& = —A*(y) (38)
yll—lfﬁoo [V yl] 0, Y1400

Such as, we denoted by —B (it is the first interface parameter) and —B’ the constants at y; — —oo
for V) and V@ respectively. Next, V(2 being odd with respect to y», we have B’ = 0. Finally, since
the unknown constants being a priori different at y; — +o0, we can set these constants equal zero at
y1 — +oo for V) and V@,

A.3.3. Jump conditions at the second order

In order to find <u1> and <a%>, one can use the same steps followed in [9] (see subsection 2.3.3), which
leads to obtain the following results

[wh] = B{a?) (0,22). (39)

And 92,0
[(o})] = €55 (0.22). (40)

L3

With C = [, dy T2(2) (y) is the second interface parameter.

A.3.4. Up to the second order jump conditions
Finally, we use (25) and (9) to obtain the final jumps on @ and &, as follow
[al = [(w))] +e[("]. [o1] = [(o)] +¢ [(eD)] - (41)
Then, we deduce from (33), (39) and (40) the following:
0*u®

[a] =B (0?) (0,25), [51] = —eC 7 (022) (42)

A.4. The final homogenized problem

The equations in the substrate (26) and the associated jump conditions (33) could be used to solve the
homogenized problem iteratively: first compute (uo, <00>) (compute also B and C) and use the results
to get the right hand-side term in (42); then, compute (ul,al); finally, we obtain (@, ) in (25) which
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approximate (u®,c°) up to O (52). As discussed in [19], it is preferable to handle a unique problem,
and this is done by defining the fields (u”, o") satisfying the following homogenized problem:

o h ek n_ [ {a%) 0 h

dive" + (")u* =0, o" = < 0 (1/a*)-1 )Vu , x1 <0,
K*\?
divah+<K > uh =0, o=V, x1 > 0,
R (43)

'] = 2 [oh(07.22) + b (0%, 2)]

ny_ €€ o*ul OPul
[[Ul]] - 2 |:81'% (O 7‘T2) + 81’% (O 71'2) .

Appendix B. Effective problem in the region of the free stratified edge

To determine the effective problem of (4), we will follow the same idea in [10]. We use the same
expansions (19), such that the outer region is for z; > 0 and an inner region is set in y € R x Y (with
Y = (—1/2,1/2)), where a*(y) = a*(y2) and b*(y) = b*(y2), and we define Y = (0, +47") x Y. Next,
the radiation condition applies in the outer region and the Neumann boundary condition applies for
the inner problem only, leading to

1'(22,07,92) =0, n=0,1,.... (44)

Finally, the continuity of (u™,7"™ - n) apply between the layers in the inner and outer problems. The
missing conditions for the outer terms when z; — 07 and for the inner terms when y; — +oo are
provided by the matching conditions (23b)—(23d) and (24b)—(24d).

B.1. Effective boundary conditions
The leading order of (4) tells us that divy 7° = 0, and integrating over ¥ with y* — +o0, leads to
/ dyz 71 (22, +00, y2) = / dy2 71 (2,07, y2) = 0
Y Y

using the continuity of 7°-n and (44). Thus, using the matching conditions (23d) leads to
(o?) (0T, 22) = 0.

inner reg | outer reg

g |

0 X| oN
(€

Fig.14. Left: configuration in the x coordinate; the periodicity along zo is € = Kgrh; the inner region

corresponds to the neighborhood of the boundary between the stratified medium (27 > 0) and the surrounding

homogeneous medium (z; < 0). Right: the unit cell (inner region) in the y coordinate, with y = x/e, and
y € (—00,0) XY, with Y = (-1/2,1/2).

Now, we inspect the next order to determine (a{>(0+,w2), and to do so, we shall define an ele-
mentary problem (Figure14). The same approach as for the jump condition is used, but significant
simplifications occur due (i) the cancellation of (¢9)(0%, 25) and (ii) the fact that a*(y) = a*(y2) in Y.
The system (14) now reads
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( oud

divy 7° =0, with 7°=a*(y2) 3
Z2
v! and 7°-n continuous at each interface,

1/a*(y2) — (1/a*) Ou’

li = — (0%
y1—1>I—ri-loo Vyv (3:27}’) <1/CL*> 8332( 7$2)e27
\ T{)(‘T27O 7?42) = 07

with o' and 70 periodic w.r.t yo. The above system is linear w.r.t d,,u’(0%, z3) and we define V®
such that

— (0%, z9)es + Vyvl(z9,y) | ,

(45)

oul
v w2, y) = G (07, m) | A%(w2) + V)] + (),

with A*(y2) defined in (35). As previously, 9(x2) has been introduced since v! in (45) is defined up
to a function of x5 and as previously, its determination will not be needed. Next, if V(2 satisfies the
elementary problem

div [a* (1) VV @ ()] = 0.
V® and a*(y2)VV@(y)-n continuous, V® periodic w.r.t. ys,
lim VV®(y)=o, (46)

y1—+o0
oV ()

oy
then v! satisfies (45). The significant simplification is that the above system has an obvious solution
V® = const. Thus 7° = 9,,u’ (0%, 22) [(1/a)"tes + a*(y2) VV?)], from (45), simplifies in

0
(e2,y) = (1/a) " (0%, m2)es
T2

(0+7 y2) = 07

Integrating (4) over Y at order £, leads to

or9 -
/ dy [divyfl(m,ywﬁ(scz,y)+b(y)u°<0,x2) =0, (47)
Y 0z
and using (44), with
(
/Ydyley Tl($27y) <7_1> 33‘2, <Tl> 33‘2,—|-y1 = - <7_11> (x27+y§n)7
ord 92uY
d Y2 — M 1 -1 —+
J a5 ay) = 1)) T 0 ),
/ dy B(y)u (0", 25) = 5™ (D)l (0F, ).
\ JY

Summing up three terms above as in (47) and using the system at x; = 0T, which is obtained from (28)
for 1 < 0 and (26) for z1 > 0

> 1(92 0 0
———(07,22) = (1/a)” - (0,z2) + (b)u’(0, z2),
8:E1 T3

o) o
Ox?3

(07 152) + UO(O, 33‘2),
we get
0 (a?
<Tl > z2,+y1") +yi" ;xl > (0F,22) =0,
and from the matching condition (24c)—(24d) at x1 = 0", we get

{(o1) (07, 22) = 0.
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It follows that up to order 2, the boundary condition on a rigid wall remains of the Neumann type,
and for 7(x) defined in (25), we get

01 (O+, 332) =0.

B.2. The final homogenized problem

Following the same procedure as in subsection A.4, we get the effective problem in the region of free
stratified edge, which reads
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MlomoreHisayis cybxBnab0BOro BiIbHOro cTpaTudikoBaHOro Kpato
B SI3KOMNPY>XHOIro cepeaoBulla 3 BpaxyBaHHAM
CKiHY4EHHO-PO3MipHOro edeKkTy
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V 1iit cTaTTi IPOMOHYETHCST TOMOTeHI3aIlis cTpaTu(IKOBAHOTO B’ I3KOIPY2KHOTO CEPEIOBH-
ma 3 BiIbHUM KpaeM. Po3TismaeThes BILIUB JABOBUMIPHOI MEPionIHO CTpaTudiKOBAHOT
IUINTH HA HAIIBHECKIHYEHHUM B’A3KOIPYKHUM I'DYHTOM Ha IIOIIMPEHHS 3CYBHUX XBUJIb,
0 TAJAI0TH HA MOBEPXHIO PO3MALLYy. Y MeyKax TapMOHIYHOTO PEXWMMY JJjis OTPUMAHHS
€KBIBAJIEHTHOI aHI30TPOIHOI IIJIUTH, MOB’'#3aHOI 3 e(EKTUBHUMHU IDAHUIHAMH yMOBAMMU
Ta yMOBaMM CTPUOKA JJIst 3MIIMEHHS Ta HOPMAaJbHOTO HAIPYXKEHHS HA MEXKi IOJIiTy, BU-
KOPHCTOBYETHCS METO/ POMOreHi3allil APYroro MopsiiKy Ta y3TOJZKEHHX aCHUMIITOTHIHUX
posBuHenb. KoedirienTn BiONTTS Ta 1MOJIs TIepeMinienb OTPpUMaHi B 3aMKHEHUX (popMax,
1 1X JIOCTOBIPHICTDH IE€PEBIPAETHCS NIJISIXOM IOPIBHAHHSA 3 HPAMUMU YHUCJIAMH Y BUIIAJIKY
mapiBs, gKi MOB’A3aHi 3 rpaHndHEMI yMoBaMu Heitmama.

Kntouosi cnoBa: zomozenizauis, y32000cene acuMNMOMuYHe PO3BUHEHHSA, Gi0bummas
TEUAD, 8’A3KONPYIICHE, cmpamudirosane cepedosuuie, Ymosu edexmuerozo cmpubka.
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