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This paper proposes the homogenization for a stratified viscoelastic media with free edge.
We consider the effect of two-dimensional periodically stratified slab over a semi-infinite
viscoelastic ground on the propagation of shear waves hitting the interface. Within the
harmonic regime, the second order homogenization and matched-asymptotic expansions
method is employed to derive an equivalent anisotropic slab associated with effective
boundary and jump conditions for the displacement and the normal stress across an inter-
face. The reflection coefficients and the displacement fields are obtained in closed forms
and their validity is inspected by comparison with direct numerics in the case of layers
associated with Neumann boundary conditions.
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1. Introduction

There is increasing demand for methods to estimate effective parameters of viscoelastic composites,
e.g. vibration and noise control in structures. An effective model associated with shear waves scattering
by a periodically stratified slab in viscoelastic with free edge and satisfying ε = KRh ≪ 1, where KR

being the real part of the complex shear wavenumber K∗ and h the periodicity of the structure, is
studied. It is easy to understand that in these cases, the numerical calculation of the solution would
become prohibitive on a small scale, since the mesh used must accurately resolve the rapid variations.
In order to overcome this difficulty, we will derive so-called effective boundary and jump conditions
of the displacement and normal stress through an equivalent homogeneous anisotropic slab. The
numerical discretization of the homogenized problem should be much less expensive than the exact
mesh, since the mesh used does not have to be constrained by the small scale. There are several works
that deal with the same kind of problem, for example, if the whole (or a large part of) the propagating
medium has a micro-structuring whose smallest scale is below the wavelength, it is possible to simplify
the model by using classical homogenization which derives an equivalent homogenized problem, see
for example [1, 2]. In other situations, if only a small or thin region contains micro-structuring; they
are originally developed in the context of solid mechanics [3–5], the homogenization of interfaces has
been studied on some problems, especially in electromagnetism [6, 7], and acoustics [3–8]. In this
article, we used asymptotic analysis and the same homogenization approach that was applied in the
case of shear wave scattering by a periodically stratified slab in elasticity [9]. We noticed that in
the case of viscoelastic media, the wave equation of the real problem takes the same form, except
that in our case, the coefficients of physical parameters entering the equation are complex. That is
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Homogenization of subwavelength free stratified edge of viscoelastic media including finite size effect 11

why the homogenization procedure is the same and even the form of the homogenized wave equations
obtained at different orders. Evenly, we establish that the second order homogenization reveals interface
parameters, which enter into the jump conditions at the boundaries of the equivalent free edge slab
(Figure 1). It is also showed that scattering parameters of effective model accurately describe those
of the actual structure and in general the homogenized solution at the second order is even more
significant than that at the first order. The paper is organized as follows. In Section 2, we summarize
the result of the asymptotic analysis in the case of two viscoelastic media of a free stratified edge and an
infinite substrate with a common interface boundary in welded contact, whose main steps of derivation
is given in the Appendix 4. The resulting system (10) represents the homogenized problem associated
with effective boundary and jump conditions of the displacement and of the normal stress across an
equivalent homogeneous anisotropic slab. In Section 3, the accuracy of the effective model is inspected
by comparison with direct numerics based on multimodal method [10] for a shear wave incident. The
reflection coefficients as a function of the frequency KRh and thickness of the stratified structure e/h,
and as a function of the reciprocal quality factor Q−1 are exemplified and the agreement between the
actual and effective problems is discussed. We finish the study in Section 4 with concluding remarks
and perspectives.

2. The actual problem and the effective problem

Below we summarize the main results of the analysis developed in the Appendix 4 and which provides
the so-called (Effective problem) where the stratified medium is replaced by an equivalent anisotropic
slab associated with the effective boundary at X1 = 0 and the jump conditions for the displacement
and the normal stress across an interface at X1 = e (Figure 1).

Fig. 1. On the left, the actual configuration of an viscoelastic body (in grey) with a viscoelas-
tic stratified medium Ωs. On the right, the homogenized configuration where the stratified
medium is replaced by an equivalent homogeneous anisotropic slab, which associated with

effective boundary and jump conditions apply at the boundaries of slab.

2.1. The physical problem

We consider the shear wave scattering by a welded boundary between a free stratified edge and an infi-
nite isotropic viscoelastic substrate. The scalar displacement field U(X) written in the harmonic regime
wave (Figure 1), with X ∈ Ω the spatial coordinates and Ω = {(X1,X2) ∈ (0,+∞)× (−H/2,H/2)},

div(M∇U) + ρω2U = 0 (1)

with M and ρ being the complex shear modulus and the mass density respectively, and ω is the
frequency. Equation (1) can be written using the non-dimensional parameters,

α∗(X) ≡ M(X, ω)

Mm
and β(X) ≡ ρ(X)

ρm
with Mm the complex shear modulus and ρm the mass density of the substrate beside the stratified
medium occupying the region Ωs = {(X1,X2) ∈ (0, e) × (−H/2,H/2)}; with K∗ = ω

√

ρm/Mm the
complex wave number in the substrate Ω/Ωs, we get
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div(α∗∇U) + βK∗2U = 0. (2)

What allows us to write the Helmholtz equation in the substrate as follows:

∆U +K∗2U = 0.

In the harmonic regime, we consider viscoelastic waves with a minimum wavelength 2π/KR larger
than the typical periodicity of the stratified structure h (KR being the real part of the complex shear
wavenumber K∗), such that

ε = KRh ≪ 1.

To be consistent, we shall work in dimensionless coordinate x = (x1, x2) and on a problem simplified
with respect to that in (Figure 1) in the sense that we can determine the effective boundary conditions
at x1 = 0+ and the jump conditions at x1 = e.

2.1.1. Stratified structure ending with Neumann boundary condition

To determine the effective boundary conditions at x1 = 0+ with (x1 = KRX1, x2 = KRX2), we
consider the first actual problem for x = (x1, x2) ∈ (0,+∞, )× (−KRH/2,KRH/2) and σε

1(0
+, x2) = 0

(Figure 2), where the infinite stratified medium occupies the half space x1 > 0 with Neumann boundary
condition at x1 = 0+. We denote

a∗ε(x) ≡ α∗(X), b∗ε(x) ≡ β(X)

(

K∗

KR

)2

; uε(x) ≡ U(X), σε(x) ≡ KR
−1α∗(X)∇U(X),

where the functions a∗ and b∗ are 1-periodic and complex, such that

a∗ε(x) = a∗
(x2
ε

)

and b∗ε(x) = b∗
(x2
ε

)

. (3)

Fig. 2. Stratified medium occupying the region x1 > 0 and the substrate occupying the region
x1 > 0 with a free edge at x1 = 0. The usual continuity conditions apply at the boundaries Γ

between the layers (uε, σε
2) and Neumann boundary condition σε

1 = 0 applies at x1 = 0.

Also, we indicated explicitly the dependence of (uε, σε) on ε being the periodicity of the stratified
medium in non dimensional form. Now (2) reads



















div σε(x) + b∗ε(x)uε(x) = 0, x1 > 0,

σε(x) = a∗ε(x)∇uε(x),

σε
1

(

0+, x2
)

= 0,

uε and σε · n continuous on Γ

(4)

with x ∈ (0,+∞)× (−KRH/2,KRH/2) and Γ the boundaries between two layers within the stratified
medium (Figure 2); finally, appropriate boundary conditions at x1 → +∞ and x2 = ±KRH/2, often
referred to as radiation conditions, apply once the wave source has been defined. For the time being,
we do not need to specify their form.

2.1.2. Welded boundary between an infinite layers and substrate

To derive the jump conditions between the stratified medium and substrate, we focus on a region near
the boundary of the stratified medium at X1 = e; and to do that, we assume that the stratified medium
occupies the region x1 < 0 with (x1 = KR(X1 − e), x2 = KRX2). Doing so, we assume implicitly that
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the wave passing through the stratified slab in the configuration of (Figure 3) feels the boundaries and
the bulk of the stratified medium. This means that the slab is thick enough, and thick means that the
evanescent fields at both boundaries of the slab do not interact.

Fig. 3. Single interface between the stratified medium occupying the region x1 < 0 and the substrate
occupying the region x1 > 0. The usual continuity conditions apply at the boundaries Γ between
the layers (uε, σε

2) and at the boundaries between the layers and the substrate (uε, σε
1) at x1 = 0.

The second actual problem for x = (x1, x2) ∈ R× (−KRH/2,KRH/2), reads as










div σε(x) + b∗ε(x)uε(x) = 0, |x1| > 0,

σε(x) = a∗ε(x)∇uε(x),

uε and σε · n continuous, Γ, x1 = 0

(5)

where in this case, the functions a∗ and b∗ are 1-periodic and piecewise complex constant, such that

a∗ε(x) =

{

1, x1 > 0,

a∗
(

x2

ε

)

, x1 < 0,
b∗ε(x) =

{

(K
∗

KR
)2, x1 > 0,

b∗
(

x2

ε

)

, x1 < 0.
(6)

The boundary conditions at |x1| → +∞ and x2 = ±KRH/2 are considered the same of (4).

2.2. The effective problem

Firstly, we shall determine the homogenized problems of the first and second actual problems (4)–(5).
The homogenized problem of stratified structure ending with Neumann boundary condition (4), is
done by defining the fields (uh, σh) satisfying the following problem:







divσh + 〈b∗〉uh = 0, σ
h =

(

〈a∗〉 0
0 〈1/a∗〉−1

)

∇uh, x1 > 0,

σ1
h (0+, x2) = 0.

(7)

and the average over y2 ∈ Y for any function f , is defined by

〈f〉(x) ≡
∫

Y
dy2 f(x, y2).

The second homogenized problem of a welded boundary between an infinite layers and substrate (5),
reads as























































div σh + 〈b∗〉uh = 0, σh =

(

〈a∗〉 0
0 〈1/a∗〉−1

)

∇uh, x1 < 0,

div σh +

(

K∗

KR

)2

uh = 0, σh = ∇uh, x1 > 0,

JuhK = εB
2

[

σh
1

(

0−, x2
)

+ σh
1 (0

+, x2)
]

,

Jσh
1 K = −ε C

2

[

∂2uh

∂x22
(0−, x2) +

∂2uh

∂x22
(0+, x2)

]

,

(8)

where (B, C) are the interface parameters and we defined

JfK ≡ f
(

0+, x2, τ
)

− f
(

0−, x2, τ
)

(9)

for any outer terms f being discontinuous across an equivalent interface at x1 = 0, with (f−; f+) its
values on both sides.
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Finally, from (7)–(8) and coming back to the real space with a welded boundary is considered at
X1 = e, in the X = x/KR coordinate and with Uh(X) = uh(x), Σh(X) = KRσ

h(x), we get an effective
problem























































divΣh + 〈b∗〉KR
2Uh = 0, Σh =

(

〈a∗〉 0
0 〈1/a∗〉−1

)

∇Uh, 0 < X1 < e,

divΣh +K∗2Uh = 0, Σh = ∇Uh, X1 > e,

JUhK = hB

2

[

Σh
1(e

−,X2) + Σh
1(e

+,X2)
]

,

JΣh
1K = −hC

2

[

∂2Uh

∂X2
2

(e−,X2) +
∂2Uh

∂X2
2

(e+,X2)

]

,

Σ1
h(0+, x2) = 0.

(10)

3. Numerical validation of the effective problem

In this section, we address the error of the homogenized solution when compared to the solution of the
actual problem, we shall consider the particular scattering problem of the reflection of rectangular voids,
free of stresses (with Neumann conditions on their boundaries), periodically spaced in a homogeneous
matrix being composed of the same linear viscoelastic material as the substrate. In acoustics, this
corresponds to an array of sound hard material in a fluid; in electromagnetism to a (perfect conducting)
metallic array in a dielectric or in the air.

3.1. Solutions of the physical problem

Fig. 4. Left: Actual problem of the scattering of a plane wave at oblique incidence θ an array
of rectangular voids, with degree of inhomogeneity γ. Right: The homogenized problem involves
a slab of same thickness e filled with a homogeneous anisotropic material, which associated with

jump conditions apply at X1 = ±e.

We solve numerically the actual problem of an incident shear wave as a Type-II S wave [11], which
coming from X1 > e and hitting the array at oblique incidence θ with degree of inhomogeneity γ
(Figure 4). This is done using a multimodal method, which is detailed in [12]. We shall work in the
harmonic regime, the complex fields (and we shall consider the displacement field U(X)) have a time
dependence in e−iωt and it will be omitted in the following. The incident wave is considered as below

U inc(X) = e−iωteiK·r = e−iωte−A·reiP ·r, (11)

where r = (X1,X2) is the position vector, and K the complex wave vector is given by

K = P + iA = KS x̂1 +Kincx̂2

and the corresponding propagation and attenuation vectors, are given by

P = |P | cos (θ) x̂2 + |P | sin (θ) x̂2 = Re [KS ] x̂1 +Re [Kinc] x̂2,

A = |A| cos (θ − γ) x̂1 + |A| sin (θ − γ) x̂2 = Im [KS ] x̂1 + Im [Kinc] x̂2,

with (x̂1, x̂2) are orthogonal real unit vectors for a Cartesian coordinate system, Kinc the complex

wave number for the assumed general SII wave, and KS =
√

K∗2 −Kinc
2, where “

√
” is understood

to indicate the principal value of the square root of a complex number z = zR + i zI defined in terms
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of the positive square root of real numbers by

√
z =

√

|z|+ zR
2

+ i sign [zI ]

√

|z| − zR
2

with

sign [zI ] ≡
{

1 if zI > 0,
−1 if zI < 0.

Hence, the complex wave numbers Kinc and KS reads

Kinc = |P | sin (θ) + i |A| sin (θ − γ) ,

KS = |P | cos (θ) + i |A| cos (θ − γ) ,

where the magnitudes of the propagation and attenuation are specified in terms of the given material
parameters, the complex wave number K∗ or wave speed (vm = ω/KR) and the reciprocal quality
factors (Qm

−1 = MmI/MmR), and the given degree of inhomogeneity γ [11].
The reference numerical solution Unum is sought in the substrate where the Helmholtz equation

applies and Neumann boundary conditions apply at each free boundary of the viscoelastic body. The
problem actual is set in Ω being the region occupied by the substrate and we denote Γ the boundary
of the viscoelastic body were Neumann boundary condition applies, the problem reads























































∆U +K∗2U = 0, in Ω,

Σ · n = 0, on Γ,

lim
X1→+∞

[

∂

∂X1

(

U − U inc
)

− iKS

(

U − U inc
)

]

= 0,

U

(

X1,
H

2

)

= eiKincU

(

X1,−
H

2

)

, X1 ∈ R
+,

∂U

∂X2

(

X1,
H

2

)

= eiKinc
∂U

∂X2

(

X1,−
H

2

)

, X1 ∈ R
+,

(12)

where the scattered waves (U − U inc) at X1 → +∞ satisfy the radiation condition [13], and are
considered in the low frequency regime [14]. The last condition represents the pseudo-periodicity [15],
which applies in the case where H = nh with n an integer, for the incident wave and for the total field.

3.2. Solutions of the effective problem

We shall inspect the accuracy of the homogenization at the first and the second order, to do so, we
treat tow particular problems of scattering by an array of rectangular voids. Such that in the first case
the free stratified edge is considered elastic and the substrate a viscoelastic media. In the second case,
we consider that the free stratified edge and substrate are the same viscoelastic media.

3.2.1. The case of welded viscoelastic stratified edge with elastic substrate

The homogenized problems can be solved exactly in the limiting case of voids with a = 0 = b (leading
to the Neumann boundary condition at the boundary with any other material). Hereafter, we consider
in this case that a∗ = 1, b∗ = 1 in the elastic substrate with reciprocal quality factor Q−1

m = 0, and ϕ the
filling fraction of the viscoelastic media in the stratified edge with reciprocal quality factor Q−1

in = 0.1,
the bulk parameters in the equivalent medium becomes 〈a∗〉 = ξϕ with (ξ = Mi

Mm
); 〈b∗〉 = ( ρi

ρm
)(K

∗

KR
)2ϕ

and 〈1/a∗〉−1 = 0, whence the homogenized wave equation (30) reads

divΣh + ϕK∗
i
2Uh = 0, Σh =

(

ξϕ 0
0 0

)

∇Uh

with Mi the complex shear modulus and ρi the mass density of the stratified edge occupying the
region Ωs = {(X1,X2) ∈ (0, e) × (−H/2,H/2)}; with K∗

i = ω
√

ρi/Mi the complex wave number in
free stratified edge Ωs (rectangular voids). It follows that the homogenized problems reads
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





























































































∂2Uh

∂X2
1

+K∗
i
2Uh = 0 for 0 < X1 < e,

∆Uh +KR
2Uh = 0 for X1 > e,

∂Uh

∂X1
(0,X2) = 0,

jump conditions(10) at X1 = e,

lim
X1→+∞

[

∂

∂X1

(

Uh − U inc
)

∓ iKR cos θ
(

Uh − U inc
)

]

= 0,

Uh

(

X1,
H

2

)

= eiKR sin θUh

(

X1,−
H

2

)

, X1 ∈ R
+,

∂Uh

∂X2

(

X1,
H

2

)

= eiKR sin θ ∂U
h

∂X2

(

X1,−
H

2

)

, X1 ∈ R
+

(13)

To obtain the effective parameters (B, C) entering in the jump conditions (10), we use the same method
based on the modal methods (see S1 in [10]) for solving numerically the elementary problems (36) and
(37) in the case of an array of rectangular voids. The solution of (13) with (11) is of the form







U(X) =
[

a eiK
∗

i
(X1−e) + b e−iK∗

i
(X1−e)

]

eiKR sin θX2 , 0 < X1 < e,

U(X) =
[

e−iKR cos θ(X1−e) +R eiKR cos θ(X1−e)
]

eiKR sin θX2 , X1 > e
(14)

with (R, a, b) are given by using jump conditions (10) with (14). In particular, the reflection coefficient
R reads

R =
z1e

−iK∗

i
e − z∗2e

iK∗

i
e

z2e
−iK∗

i
e − z∗1e

iK∗

i
e
, (15)

with
{

z1 ≡ hK2
R

(

B cos θ sin θφξ + C sin θ2
)

+ iKR (cos θ − sin θφξ)
(

1
4h

2BCK2
R sin θ2 + 1

)

,

z2 ≡ hK2
R

(

B cos θ sin θφξ − C sin θ2
)

+ iKR (cos θ + sin θφξ)
(

1
4h

2BCK2
R sin θ2 + 1

)

.

3.2.2. The case of stratified edge and substrate are the same viscoelastic media

In this second case, we consider a∗ = 1, b∗ = (K∗/KR)
2 in the substrate, and ϕ the filling fraction of the

substrate in the layers, the bulk parameters in the equivalent medium become 〈a∗〉 = ϕ; 〈b∗〉 = (K
∗

KR
)2ϕ

and 〈1/a∗〉−1 = 0, whence the homogenized wave equation (30) reads

divΣh + ϕK∗2Uh = 0, Σh =

(

ϕ 0
0 0

)

∇Uh.

It follows that the homogenized problems reads






























































































∂2Uh

∂X2
1

+K∗2Uh = 0, for 0 < X1 < e,

∆Uh +K∗2Uh = 0, for X1 > e,

∂Uh

∂X1
(0,X2) = 0,

jump conditions (10) at X1 = e,

lim
X1→+∞

[

∂

∂X1

(

Uh − U inc
)

− iKS

(

Uh − U inc
)

]

= 0,

Uh

(

X1,
H

2

)

= eiKincUh

(

X1,−
H

2

)

, X1 ∈ R
+,

∂Uh

∂X2

(

X1,
H

2

)

= eiKinc
∂Uh

∂X2

(

X1,−
H

2

)

, X1 ∈ R
+.

(16)
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The solution of (16) with (11) is of the form






U(X) =
[

aeiK
∗(X1−e) + be−iK∗(X1−e)

]

eiKincX2 , 0 < X1 < e

U(X) =
[

e−iKS(X1−e) +ReiKS(X1−e)
]

eiKincX2 , X1 > e
(17)

with (R, a, b) are given by using jump conditions (10) with (17). In particular, the reflection coefficient
R reads

R =
z1e

−iK∗e − z∗2e
iK∗e

z2e−iK∗e − z∗1e
iK∗e

, (18)

with
{

z1 ≡ h
(

BKSKincφξ + CKinc
2
)

+ i (KS −Kincφξ)
(

1
4h

2BCKinc
2 + 1

)

,

z2 ≡ h
(

BKSKincφξ − CKinc
2
)

+ i (KS +Kincφξ)
(

1
4h

2BCKinc
2 + 1

)

.

3.3. Accuracy of the homogenized solution with respect to the actual solution

Fig. 5. (a) The numerical solution Unum in the actual problem for
an oblique incident plane wave θ = π/3 with degree of inhomogeneity
γ = π/6 and KRh = 1, on a welded elastic substrate Q−1

m = 0 with vis-
coelastic stratified edge Q−1

in
= 0.1 made of rectangular voids (e/h = 10

and ϕ = 0.5); the right shows the homogenized fields U . (b) Same rep-
resentation as (a) with ϕ = 0.9.

Fig. 6. (a) Same representation as in Figure 5 for a case of the stratified
edge and substrate are the same viscoelastic media (Q−1 = 0.05 with
ϕ = 0.5). (b) Same representation as (a) with Q−1 = 0.2 in the case of

no Low-Loss viscoelastic media.

To validate the homogenized
problem, we report the fields
Unum calculated numerically and
the fields U of the homogenized
solutions in the case of welded
viscoelastic stratified edge with
elastic substrate (14)–(15), for
ϕ = 0.5 and ϕ = 0.9 (Fig-
ure 5); in both cases, the recip-
rocal quality factor Q−1

m = 0
for elastic substrate and Q−1

in =
0.1 for viscoelastic free stratified
edge Ωs, with KRh = 1, e/h =
10 and θ = π/3. For the prob-
lem of stratified edge and sub-
strate are considered the same
viscoelastic media (14)–(15), we
reported the fields Unum and
U for reciprocal quality factors
Q−1 = 0.05 in the Low-Loss vis-
coelastic media (Q−1 ≪ 1), and
for no Low-Loss media Q−1 =
0.2; in both cases, KRh = 1,
e/h = 10, ϕ = 0.5, θ = π/3,
and γ = π/6. Defining ∆U ≡
|U − Unum| / |Unum| (for |X1| >
e/2 and with ‖·‖ the L2 norm),
we get a discrepancy of 0.5%
(ϕ = 0.5) and 0.8% (ϕ = 0.9)
for the first case, and almost the
same discrepancy 0.5% (Q−1 =
0.05) and 0.7% (Q−1 = 0.2) for
the second case, where the sub-
strate and stratified edge are the
same viscoelastic media. It is in-
teresting to note that a very small error is found even if the value kh = 1 is relatively large.
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3.3.1. The error of the reflection as a function of frequencies

In the first time, we shall inspect for Q−1
m = 0 and Q−1

in = 0.1 in the case of welded viscoelastic stratified
edge with elastic substrate, for which we report reflection coefficients Rnum and R as a function of kh
and e/h (with ϕ = 0.1, θ = π/3 and γ = π/6), and the corresponding errors ∆R = |Rnum −R| / |Rnum|.
We considered KRh ∈ [0, 2π], where the frequency range includes KRh > 2π/(1 + sin θ) ≃ 1.07π,
corresponding to the Wood anomaly (cut-off frequency) [16]. This interval is outside the range of
validity of any homogenization approach, whereas mode coupling is not possible at an equivalent flat
boundary.

Fig. 7. Up: Reflection coefficients in actual problem |Rnum| and homogenized |R| at the first order (B = C = 0),
and at the second order as a function of e/h and of the frequency KRh; (Q−1

m = 0, Q−1

in
= 0.1, ϕ = 0.1, θ = π/3

and γ = π/6) have been considered. Down: Errors ∆R on the reflection coefficient, which are calculated
numerically. Errors smaller than 1% appear in dark blue, and errors greater than 100% appear in dark red.

In Figure 7, errors smaller than 1% appear in dark blue, and errors greater than 100% appear in dark
red. On average, at the intermediate frequencies for KRh < π/2 (C3 profile), the error in the reflection
coefficient for Q−1 = 0.1, is smaller than 1% in the whole range of e/h at the second order, and it is
of 50% on average at the first order (B = C = 0); on the other hand, the first order homogenization
wrongly predicts perfect reflections for e/h for vanishing thicknesses e/h, while including the jump
conditions (10) at the second order restores the real scattering properties of an array of flat voids. This
is corresponding to the result of [17], in which the effective permittivity of electromagnetic waves must
depend on the thickness (the effective bulk parameter a in our case).

More precisely, we inspect (i) for a small thickness (C1 profile from Figure 7) the profiles of |Rnum|
(blue symbols) and its homogenized reflection coefficient |R| (grey lines at the first order and black
lines at the second order), with the corresponding errors ∆R (grey lines at the first order and black
liens at the second ) as a function of kh for e/h = 0.05 and e/h = 4 (Figure 8). We notice that the
homogenization at the first order largely overestimates the reflection, while the homogenization at the
second order recovers the actual reflection of the stratified edge; for a larger free stratified edge (C2

profile) the first order homogenization is valid for small KRh; and going up to the second order allows
us to enlarge the interval of validity of the homogenized solution. (ii) The variations of |Rnum| and
|R| (and the corresponding errors ∆R) as a function of e/h for KRh = 0.6π are reported in Figure 9
(C3 profile from Figure 7). We note that the homogenized solution at the second order is even more
significant than that at the first order.
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Fig. 8. Left: Reflection coefficients |Rnum| and |R| as a function of KRh. C1 profile for e/h = 0.05 and
C2 for e/h = 4 (|Rnum|: blue symbols and |R|: grey lines at the first order and black lines at the second
order). Right: The corresponding error ∆R of the homogenized predictions, which are shown in percent

(grey lines at the first order and black liens at the second).
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Fig. 9. Reflection coefficients |Rnum| and |R| and errors ∆R as a function of e/h for KRh = 0.6π
(C3 profile from Figure 7). Same representation as in Figure 8.

3.3.2. The error of the reflection as a function of reciprocal quality factor

Finally, we report the reflection coefficients Rnum and R as a function of KRh and the reciprocal quality
factor Q−1 (with e/h = 4, ϕ = 0.1, θ = π/3 and γ = π/6), and the corresponding errors ∆R Figure 10.
We considered KRh ∈ [0, 2π], KRh ≃ 1.07π corresponding to the cut-off frequency exists in the actual
problem.

In Figure 10, errors smaller than 1% appear in dark blue, and errors greater than 100% appear
in dark red. On average, at the intermediate frequencies for KRh < π/2 (C0 profile), the error in
the reflection coefficient is smaller than 1% in the whole range of Q−1; it is of 25% on average at the
first order. More specifically, we inspect the variations of |Rnum| (blue symbols) and its homogenized
reflection coefficient |R| (grey lines at the first order and black lines at the second order), with the
corresponding error ∆R (grey lines at the first order and black liens at the second) as a function of the
reciprocal quality factor Q−1

in of a stratified edge (Figure 11). For the case of the welded elastic substrate
with a viscoelastic stratified edge with (Q−1

m = 0, KRh = 0.6π) and (e/h = 4, ϕ = 0.1, θ = π/3).
Also, the first order homogenization underestimates the scattering properties of the structure, the
homogenized solution at the second order is valid for KRh = 0.6π by noting that the ∆R error is less
than 1% in the whole range of Q−1.

Finally, we inspected the variations of |Rnum| as a function of the reciprocal quality factor Q−1
m of a

substrate (Figure 11), in the event that free stratified edge and a substrate are two different viscoelastic
media, with Q−1

in = 0.2 and (KRh = 0.6π, e/h = 4, ϕ = 0.1, θ = π/3, γ = π/6). The homogenized
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solution is also valid by noting that the ∆R error is less than 1% in the whole range of Q−1
m . We obtain

almost the same results as those observed in the other cases, and in general the homogenized solution
at the second order is even more significant than that at the first order.

Fig. 10. Up: Reflection coefficients in actual problem |Rnum| and homogenized |R| at the first order (B = C = 0),
and at the second order as a function of Q−1 and of the frequency KRh; with (e/h = 4, ϕ = 0.1, θ = π/3 and
γ = π/6). Down: Errors ∆R on the transmission coefficient, which are calculated numerically. Errors smaller

than 1% appear in dark blue, and errors greater than 100% appear in dark red.
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100

Fig. 11. Up: Reflection coefficients |Rnum| (blue symbol), |R| (grey lines at the first order and
black lines at the second order) and errors ∆R (grey lines at the first order and black liens at the
second) as a function of Q−1

in
for elastic substrate (Q−1

m = 0, KRh = 0.6π), with (e/h = 4, ϕ = 0.1,
θ = π/3). Down: Same representation as a function of Q−1

m for viscoelastic substrate (Q−1

in
= 0.1,

KRh = 0.6π), with (e/h = 4, ϕ = 0.1, θ = π/3 and γ = π/6).

4. Concluding remarks

In this work, we have presented a homogenization model able to replace the physical problem of the
scattering of shear waves at a welded viscoelastic substrate with a free viscoelastic stratified edge. The
problem ends with effective parameters characteristic of an equivalent anisotropic free slab and which
enter in jump conditions for the displacement and the normal stress at the welded boundaries between
a substrate and stratified edge. As in classical homogenization, these effective parameters are obtained
by the solutions of elementary problems. The most significant simplicity in the presented approach is
the derivation of effective bulk parameters which are simply averages of the bulk parameters in each
layer, and these effective bulk parameters enter in the homogenized wave equation. The method has
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been presented in the case of rectangular voids spaced periodically on the surface of a viscoelastic
substrate and associated with Neumann boundary conditions. In acoustics, this corresponds to an
array of sound hard material in a fluid, in electromagnetism to a (perfect conducting) metallic array in
a dielectric or in the air. The model accurately describes the spectra of reflection thanks to an explicit
expression of the reflection coefficients deduced from the effective interface parameters, this accuracy
has specifically been shown for the Low-Loss viscoelastic media and no Low-Loss media, with a range
of validity being KRh < π/2. While the frequency range includes KRh ≃ 1.07π, corresponding to
the Wood anomaly. This range is outside the range of validity of any homogenization approach, since
mode coupling is not possible at an equivalent flat boundary.
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Appendix A. Effective problem in the region of the welded boundary

Fig. 12. Left: configuration in the x coordinate; the periodicity along x2 is ε ≡ KRh; the inner region
corresponds to the neighborhood of the boundary between the stratified medium (x1 < 0) and the substrate
being a homogeneous medium (x1 > 0). Right: the unit cell (inner region) in the y coordinate, with y = x/ε,

and y ∈ R× Y , with Y = (−1/2, 1/2).

Let us derive the effective model for two viscoelastic media of a free stratified edge and an infinite
substrate with a common interface boundary in welded contact. From the position of physical problems
(7)–(8), we noticed that the wave equation is identical to the one homogenized in [9, 10], except that
in our case, the coefficients of physical parameters entering the equation wave are complex. Therefore,
we obtained by analogy the same form of the homogenized wave equations at different orders; for this
reason, we will quote in this work, only the main steps of this derivation.

A.1. The matched asymptotic expansion

As previously said, we shall apply the same asymptotic expansions technique as in [9] by spearing the
space into three regions.

A.1.1. Inner and outer expansions

The inner region contains the boundary between the stratified medium and the substrate (Figure 12).
Two outer regions for x1 > 0 and x1 < 0 are the regions far enough from the interface, where the
evanescent field can be neglected. Next, the inner region and the outer regions are connected using
so-called matching conditions, which will constitute the boundary conditions for the outer solutions.
Owing to this approach, the expansions reads











































outer region x1 > 0, uε = u0(x) + εu1(x) + · · ·
σε = σ0(x) + εσ1(x) + . . . ,

outer region x1 < 0, uε = u0 (x, y2) + εu1 (x, y2) + . . . ,

σε = σ0 (x, y2) + εσ1 (x, y2) + . . . ,

inner region, uε = v0 (x2,y) + εv1 (x2,y) + . . . ,

σε = τ0 (x2,y) + ετ1 (x2,y) + . . . .

(19)
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With the outer terms (un, σn) for x1 < 0 and the inner terms (vn, τn) being Y periodic with Y =
(−1/2, 1/2); and now, the second actual problem (5) can be written in the inner and in the outer
regions, owing to the expressions of the differential operator























in the outer region, ∇ → ∇x, x1 > 0,

∇ → ∇x +
1

ε

∂

∂y2
e2, x1 < 0,

in the inner region, ∇ → ∂

∂x2
e2 +

1

ε
∇y,

(20)

where ∇x and ∇y means gradient with respect to x and y respectively, such as a macroscopic coor-
dinate x associated with slow variations of the fields (with the typical scale 1/KR of the wave) and
a microscopic coordinate y ≡ x/ε, associated with rapid variations (the typical scale h of the layers),
and in each region, we keep the coordinates that are relevant to describe the variations of the field.

Finally, from (6), (a∗ε, b∗ε) can be specified in the outer regions as
{

outer region x1 > 0, a∗ε(x) = 1, b∗ε(x) = (K∗/KR)
2 ,

outer region x1 < 0, a∗ε(x) = a∗ (x2/ε) , b∗ε(x) = b∗ (x2/ε) ,
(21)

and in the inner region as a∗ε(x) = ã∗(x/ε) and b∗ε(x) = b̃∗(x/ε) with

ã∗(y) =

{

a∗ (y2) , y1 < 0,
1, y1 > 0,

b̃∗(y) =

{

b∗ (y2) , y1 < 0,

(K∗/KR)
2 , y1 > 0,

(22)

with a∗(y2), b
∗(y2) 1-periodic and piecewise complex constant.

A.1.2. Matching conditions

Because of the separation of the space into two regions, something has to be said on the boundary
conditions at |y1| → +∞ and for x1 → 0±, which are unknown a priori. It is in fact these boundary
conditions that will provide the jump conditions. The missing conditions for the inner and outer terms
are given simultaneously by so-called matching conditions, which tell us that two solutions have to
match in some intermediate region. Following [18] the matching is written for x1 → 0± corresponding
to y1 → ±∞ (and we denote f (0±) the limit values of f for x1 → 0±). To do so, we use the Taylor
expansions of u0 (x1, x2) = u0 (0±, x2) + x1∂x1

u0 (0±, x2) + . . . = u0 (0±, x2) + εy1∂x1
u0 (0±, x2) + . . .,

same for σ0. Identifying the terms in εn, n = 0, 1 in the inner and outer expansions (19), we get, for
n = 0



































u0(0−, x2, y2) = lim
y1→−∞

v0(x2, y), (23a)

u0(0+, x2) = lim
y1→+∞

v0(x2, y), (23b)

σ0(0−, x2, y2) = lim
y1→−∞

τ0(x2, y), (23c)

σ0(0+, x2) = lim
y1→+∞

τ0(x2, y), (23d)

and for n = 1






















































u1(0−, x2, y2) = lim
y1→−∞

[

y1(x2,y)− y1
∂u0

∂x1
(0−, x2, y2)

]

, (24a)

u1(0+, x2) = lim
y1→+∞

[

y1(x2,y) − y1
∂u0

∂x1
(0+, x2)

]

, (24b)

σ1(0−, x2, y2) = lim
y1→−∞

[

τ1(x2,y) − y1
∂σ0

∂x1
(0−, x2, y2)

]

, (24c)

σ1(0+, x2) = lim
y1→+∞

[

τ1(x2,y)− y1
∂σ0

∂x1
(0+, x2)

]

. (24d)
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A.2. The homogenized wave equations

We shall start by reporting directly, the outer and inner solution at the first and the second orders,
that will be needed to generate the wave equation, up to the second order, satisfied by the mean fields
(ū(x), σ̄(x)) with

ū ≡
〈

u0
〉

+ ε
〈

u1
〉

, σ̄ ≡
〈

σ0
〉

+ ε
〈

σ1
〉

. (25)

We note that if f does not depend on y2, 〈f〉 = f , and using (19) to (22) in actual wave equations (5).
We obtain the homogenized wave equations at the first and the second orders, in the following forms.

A.2.1. Outer solutions

For x1 > 0, at the first and the second order (n = 0, 1)










divx σ
n +

(

K∗

KR

)2

un = 0,

σ
n = ∇xu

n.

(26)

A.2.2. Inner solutions

For x1 < 0, reads

at order ε−1 :

{

u0(x, y2) = u0(x),
σ0
2(x, y2) = σ0

2(x);
(27)

at order ε0 :











divx
〈

σ0
〉

+ 〈b∗〉u0 = 0,

〈

σ0
〉

(x) = 〈a∗〉∂u
0

∂x1
(x)e1 + 〈1/a∗〉−1∂u

0

∂x2
(x)e2;

(28)

at order ε1 :











divx
〈

σ
1
〉

(x) + 〈b∗〉
〈

u1
〉

(x) = 0,

〈

σ1
1

〉

(x) = 〈a∗〉∂
〈

u1
〉

∂x1
(x),

〈

σ1
2

〉

(x) = 〈1/a∗〉−1 ∂
〈

u1
〉

∂x2
(x).

(29)

We got (29) at order ε1 thanks to two following relations demonstrated in [9] (see subsection 2.2.2)
〈

f(·)u1(x, ·)
〉

= 〈f〉
〈

u1
〉

(x) and
〈

f(·)σ1
2(x, ·)

〉

= 〈f〉
〈

σ1
2

〉

(x) for any even f.

Both relations use the same property: consider a piecewise differentiable function g(y), with g′(y) even;
then (g−〈g〉) is odd, and for any function f(y) being even, f(g−〈g〉) is odd. Finally, to determine the
homogenized wave equation up to the second order for (ū(x), σ̄(x)), it is enough to apply (26), (28)
and (29) in (25)

div σ̄ + 〈b∗〉ū = 0, σ̄ =

(

〈a∗〉 0
0 〈1/a∗〉−1

)

∇ū for x1 < 0. (30)

Next, (26) to (29) with the boundary conditions and the matching conditions will be used to find the
conditions to be applied on an equivalent interface at x1 = 0, so-called jump condition.

A.3. The jump conditions and interface parameters

We start with the jump conditions at the first order Jv0K and Jσ0
1K.

A.3.1. Jump conditions at the first order

The actual wave equations (5) for the inner problem at the leading order in ε−1 give

∇yv
0 = 0, divy τ

0 = 0,

from which we deduce that v0 does not depend on y. With (27), u0(x) does not depend too on y2,
thus

u0(0−, x2) = u0(0+, x2) = v0(x2). (31)
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Next, integrating divy τ
0 = 0 over R×Y (Figure 13), and using (i) the continuity of τ0 ·n between the

layers along y2, and (ii) the periodicity of τ0 with respect to y2, we get
∫

Y
dy2

[

τ01 (x2,+∞, y2)− τ01 (x2,−∞, y2)
]

= 0.

Fig. 13. The domain Y = Y − ∪ Y +, with
Y − = (−ym1 , 0) × Y , Y + = (0,+ym1 ) × Y .
ã∗(y) = a∗(y2) and b̃∗(y) = b∗(y2) in Y −,

and a = 1, b =
(

K∗/KR

)2
in Y +.

Finally, integrating the matching condition (23c) and
(23d) over Y , we get

〈

σ0
1

〉

(0−, x2) = σ0
1(0

+, x2). (32)

By using (9), we deduce from (31)–(32) the jump condi-
tions at the first order

Ju0K = J
〈

σ0
1

〉

K = 0. (33)

From(33), we note that the normal displacement and
stress are continued, which requires us to go up to the
second order to capture the effect of boundary layers at
x1 = 0.

In order to obtain the jump conditions at the second
order, we need to find the solutions of the elementary problems.

A.3.2. The elementary problems

From the first equation in (5) at order ε−1 and the second equation in (5) at order ε0, the matching
conditions (23c)–(23d), it follows that the system satisfied by v1(x2,y) can be written











































divy τ
0 = 0 with τ0 = ã∗(y)

[

∂u0

∂x2
(0, x2)e2 +∇yv

1(x2,y)

]

,

v1 and τ0 · n continuous,

lim
y1→−∞

∇yv
1(x2,y) = 〈a∗〉−1

〈

σ0
1

〉

(0, x2)e1 +
1/a∗(y2)− 〈1/a∗〉

〈1/a∗〉
∂u0

∂x2
(0, x2)e2,

lim
y1→+∞

∇yv
1(x2,y) =

〈

σ0
1

〉

(0, x2)e1,

(34)

with v1 and τ0 periodic with respect to y2. The system (34) is linear with respect to
〈

σ0
1

〉

(0, x2) and

∂x2
u0(0, x2). Thus, we define V (1)(y) and V (2)(y) such that















v1(x2,y) =
〈

σ0
1

〉

(0, x2)V
(1)(y) +

∂u0

∂x2
(0, x2)

[

A∗(y2) + V (2)(y)
]

+ v̂(x2),

τ0(x2,y) =
〈

σ0
1

〉

(0, x2)T
(1)(y) +

∂u0

∂x2
(0, x2)

[

ã∗(y)/a∗(y2)

〈1/a∗〉 e2 +T(2)(y)

]

,

(35)

with

A∗(y2) ≡
∫ y2

−1/2
dy

1/a∗(y)− 〈1/a∗〉
〈1/a∗〉 .

And
T(1)(y) ≡ ã∗(y)∇V (1)(y), T(2)(y) ≡ ã∗(y)∇V (2)(y).

We notice that the field v1 in (34) is defined up to a function of x2, and it is denoted v̂(x2) in (35); we
shall see that the determination of v̂(x2) is not needed. It is easy to see that if

(

V (1),T(1)
)

satisfy the
elementary problems,
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





























divT(1) = 0 with T(1)(y) = ã∗(y)∇V (1)(y),

V (1) and T(1) · n continuous,

V (1),T(1) periodic with respect to y2,

lim
y1→−∞

∇V (1)(y) =
e1

〈a∗〉 , lim
y1→+∞

∇V (1)(y) = e1,

(36)

and














































div

[

T(2) +
ã∗(y)/a∗(y2)

〈1/a∗〉 e2

]

= 0 with T(2)(y) = ã∗(y)∇V (2)(y),

V (2) and

[

T(2) +
ã∗(y)/a∗(y2)

〈1/a∗〉 e2

]

· n continuous,

V (2),T(2) periodic with respect to y2,

lim
y1→−∞

∇V (2)(y) = 0, lim
y1→+∞

∇V (2)(y) = −1/a∗(y2)− 〈1/a∗〉
〈1/a∗〉 e2,

(37)

then v1(x2,y) satisfies (34). Next, by integrating the limits of ∇V (i), (i = 1, 2), with V (i) are defined
up to a constants in (36) and (37), we can write















lim
y1→−∞

[

V (1) − y1
〈a∗〉

]

= −B,

lim
y1→+∞

[

V (1) − y1

]

= 0,







lim
y1→−∞

V (2) = −B′,

lim
y1→+∞

V (2) = −A∗(y2).
(38)

Such as, we denoted by −B (it is the first interface parameter) and −B′ the constants at y1 → −∞
for V (1) and V (2) respectively. Next, V (2) being odd with respect to y2, we have B′ = 0. Finally, since
the unknown constants being a priori different at y1 → ±∞, we can set these constants equal zero at
y1 → +∞ for V (1) and V (2).

A.3.3. Jump conditions at the second order

In order to find
〈

u1
〉

and
〈

σ1
1

〉

, one can use the same steps followed in [9] (see subsection 2.3.3), which
leads to obtain the following results q

〈u1〉
y
= B

〈

σ0
1

〉

(0, x2). (39)

And
q
〈σ1

1〉
y
= −C∂

2u0

∂x22
(0, x2). (40)

With C ≡
∫

Y dyT
(2)
2 (y) is the second interface parameter.

A.3.4. Up to the second order jump conditions

Finally, we use (25) and (9) to obtain the final jumps on ū and σ̄, as follow

JūK =
q
〈u0〉

y
+ ε

q
〈u1〉

y
, Jσ1K =

q
〈σ0

1〉
y
+ ε

q
〈σ1

1〉
y
. (41)

Then, we deduce from (33), (39) and (40) the following:

JūK = εB
〈

σ0
1

〉

(0, x2), Jσ̄1K = −εC ∂
2u0

∂x22
(0, x2). (42)

A.4. The final homogenized problem

The equations in the substrate (26) and the associated jump conditions (33) could be used to solve the
homogenized problem iteratively: first compute

(

u0,
〈

σ0
〉)

(compute also B and C) and use the results
to get the right hand-side term in (42); then, compute

(

u1, σ1
)

; finally, we obtain (ū, σ̄) in (25) which
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approximate (uε, σε) up to O
(

ε2
)

. As discussed in [19], it is preferable to handle a unique problem,
and this is done by defining the fields (uh, σh) satisfying the following homogenized problem:























































div σh + 〈b∗〉uh = 0, σh =

(

〈a∗〉 0
0 〈1/a∗〉−1

)

∇uh, x1 < 0,

div σh +

(

K∗

KR

)2

uh = 0, σh = ∇uh, x1 > 0,

JuhK = εB
2

[

σh
1 (0

−, x2) + σh
1 (0

+, x2)
]

,

Jσh
1 K = −ε C

2

[

∂2uh

∂x22
(0−, x2) +

∂2uh

∂x22
(0+, x2)

]

.

(43)

Appendix B. Effective problem in the region of the free stratified edge

To determine the effective problem of (4), we will follow the same idea in [10]. We use the same
expansions (19), such that the outer region is for x1 > 0 and an inner region is set in y ∈ R× Y (with
Y = (−1/2, 1/2)), where ã∗(y) = a∗(y2) and b̃∗(y) = b∗(y2), and we define Y = (0,+ym1 ) × Y . Next,
the radiation condition applies in the outer region and the Neumann boundary condition applies for
the inner problem only, leading to

τn1 (x2, 0
+, y2) = 0, n = 0, 1, . . . . (44)

Finally, the continuity of (un, τn · n) apply between the layers in the inner and outer problems. The
missing conditions for the outer terms when x1 → 0+ and for the inner terms when y1 → +∞ are
provided by the matching conditions (23b)–(23d) and (24b)–(24d).

B.1. Effective boundary conditions

The leading order of (4) tells us that divy τ
0 = 0, and integrating over Y with ym1 → +∞, leads to

∫

Y
dy2 τ

0
1 (x2,+∞, y2) =

∫

Y
dy2 τ

0
1 (x2, 0

+, y2) = 0

using the continuity of τ0 · n and (44). Thus, using the matching conditions (23d) leads to
〈

σ0
1

〉

(0+, x2) = 0.

Fig. 14. Left: configuration in the x coordinate; the periodicity along x2 is ε ≡ KRh; the inner region
corresponds to the neighborhood of the boundary between the stratified medium (x1 > 0) and the surrounding
homogeneous medium (x1 < 0). Right: the unit cell (inner region) in the y coordinate, with y = x/ε, and

y ∈ (−∞, 0)× Y , with Y = (−1/2, 1/2).

Now, we inspect the next order to determine 〈σ1
1〉(0+, x2), and to do so, we shall define an ele-

mentary problem (Figure 14). The same approach as for the jump condition is used, but significant
simplifications occur due (i) the cancellation of 〈σ0

1〉(0+, x2) and (ii) the fact that ã∗(y) = a∗(y2) in Y .
The system (14) now reads
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





































divy τ
0 = 0, with τ0 = a∗(y2)

[

∂u0

∂x2
(0+, x2)e2 +∇yv

1(x2,y)

]

,

v1 and τ0 · n continuous at each interface,

lim
y1→+∞

∇yv
1(x2,y) =

1/a∗(y2)− 〈1/a∗〉
〈1/a∗〉

∂u0

∂x2
(0+, x2)e2,

τ01 (x2, 0
+, y2) = 0,

(45)

with v1 and τ0 periodic w.r.t y2. The above system is linear w.r.t ∂x2
u0(0+, x2) and we define V (2)

such that

v1(x2,y) =
∂u0

∂x2
(0−, x2)

[

A∗(y2) + V (2)(y)
]

+ v̂(x2),

with A∗(y2) defined in (35). As previously, v̂(x2) has been introduced since v1 in (45) is defined up
to a function of x2 and as previously, its determination will not be needed. Next, if V (2) satisfies the
elementary problem







































div
[

a∗(y2)∇V (2)(y)
]

= 0,

V (2) and a∗(y2)∇V (2)(y) · n continuous, V (2) periodic w.r.t. y2,

lim
y1→+∞

∇V (2)(y) = 0,

∂V (2)

∂y1
(0+, y2) = 0,

(46)

then v1 satisfies (45). The significant simplification is that the above system has an obvious solution
V (2) = const. Thus τ0 = ∂x2

u0(0+, x2)
[

〈1/a〉−1e2 + a∗(y2)∇V (2)
]

, from (45), simplifies in

τ
0(x2,y) = 〈1/a〉−1 ∂u

0

∂x2
(0+, x2)e2.

Integrating (4) over Y at order ε0, leads to
∫

Y
dy

[

divy τ
1(x2,y) +

∂τ02
∂x2

(x2,y) + b̃(y)u0(0, x2)

]

= 0, (47)

and using (44), with


































∫

Y
dy divy τ

1(x2,y) =
〈

τ11
〉

(x2, 0
+)−

〈

τ11
〉

(x2,+ym1 ) = −
〈

τ11
〉

(x2,+ym1 ),

∫

Y
dy

∂τ02
∂x2

(x2,y) = ym1 〈1/a〉−1 ∂
2u0

∂x22
(0+, x2),

∫

Y
dy b̃(y)u0(0+, x2) = ym1 〈b〉u0(0+, x2).

Summing up three terms above as in (47) and using the system at x1 = 0+, which is obtained from (28)
for x1 < 0 and (26) for x1 > 0



















−∂
〈

σ0
1

〉

∂x1
(0−, x2) = 〈1/a〉−1 ∂

2u0

∂x22
(0, x2) + 〈b〉u0(0, x2),

−∂
〈

σ0
1

〉

∂x1
(0+, x2) =

∂2u0

∂x22
(0, x2) + u0(0, x2),

we get
〈

τ11
〉

(x2,+ym1 ) + ym1
∂
〈

σ0
1

〉

∂x1
(0+, x2) = 0,

and from the matching condition (24c)–(24d) at x1 = 0+, we get
〈

σ1
1

〉

(0+, x2) = 0.
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It follows that up to order 2, the boundary condition on a rigid wall remains of the Neumann type,
and for σ̄(x) defined in (25), we get

σ1(0
+, x2) = 0.

B.2. The final homogenized problem

Following the same procedure as in subsection A.4, we get the effective problem in the region of free
stratified edge, which reads







divσh + 〈b∗〉uh = 0, σ
h =

(

〈a∗〉 0
0 〈1/a∗〉−1

)

∇uh, x1 > 0,

σ1
h (0+, x2) = 0.
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Гомогенiзацiя субхвильового вiльного стратифiкованого краю
в’язкопружного середовища з врахуванням

скiнченно-розмiрного ефекту
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У цiй статтi пропонується гомогенiзацiя стратифiкованого в’язкопружного середови-
ща з вiльним краєм. Розглядається вплив двовимiрної перiодично стратифiкованої
плити на напiвнескiнченним в’язкопружним ґрунтом на поширення зсувних хвиль,
що падають на поверхню роздiлу. У межах гармонiчного режиму для отримання
еквiвалентної анiзотропної плити, пов’язаної з ефективними граничними умовами
та умовами стрибка для змiщення та нормального напруження на межi подiлу, ви-
користовується метод гомогенiзацiї другого порядку та узгоджених асимптотичних
розвинень. Коефiцiєнти вiдбиття та поля перемiщень отриманi в замкнених формах,
i їх достовiрнiсть перевiряється шляхом порiвняння з прямими числами у випадку
шарiв, якi пов’язанi з граничними умовами Неймана.

Ключовi слова: гомогенiзацiя, узгоджене асимптотичне розвинення, вiдбиття

хвиль, в’язкопружне, стратифiковане середовище, умови ефективного стрибка.
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