
ADVANCES IN CYBER-PHYSICAL SYSTEMS

Vol. 7, Num. 2, 2022

MULTI-AGENT COORDINATION WITH DEFERRED ASYNCHRONOUS

MESSAGING IN A DISTRIBUTED COORDINATION SPACE

Alexey Botchkaryov

Lviv Polytechnic National University, 12, Bandera Str, Lviv, 79013, Ukraine.

Author’s e-mail: oleksii.y.bochkarov@lpnu.ua

https://doi.org/10.23939/acps2022.__.___

Submitted on 26.09.2022
© Botchkaryov A., 2022

Abstract: A method of multi-agent coordination with

deferred asynchronous messaging in a distributed

coordination space has been proposed. The method has been

based on the concept of multi-agent conditional interaction.

The method has used 1) a distributed coordination space in

which agents move, 2) the rules of state transitions for the

coordination space nodes depending on the movements of

agents, 3) the rules of agents move and state transitions

depending on the states of the coordination space nodes, 4) a

multi-agent coordination game based on the coordination

space and the rules. The coordination space has been

implemented based on the distributed shared memory of

agents. The rules have been applied by exchanging deferred

asynchronous messages between agents through the

distributed shared memory. The agent's decisions about

movement in the coordination space and their consequences

are interpreted according to the rules in asynchronous

messages. Delivery of messages to other agents has been

deferred until these agents visit the corresponding nodes of the

coordination space. This has ensured 1) mutual exclusion when

agents choose conflicting actions, and 2) resilience of multi-

agent coordination to agent failures and loss of coordinating

messages. Four multi-agent coordination games have been

considered as examples. The issue of fault tolerance of the

proposed coordination method has been considered. The

simulation results show that the use of the method ensures the

resilience of multi-agent coordination to agent failures in the

considered coordination games.

Index Terms: multi-agent system, multi-agent coordination,

coordination space, coordination game.

I. INTRODUCTION

Research in the field of multi-agent systems is

becoming increasingly relevant as a result of technological

breakthroughs in the field of computer technology, wireless
communications, and robotics. New opportunities require

new approaches to the development of technologies for

multi-agent systems. One of the main directions here is the

use of the resource of decentralized control and the

principles of self-organization. It is assumed that a multi-

agent system should independently solve complex problems

in the absence of centralized control and limited local

information interaction of agents [1]. To achieve this goal,

various decision-making methods are being developed in

multi-agent systems [2] and methods for coordinating the

joint actions of agents solving a problem [3], including the

usage of machine learning methods [4]. Multi-agent

systems can be applied to solve important problems in many

areas, such as business process automation, computer

network management, distributed robotics, resource

allocation and scheduling [5], smart city management [6],

and many others.

A promising direction in the field of research of multi-

agent coordination methods is the use of ideas and

principles of game theory [7]. This approach allows to use

the accumulated experience and solutions in the field of

game theory to organize the interaction of agents and
coordinate their joint actions [8]. Of great interest there are

also approaches to solving the problem of multi-agent

coordination at the intersection of different research areas,

for example, combining the principles of game theory and

reinforcement learning methods [9]. It is important to note

that from the point of view of the general problematics of

multi-agent coordination, models and solutions in the field

of games of timing [10], including games of timing with

many players [11], as well as applied solutions in this area

[12] are of particular interest.

The article considers a new approach to the creation of
a multi-agent coordination method based on the concept of

multi-agent conditional interaction. The article proposes a

method of multi-agent coordination with deferred

asynchronous messaging in a distributed coordination

space. The method implements the idea of preserving and

using the history of inter-agent interactions in an explicit

convenient form, which makes it possible to organize the

spontaneous emergence of coordinated collective behavior.

A set of requirements for multi-agent coordination methods

is formulated and the compliance of the proposed method

with these requirements is considered. As an example, the
article considers four multi-agent coordination games that

have broad prospects for practical application in multi-agent

coordination problems within the framework of the

proposed method. The issue of fault tolerance of the

proposed coordination method is considered.

II. OBJECTIVES

Based on the analysis of existing solutions in the field

of multi-agent coordination, the following set of
requirements for a new coordination method can be formed.

Alexey Botchkaryov 2

1. Possibility with a high degree of freedom to take

into account and control the dynamic structure of cause-

and-effect relationships that arise in the course of the

development of the process of inter-agent interactions.

2. The ability to flexibly regulate the level of

awareness (the degree of lack of information) and the

freedom of action of each agent participating in the process

of inter-agent interactions.
3. Sufficient level of abstraction, allowing to offer a

wide range of meaningful interpretations of the processes of

inter-agent interactions in the course of coordinating joint

actions.

4. The possibility of humans participating in multi-

agent coordination games within the framework of the

coordination method as an experimenter or as an agent

whose behavior is coordinated with other intelligent agents.

5. A convenient representation of the history of the

process of inter-agent interactions in the course of

coordinating joint actions.

Thus, the following objectives can be formulated:
1. Propose a multi-agent coordination method that

meets the above requirements.

2. Implement mutual exclusion of conflicting actions

of agents in the coordination method.

3. Implement the resilience of multi-agent

coordination to agent failures and loss of coordinating

messages.

4. Consider multi-agent coordination games within the

proposed method of multi-agent coordination.

5. Estimate the fault tolerance of the proposed

coordination method. Limit the increase in the average
solution time of a coordination game due to agent failures to

30 % for the intensity of the stationary Poisson process of

agents’ failures less than 0.02.

III. MULTI-AGENT COORDINATION METHOD

The proposed coordination method is based on the

concept of multi-agent conditional interaction. Multi-agent

conditional interaction can be generally expressed in the

following terms. 1) The events take place in a common
discrete time and a discrete structured space (represented by

a set of nodes connected with edges). 2) Agents are in a

state of continuous movement in the space (passing a single

edge per move). 3) At the beginning all agents start at

different positions. 4) While moving, an agent leaves a

fixed-length trail that spans along the traversed path. 5) An

agent cannot move along the trail of any other agent (i.e. an

agent’s trail cannot overlap with other agents’ trails (even

with itself), but crossing other agents’ trails is allowed).

From the point of view of conditional interaction and

the corresponding opportunities for coordination, two main
aspects can be distinguished in this case.

1. Strong (or external) conditioning. Alternatives

available to an agent (where to move next) depend on what

path other agents have chosen before. The history of these

choices is presented explicitly in the form of a collection of

trails left by agents. This also represents their common

interaction history. We can regulate the strength of

conditioning by altering the length of trails. Trail-free space

explicitly represents alternatives available to the agents to

choose from.

2. Weak (or internal) conditioning. An agent’s

decision on where to move next can depend on its

knowledge of choices other agents made at this node. That

is, if a node has been visited by other agents before, this
could provide additional decision-making information for

an agent (e.g. directions of existing trails, their “strength”,

etc.). In addition, if there are several such trails, the agent

can take into account the configuration of their mutual

intersection.

The method of multi-agent coordination based on

multi-agent conditional interaction is given by: 1) a tuple

<M, A>, where M is a distributed coordination space in

which agents A move (Fig.1); 2) a tuple <RM, RA>, where

RM are the rules of node state transitions resulting from

agents passing through the node, and RA are the rules of

agents’ movements and state transitions depending on the
states of passed nodes; 3) a multi-agent coordination game

implemented in the space M based on the rules <RM, RA>.

The coordination space M is implemented based on

the distributed shared memory of agents or using any other

distributed data structures with similar functionality, for

example, blockchain technology. The <RM, RA> rules are

applied by exchanging deferred asynchronous messages

between agents through the distributed shared memory.

That is, the agent's decisions about movement in the

coordination space and their consequences are interpreted

according to the <RM, RA> rules in asynchronous
messages. Delivery of messages to other agents is deferred

until these agents visit the corresponding nodes of the

coordination space. This ensures 1) mutual exclusion when

agents choose conflicting actions, and 2) resilience of multi-

agent coordination to agent failures and loss of coordinating

messages. In the proposed coordination method, three levels

can be distinguished: 1) distributed coordination space M,

which displays the structure of cause-and-effect

relationships in the problem being solved by the multi-agent

system and the corresponding domain; 2) rules <RM, RA>

that implement the mechanism of conditional interaction of
agents; 3) a multi-agent coordination game in the space M

based on the rules <RM, RA>, which implements the logic

of coordinating the joint actions of agents in the process of

solving the task.

To estimate the fault tolerance of the multi-agent

coordination method, we used the increase rate of the

average time to solve a coordination game

WТ = (Tn / Tf)  100 %, where Tn is the average time to

solve a coordination game without agent failures, and Tf is

the average time to solve a coordination game with agent

failures. A failure model is in the form of a stationary

Poisson process of agents’ failures with the intensity  in

the range from 0.001 to 0.02.

Multi-agent Coordination with Deferred Asynchronous Messaging in a Distributed Coordination Space 3

Fig. 1. An example of a section of the coordination space M with two agents (a1, a2) that move through its nodes,

leaving behind a trail: h(a1) = 4, h(a2) = 3.

IV. DISTRIBUTED COORDINATION SPACE

The distributed coordination space is defined by an

undirected graph with every node’s minimum local degree

strictly greater than 2 (i.e. each node is connected to at
least two other nodes). In the general case M = (V, E),

where V = {v} is a set of nodes of the coordination space,

and E = {e} is a set of edges such that e = {vi, vj}, i  j.

The following tuple is defined for each node v

(E(v), C(v), St(v), Dt(v), Qt(v)),

where

E(v) = {e1,e2,...,en(v)} is a set of edges connected to

node v, and n(v) is the number of those edges;

C(v) = {c1,c2,...,cm(v)} is a set of all possible pairs of

edges (i.e. paths through the node) such as ck = (ei,ej), ij,

ei,ej  E(v), m(v) is a number of these pairs, and

C(v,ei)  C(v) is a set of all pairs of edges which include

edge ei;

St(v) = {st(c1),st(c2),...,st(cm(v))} is a set of states of all

pairs of edges for node v at time step t with st(ck)  {0;1}

being a state of pair of edges ck at time step t such that if

st(ck) = 0, then pair of edges ck is closed (i.e. the agent

cannot pass through the node in this direction), and if

st(ck)=1, then pair of edges ck is open (i.e. the agent can
move through this node in this direction);

Dt(v) = {dt(e1), dt(e2),..., dt(en(v))} is a set of

alternatives' indicators such as

dt(ei) = st(cj), for all cj  C(v,ei);

i.e. dt(ei) is the sum of states of all pairs of edges

which include edge ei and it indicates the number of

alternatives available to the agent if it enters node v from

edge ei: if dt(ei) = 0, then an agent cannot exit node v

through edge ei since all corresponding pairs of edges are

closed; if dt(ei) = 1, there is no choice as such, agent has a

single way to exit only (through the open pair of edges);

Qt(v) = {qt(c1), qt(c2),..., qt(cm(v))} is a set of time

counters; if pair of edges ck is closed, then corresponding

counter qt(ck) indicates the number of time steps until the

pair of edges ck become open; if st(ck) = 1 (i.e. when a pair
of edges ck is open), then qt(ck) = 0.

The integral state of node v is defined as the current

configuration of all values in (St(v), Dt(v), Qt(v)).

The A = {a} set consists of N agents, such as N<K,

where K is the number of nodes in the coordination space

M. The following tuple is defined for each agent:

(x0(a), xt(a), st(a), h(a), fa),

where

x0(a)  V is a node of the space M, where the agent

is placed at the beginning (t = 0),

xt(a)  V is a node of the space M, where the agent

currently is,

st(a)  {0;1} is a state of the agent at time step t,

such as if the agent can move, then st(a) = 1, and if the

agent is trapped (i.e. has no alternatives), then st(a) = 0,

h(a) is the agent's trail length,
fa is the agent’s movement function, such as

xt+1 = fa(xt, yt),

where

xt+1  V is a node where the agent moves next,

yt = {t(ei)}, ei  E(xt, I(xt)) is a vector, indicating

whether it is possible to move into an adjacent node

through the corresponding edge ei, here I(xt) is a set of

nodes adjacent to node xt (excluding xt-1); E(xt, I(xt)) is a

Alexey Botchkaryov 4

set of edges between node xt and I(xt) nodes (i.e. if

ei  E(xt) and ei  E(I(xt)), then ei  E(xt, I(xt))); and t(ei)

is a transition possibility indicator, such as

t(ei) = 0, if dt(ei) = 0,

t(ei) = 1, if dt(ei) > 0,

where dt(ei) is an indicator of alternatives, that shows

the number of paths available at time step t+1 if the agent

enters node through edge ei at time step t.

V. RULES OF NODE STATE TRANSITIONS

RM are the rules of node state transitions resulting

from agents passing through the node. In general, RM

consists of three rules: RM = {RM1, RM2, RM3}.

RM1 is a “node closing” rule, that defines a state

transition for pairs of edges C(v) depending on the agents'

moves:

 v  V: if edge ei  E(v) is used by the agent to

enter or exit node v at time step t,

then  ck  C(v,ei)

set 1) st(ck) = 0; 2) qt(ck) = h(a).

RM2 is a “trail fading” rule, that defines the

temporal state transition for pairs of edges C(v). Each time

a step counter qt(ck) for each closed pair of edges ck is

decreased by one. If it reaches 0 for a particular pair, then
the pair opens (i.e. the trail finally fades away):

 v  V, ck  C(v):

if qt(ck) > 0, then qt+1(ck) = qt(ck) – 1.

if qt+1(ck) = 0, then st+1(ck) = 1.

RM3 is an “edge dependence” rule that defines a

state transition for pairs of edges caused by the state

change of other pairs of edges. To reflect the different

aspects of the domain represented by the coordination

space we can define additional dependencies between

independent pairs of edges of C(v). According to this

dependence, if one pair of edges goes into a closed state,

then the other one also closes. Employing the predicate

P*(ei,ej), ei,ej  E(v) such a dependence would take on the

following form:

 v  V: if (ei, ej), ij, ei, ej  E(v) is a pair of edges

used to enter and exit node v at time step t
and P*(ei, ej) = true,

then  ck  C(v, el), P*(ei, el) = true, l  j

set 1) st(ck) = 0; 2) qt(ck) = h(a).

VI. RULES OF AGENT MOVE AND

STATE TRANSITION

RA are the rules of agents’ movements and state

transitions depending on the states of passed nodes. They

define how agents move through the coordination space

and how their states change depending on the state of
passed nodes. In general, RA consists of five rules: RA =

{RA1, RA2, RA3, RA4, RA5}.

RA1 is a “scattered start” rule, that sets agents’

unique starting positions:

(ai, aj), ai, aj  A, ij: x0(ai)  x0(aj).

RA2 is a “move forward” rule, that forbids the agent

to move back along the traversed path:

xt+1  xt-1, xt-1  I(xt).

RA3 is a “keep moving” rule that forbids the agent

to stay in the same node if there are alternatives available:

if  ei  E(xt, I(xt)): t(ei) = 1,

then xt+1  xt & xt+1  I(xt)

& t(e) = 1 & e  E(xt), E(xt+1)

RA4 is a “mutual exclusion” rule that forbids any

two agents passing the same node at the same time to exit

in the same direction:

if  ai, aj  A, ij, such as xt(ai) = xt(aj),

then xt+1(ai)  xt+1(aj).

RA5 is a “trapping” rule that defines conditions

when agents are unable to move forward due to a lack of

alternatives and conditions when such alternatives become

available again. If at a time step t only one agent is at node

v (N(v) = 1), then

if st(a) = 1 & ( ei  E(xt, I(xt)): t(ei) = 0),

then set st(a) = 0,

if st(a) = 0 & ( ei  E(xt, I(xt)): t(ei) = 1),

then set st(a) = 1,
else, if at the time step t more than one agent is at

node v (N(v) > 1) and  = t(ei) for all ei  E(xt, I(xt)),

then

if  < N(v),

then  a  A(v) set st(a) = 0

if ( a  A(v): st(a) = 0) & (  N(v)),
then set st(a) = 1.

VII. MULTI-AGENT COORDINATION GAMES

Based on the coordination space M and the

<RM, RA> rules, various multi-agent coordination games

can be implemented that reflect the specifics of solving

various problems by a multi-agent system. Here one needs

to choose the required structure of the coordination space

M, if necessary, refine the rules <RM, RA>, and specify
the rules of the coordination game itself. In this case,

agents are players playing an implemented coordination

game. This ensures the coordination of their joint actions

in solving a common task. To do this, the developer needs

to map the problems of organizing collective behavior into

the goals and rules of a multi-agent coordination game. At

the same time, one can follow the path of interpretation.

That is, to find necessary aspects of collective behavior in

some known multi-agent coordination game.

Multi-agent coordination games can be used to study

various aspects of the collective behavior of intelligent
agents. The goals of the corresponding experiments can

be: 1) evaluation of the efficiency of the architectures of

intelligent agents participating in the coordination game;

2) determination of the advantages and disadvantages of

the developed algorithms of collective behavior; 3) study

of the joint collective behavior of humans and intelligent

agents in a coordination game.

To demonstrate the capabilities of the proposed

coordination method, we consider four multi-agent

coordination games: the weaving game, the pursuit game,

the expansion game, and the waiting game. The first three

Multi-agent Coordination with Deferred Asynchronous Messaging in a Distributed Coordination Space 5

games are considered at the level of a general description

and discussion of options. The waiting game is considered

in more detail. In all the games considered, the

coordination space M is a regular square grid closed in

one of the coordinates into a ring. It is also assumed that

1) the player can see the state of only neighboring nodes

of the coordination space, 2) the player can make only one

transition between nodes in one time step, 3) the player
does not know the number of players participating in the

game, 4) the player does not know the size of the

coordination space.

VIII.THE WEAVING GAME

At the beginning of the game, agents are randomly

placed at the nodes of the coordination space M. After

that, the agents begin to move from node to node, leaving

behind a trail of closed and half-closed nodes. At each
time step, each agent must make a move (according to the

RA3 rule). If the agent cannot make a move, i.e., gets into

a situation where all neighboring nodes are closed, he

loses. The agent who falls into the trap last wins. There

may be several such agents. If the length of the trail is not

limited, then the game is guaranteed to end in a countable

number of time steps. On average, the game will last

longer, the smaller the ratio of the number of agents to the

number of nodes in the coordination space, that is, the

more "free space" there is in the coordination space. The

fault tolerance of the proposed coordination method for
the case of this game was studied. The simulation results

showed that the maximum increase in the average time to

solve the game due to agent failures for different

combinations of values K={100,…,2000}, N = {10, …,

100}, ={0.001,…,0.02}) was WТ=26.4 %.

IX. THE PURSUIT GAME

In this game, the idea of a changing trail length is

used. At the beginning of the game, the agents are

randomly placed at the nodes of the coordination space M.
After that, they begin to move through the nodes, leaving

behind a trail of limited length h0(a). At the end of each

trail there is the agent's pursuer. The pursuer follows the

trail, his goal is to catch the agent. If the agent, in the

course of his movements, gets into a trap, then the pursuer

approaches him by two transitions in one-time step, that

is, the length of the trail decreases by two: ht(a)=ht-1(a)-2.

If the agent in the course of his movements is forced to

cross the trail of another agent, then the pursuer

approaches him by one transition, that is, the length of the

track decreases by one: ht(a)=ht-1(a)-1. The length of the

trail of the agent who owns the crossed trail is increased
by one, that is, his pursuer moves away from him by one

transition: ht(a)=ht-1(a)+1. The agent caught by his pursuer

loses. The winner is the agent whose trail length reaches

the given value hw(a), hw(a) > h0(a) earlier than other

agents. Some other options for determining the winner:

the last agent remaining not caught wins, or the agent with

the longest trail after a given number of time steps wins.

The fault tolerance of the proposed coordination method

for the case of this game was studied. The simulation

results showed that the maximum increase in the average

time to solve the game due to agent failures for different

combinations of values K = {100, …, 2000}, N = {10, …,

100}, ={0.001,…,0.02}) was WТ=18.2 %.

X. THE EXPANSION GAME

The game is played by two rival teams of agents.

The number of agents in each team is the same. At the

beginning of the game, agents are randomly placed at the

nodes of the outer level of the coordination space M. After

that, they begin to move through the nodes, leaving

behind a trail of gradually increasing length. The goal of

each team is to maximize the number of nodes covered by

the trails of the team's agents. The nodes in which the

trails of the agents of the rival teams intersect are not

taken into account. The team whose trails occupy the

largest area of the coordination space wins. The different
ways to end the game are as follows: 1) when there are no

open nodes left, 2) when all agents fall into a trap, or

3) after a given number of time steps. When an agent falls

into a trap, his trail decreases by one at each subsequent

time step, which reduces his team's payoff. Thus, each

team needs its members to get trapped as little as possible,

and members of the opposing team to get trapped as often

as possible. The fault tolerance of the proposed

coordination method for the case of this game was

studied. The simulation results showed that the maximum

increase in the average time to solve the game due to

agent failures for different combinations of values K =

{100,…,2000}, N1=N2={10,…,100}, ={0.001,…,0.02})
was WТ=27.2 %.

XI. THE WAITING GAME

The waiting game resembles games of timing [10,

11] while having the main features of classical maze

problems. At the beginning of the game, N agents are

randomly placed at the nodes of the outer level of the

coordination space M. At each subsequent time step, an

agent must make a move, that is, go to one of the
neighboring open nodes. Moving in the coordination

space, an agent leaves a trail of closed and half-closed

nodes. The length of the agent's trail is not limited and

grows with each time step by one. If during the movement

the agent falls into a trap, then he loses. The agent's goal

here is to keep moving for as long as possible in the

coordination space, that is, to make as many transitions

between nodes as possible and not get trapped.

At any time, an agent may decide to leave the

coordination space and move into its inner area. The agent

who makes this decision becomes a contender for victory.
As soon as any other agent is trapped, the contender

moves closer to the center of the inner area. Thus, the

more other agents are trapped, the closer the contender

approaches the center and his victory. However, if a new

contender, that has moved longer in the coordination

space, appears in the inner area, then all the previous

Alexey Botchkaryov 6

contenders lose. The game is won by the last contender,

after which no other agent could enter the inner area.

The game ends when no moving agents remain at the

nodes of the coordination space, that is when all agents

either become contenders or fall into a trap. At this

moment, the last contender or contenders, if there are

several of them, reaches the center of the inner area and

wins the game (Fig.2, Fig.3).
The waiting game has two components. At the level

of tactics, the agent is busy finding his way through the

maze of trails of other agents. At the level of strategy, the

agent is busy choosing the moment in time when to

become a contender. By becoming a contender too early,

the agent risks losing new contenders. Staying in the

coordination space for too long the agent risks being

trapped as the maze of trails becomes more complex with

each time step. Note that the interaction of these two

components of the game is of particular interest for the

development of collective behavior algorithms.

To demonstrate basic player logic in the waiting
game let us examine a simple artificial player algorithm.

The algorithm is based on a simple principle: if with each

next move it becomes more difficult for the player to find

his way in the maze of trails, then this stimulates him to

become a contender, that is, to move into the inner area.

To implement this principle, let's introduce a player's

confidence level ct. The higher the ct, the less the player

tends to become a contender, and the lower the ct, the

more the player is afraid of being trapped and tends to

enter the inner area by becoming a contender. Due to this,

two levels of decision-making interact: tactical (maze
task) and strategic (game of timing).

Given the confidence level and the fact that the

player only sees the state of neighboring nodes, the

decision-making rules of the simple artificial player are as

follows.

1. Do not select closed nodes.

2. Choose open nodes with greater probability than

half-closed ones.

3. Choose with greater probability open nodes in

which there are no other players.

4. If the number of alternatives has decreased
compared to the previous time step, then lower the

confidence level is.

5. The lower the level of confidence, the more likely

it is to choose those nodes that lead the player to the inner

area.

In this case, one needs to choose 1) a method for

calculating the probabilities of choosing a neighboring

node for a transition (a question of tactics), 2) a method

for changing the player’s confidence level ct based on the

information available to him about the game situation (a

question of strategy).

In the proposed algorithm, the player's tactics are
implemented based on the idea of a stochastic learning

automaton. Accordingly, the probabilities of choosing

neighboring nodes change as follows

pi,t+1 = pi,t – ,

pj,t+1 = pj,t + /(n - 1), ij,

where pi is the probability of choosing the i-th

unfavorable node (a half-closed node or a node in which

another agent is located), {pj} are the probabilities of

choosing all other neighboring nodes,  is the step of

changing the probabilities, n is the number of neighboring

nodes available for transition.

As a simple strategy, a linear decrease in the

confidence level depending on the decrease in the number

of neighboring nodes available for transition is chosen. At
each time step, the level of confidence is calculated

according to the following rules:

if dt(ei) < dt-1(ei), then ct = ct-1 – (dt-1(ei) – dt(ei)),

if dt(ei) = dt-1(ei) and dt(ei) < 3, then ct = ct-1 – 1,

3,t = 3,t-1 + 1 / ct ,

where dt-1(ei) is the number of alternatives available

to the player at the previous time step, dt(ei) is the number

of alternatives available to the player at the current time

step, ct – is the player's current level of confidence, 3 is

the step of decreasing the probabilities of choosing those

nodes that do not bring the player closer to the inner area.

According to these rules, the level of confidence

decreases in proportion to the decrease in the number of

available alternatives. Otherwise, the player checks how
many alternatives are available to him. If the number of

alternatives is less than three and this situation repeats,

then the level of confidence decreases by one.

It should be emphasized that the method of changing

the level of confidence is the key to develop a strong

artificial player. This method can be more complex and

take into account more aspects of the current game

situation. For example, there may be an increase in the

level of confidence when the player enters a trail-free

region of the coordination space.

Thus, a simple artificial player algorithm is as

follows. At the beginning of the game, the player is
assigned a starting confidence level c0. Then, at each time

step, the player does the following:

1. Determine available alternatives based on the state

of neighboring nodes.

2. Remove closed nodes from the list of alternatives.

3. If the list of alternatives is empty, then admit

defeat, otherwise, go to step 4.

4. Determine the nodes from the list, where other

players are located, and reduce the probabilities of

choosing these nodes by 1.

5. Determine which nodes from the list of

alternatives are half-closed and reduce the probabilities of

choosing these nodes by 2.

6. Change the confidence level ct according to the
given rules.

7. Change the value of 3,t according to the new

confidence level ct.

Multi-agent Coordination with Deferred Asynchronous Messaging in a Distributed Coordination Space 7

Fig. 2. An example of the end of a waiting game with one

winner (N=11, K=140).

Fig. 3. An example of the end of a waiting game with two

winners (N=11, K=140).

8. Determine which nodes do not bring the player

closer to the inner area and reduce the probabilities of

choosing these nodes by 3,t.

9. Using the resulting probability distribution,

randomly select a node for the transition.

10. Move to the selected node.

The fault tolerance of the proposed coordination

method for the case of this game was studied. The

simulation results showed that the maximum increase in
the average time to solve the game due to agent failures

for different combinations of values K={100,…,2000},

N={10,…,100}, ={0.001,…,0.02}) was WТ=21.9 %.

XII.CONCLUSION

The article proposed a method of multi-agent

coordination with deferred asynchronous messaging in a

distributed coordination space. The method implemented

the idea of preserving and using the history of inter-agent

interactions in an explicit convenient form, which made it
possible to organize the spontaneous emergence of

coordinated collective behavior. The method was based on

the concept of multi-agent conditional interaction. The

method used 1) a distributed coordination space in which

agents move, 2) the rules of state transitions for the

coordination space nodes depending on the movements of

agents, 3) the rules of agents move and state transitions

depending on the states of the coordination space nodes,

4) a multi-agent coordination game based on the

coordination space and the rules.

The coordination space was implemented based on

the distributed shared memory of agents. The rules were
applied by exchanging deferred asynchronous messages

between agents through the distributed shared memory.

The agent's decisions about movement in the coordination

space and their consequences were interpreted according

to the rules in asynchronous messages. Delivery of

messages to other agents had been deferred until these

agents visited the corresponding nodes of the coordination

space. This ensured 1) mutual exclusion when agents

choose conflicting actions, and 2) resilience of multi-agent
coordination to agent failures and loss of coordinating

messages.

The proposed coordination method met the above

requirements in the following way.

1. The emerging structure of cause-and-effect

relationships is mapped into a dynamic system of agents’

trails in the coordination space. The actions of some

agents cause general restrictions on the actions that other

agents may choose in the future. By changing the length

of the trail, it becomes possible to take into account and

control the cause-and-effect relationships that arise in the

course of inter-agent interactions.
2. The agent's level of awareness about the general

situation is regulated by the number of nodes in the

coordination space, the state of which is known to the

agent. That is, the agent is more informed, the more

neighboring nodes it can see around him. The agent's

freedom of action is regulated by the number of nodes that

it can pass in one-time step.

3. Wide range of meaningful interpretations of the

processes of inter-agent interactions is based on different

ways of interpreting the elementary choices that agents

make in the course of coordination. Depending on how the
nodes of the coordination space and the edges between

them are interpreted, different ways for using the

Alexey Botchkaryov 8

proposed multi-agent coordination method in practical

problems can be taken.

4. The proposed approach makes it possible for

humans to participate in multi-agent coordination. Of

great interest here is the competition between a team of

humans and a team of intelligent agents in multi-agent

coordination games. A human can act 1) as an

experimenter, exploring the abilities of intelligent agents;
2) as an agent in scenarios for coordinating the joint

actions of humans and intelligent agents.

5. The history of the process of inter-agent

interactions is represented as a collection of agents’ trails

in the coordination space and the states of coordination

space nodes. This allows to see a complete picture of

multi-agent coordination unfolded in time with both the

history and the current state of the process of inter-agent

interaction directly presented.

As examples, four multi-agent coordination games

(the weaving game, the pursuit game, the expansion game,

and the waiting game) were considered. The waiting game
was considered in more detail. A simple artificial player

algorithm was proposed for this game.

The issue of fault tolerance of the proposed

coordination method was considered. The simulation

results showed that the use of the method ensured the

resilience of multi-agent coordination to agent failures in

the considered coordination games. In particular, the use

of the proposed coordination method limited the increase

in the average solution time of a coordination game due to

agent failures to 30 % for the intensity of the stationary

Poisson process of agents’ failures in the range from 0.001
to 0.02.

References

[1] Dorri, A., Kanhere, S., Jurdak, R. (2018). Multi-Agent
Systems: A Survey, in IEEE Access, vol. 6. – pp. 28573-28593,
DOI: 10.1109/ACCESS.2018.2831228.

[2] Rizk, Y., Awad, M., Tunstel, E. (2018). Decision Making in
Multi-Agent Systems: A Survey, in IEEE Transactions on

Cognitive and Developmental Systems, vol. 10, no. 3. –
pp. 514-529, DOI: 10.1109/TCDS.2018.2840971.

[3] Sun, Z. (2018). Cooperative Coordination and Formation
Control for Multi-agent Systems. Springer Cham. – 179 p. DOI:
10.1007/978-3-319-74265-6.

[4] Arup Kumar Sadhu, Amit Konar (2020). Multi-Agent
Coordination: A Reinforcement Learning Approach, Wiley. –
320 p.

[5] . Binyamin, S., Ben Slama, S. (2022). Multi-Agent Systems
for Resource Allocation and Scheduling in a Smart Grid.
Sensors, 22, 8099. – pp. 1-40. DOI: 10.3390/s22218099.

[6] Nezamoddini, N., Gholami, A. (2022). A Survey of Adaptive
Multi-Agent Networks and Their Applications in Smart Cities.
Smart Cities, 5(1). – pp. 318-346. DOI:
10.3390/smartcities5010019.

[7] Zhou, L., Zheng, Y., Zhao, Q., Xiao, F., Zhang, Y. (2022).
Game-based coordination control of multi-agent systems.

Systems & Control Letters. 169. – pp. 1-24. 105376. DOI:
10.1016/j.sysconle.2022.105376.

[8] Paccagnan, D., Chandan, R., Marden, J. (2022). Utility and
mechanism design in multi-agent systems: An overview. Annual
Reviews in Control. 53. – pp. 315-328. DOI:

10.1016/j.arcontrol.2022.02.002.

[9] Jin, B., Cao, M. (2022). Control using Q-learning for
networked coordination games, 2022 13th Asian Control
Conference (ASCC). – pp. 941-946. DOI:
10.23919/ASCC56756.2022.9828324.

[10] Merlevede, J., Johnson, B., Grossklags, J., Holvoet, T.
(2019). Time-Dependent Strategies in Games of Timing. In:
Decision and Game Theory for Security. GameSec 2019.

Lecture Notes in Computer Science, vol. 11836. Springer,
Cham. – pp. 310-330. DOI: 10.1007/978-3-030-32430-8_19.

[11] Smirnov, V., Wait, A. (2022). General Timing Games with
Multiple Players, (April 22, 2022). – 34 p. Available at SSRN:
https://ssrn.com/abstract=4090339, DOI: 10.2139/ssrn.4090339.

[12] Merlevede, J., Johnson, B., Grossklags, J., Holvoet, T.
(2021). Exponential discounting in security games of timing.
Journal of Cybersecurity, Volume 7, Issue 1. – pp. 1-20. DOI:

10.1093/cybsec/tyaa008.

Alexey Botchkaryov was born in
1975 in Lviv, Ukraine. He received B.S.
and M.S. degrees in Computer
Engineering at Lviv Polytechnic National
University, in 1998 and a Ph.D. degree in
Computer Systems and Components at
Lviv Polytechnic National University in

2019. He has been doing scientific and
research work since 1994. Currently, he is
an associate professor at the Computer

Engineering Department, at Lviv Polytechnic National
University. His research interests include self-organization in
complex systems, structural adaptation, intelligent information-
gathering agents, and multi-agent systems.

	I. Introduction
	II. Objectives
	III. Multi-agent coordination method
	IV. Distributed coordination space
	V. Rules of node state transitions
	VI. Rules of agent move and state transition
	VII. Multi-agent coordination games
	VIII. The weaving game
	IX. The pursuit game
	X. The expansion game
	XI. The waiting game
	XII. Conclusion

