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Abstract: A method of multi-agent coordination with 

deferred asynchronous messaging in a distributed 

coordination space has been proposed. The method has been 

based on the concept of multi-agent conditional interaction. 

The method has used 1) a distributed coordination space in 

which agents move, 2) the rules of state transitions for the 

coordination space nodes depending on the movements of 

agents, 3) the rules of agents move and state transitions 

depending on the states of the coordination space nodes, 4) a 

multi-agent coordination game based on the coordination 

space and the rules. The coordination space has been 

implemented based on the distributed shared memory of 

agents. The rules have been applied by exchanging deferred 

asynchronous messages between agents through the 

distributed shared memory. The agent's decisions about 

movement in the coordination space and their consequences 

are interpreted according to the rules in asynchronous 

messages. Delivery of messages to other agents has been 

deferred until these agents visit the corresponding nodes of the 

coordination space. This has ensured 1) mutual exclusion when 

agents choose conflicting actions, and 2) resilience of multi-

agent coordination to agent failures and loss of coordinating 

messages. Four multi-agent coordination games have been 

considered as examples. The issue of fault tolerance of the 

proposed coordination method has been considered. The 

simulation results show that the use of the method ensures the 

resilience of multi-agent coordination to agent failures in the 

considered coordination games. 

Index Terms: multi-agent system, multi-agent coordination, 

coordination space, coordination game. 

I. INTRODUCTION 

Research in the field of multi-agent systems is 

becoming increasingly relevant as a result of technological 

breakthroughs in the field of computer technology, wireless 
communications, and robotics. New opportunities require 

new approaches to the development of technologies for 

multi-agent systems. One of the main directions here is the 

use of the resource of decentralized control and the 

principles of self-organization. It is assumed that a multi-

agent system should independently solve complex problems 

in the absence of centralized control and limited local 

information interaction of agents [1]. To achieve this goal, 

various decision-making methods are being developed in 

multi-agent systems [2] and methods for coordinating the 

joint actions of agents solving a problem [3], including the 

usage of machine learning methods [4]. Multi-agent 

systems can be applied to solve important problems in many 

areas, such as business process automation, computer 

network management, distributed robotics, resource 

allocation and scheduling [5], smart city management [6], 

and many others. 

A promising direction in the field of research of multi-

agent coordination methods is the use of ideas and 

principles of game theory [7]. This approach allows to use 

the accumulated experience and solutions in the field of 

game theory to organize the interaction of agents and 
coordinate their joint actions [8]. Of great interest there are 

also approaches to solving the problem of multi-agent 

coordination at the intersection of different research areas, 

for example, combining the principles of game theory and 

reinforcement learning methods [9]. It is important to note 

that from the point of view of the general problematics of 

multi-agent coordination, models and solutions in the field 

of games of timing [10], including games of timing with 

many players [11], as well as applied solutions in this area 

[12] are of particular interest. 

The article considers a new approach to the creation of 
a multi-agent coordination method based on the concept of 

multi-agent conditional interaction. The article proposes a 

method of multi-agent coordination with deferred 

asynchronous messaging in a distributed coordination 

space. The method implements the idea of preserving and 

using the history of inter-agent interactions in an explicit 

convenient form, which makes it possible to organize the 

spontaneous emergence of coordinated collective behavior. 

A set of requirements for multi-agent coordination methods 

is formulated and the compliance of the proposed method 

with these requirements is considered. As an example, the 
article considers four multi-agent coordination games that 

have broad prospects for practical application in multi-agent 

coordination problems within the framework of the 

proposed method. The issue of fault tolerance of the 

proposed coordination method is considered. 

II. OBJECTIVES 

Based on the analysis of existing solutions in the field 

of multi-agent coordination, the following set of 
requirements for a new coordination method can be formed. 
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1. Possibility with a high degree of freedom to take 

into account and control the dynamic structure of cause-

and-effect relationships that arise in the course of the 

development of the process of inter-agent interactions. 

2. The ability to flexibly regulate the level of 

awareness (the degree of lack of information) and the 

freedom of action of each agent participating in the process 

of inter-agent interactions. 
3. Sufficient level of abstraction, allowing to offer a 

wide range of meaningful interpretations of the processes of 

inter-agent interactions in the course of coordinating joint 

actions. 

4. The possibility of humans participating in multi-

agent coordination games within the framework of the 

coordination method as an experimenter or as an agent 

whose behavior is coordinated with other intelligent agents. 

5. A convenient representation of the history of the 

process of inter-agent interactions in the course of 

coordinating joint actions. 

Thus, the following objectives can be formulated:  
1. Propose a multi-agent coordination method that 

meets the above requirements. 

2. Implement mutual exclusion of conflicting actions 

of agents in the coordination method. 

3. Implement the resilience of multi-agent 

coordination to agent failures and loss of coordinating 

messages. 

4. Consider multi-agent coordination games within the 

proposed method of multi-agent coordination. 

5. Estimate the fault tolerance of the proposed 

coordination method. Limit the increase in the average 
solution time of a coordination game due to agent failures to 

30 % for the intensity of the stationary Poisson process of 

agents’ failures less than 0.02. 

III. MULTI-AGENT COORDINATION METHOD 

The proposed coordination method is based on the 

concept of multi-agent conditional interaction. Multi-agent 

conditional interaction can be generally expressed in the 

following terms. 1) The events take place in a common 
discrete time and a discrete structured space (represented by 

a set of nodes connected with edges). 2) Agents are in a 

state of continuous movement in the space (passing a single 

edge per move). 3) At the beginning all agents start at 

different positions. 4) While moving, an agent leaves a 

fixed-length trail that spans along the traversed path. 5) An 

agent cannot move along the trail of any other agent (i.e. an 

agent’s trail cannot overlap with other agents’ trails (even 

with itself), but crossing other agents’ trails is allowed). 

From the point of view of conditional interaction and 

the corresponding opportunities for coordination, two main 
aspects can be distinguished in this case. 

1. Strong (or external) conditioning. Alternatives 

available to an agent (where to move next) depend on what 

path other agents have chosen before. The history of these 

choices is presented explicitly in the form of a collection of 

trails left by agents. This also represents their common 

interaction history. We can regulate the strength of 

conditioning by altering the length of trails. Trail-free space 

explicitly represents alternatives available to the agents to 

choose from. 

2. Weak (or internal) conditioning. An agent’s 

decision on where to move next can depend on its 

knowledge of choices other agents made at this node. That 

is, if a node has been visited by other agents before, this 
could provide additional decision-making information for 

an agent (e.g. directions of existing trails, their “strength”, 

etc.). In addition, if there are several such trails, the agent 

can take into account the configuration of their mutual 

intersection. 

The method of multi-agent coordination based on 

multi-agent conditional interaction is given by: 1) a tuple 

<M, A>,  where M is a distributed coordination space in 

which agents A move (Fig.1); 2) a tuple <RM, RA>, where 

RM are the rules of node state transitions resulting from 

agents passing through the node, and RA are the rules of 

agents’ movements and state transitions depending on the 
states of passed nodes; 3) a multi-agent coordination game 

implemented in the space M based on the rules <RM, RA>. 

The coordination space M is implemented based on 

the distributed shared memory of agents or using any other 

distributed data structures with similar functionality, for 

example, blockchain technology. The <RM, RA> rules are 

applied by exchanging deferred asynchronous messages 

between agents through the distributed shared memory. 

That is, the agent's decisions about movement in the 

coordination space and their consequences are interpreted 

according to the <RM, RA> rules in asynchronous 
messages. Delivery of messages to other agents is deferred 

until these agents visit the corresponding nodes of the 

coordination space. This ensures 1) mutual exclusion when 

agents choose conflicting actions, and 2) resilience of multi-

agent coordination to agent failures and loss of coordinating 

messages. In the proposed coordination method, three levels 

can be distinguished: 1) distributed coordination space M, 

which displays the structure of cause-and-effect 

relationships in the problem being solved by the multi-agent 

system and the corresponding domain; 2) rules <RM, RA> 

that implement the mechanism of conditional interaction of 
agents; 3) a multi-agent coordination game in the space M 

based on the rules <RM, RA>, which implements the logic 

of coordinating the joint actions of agents in the process of 

solving the task. 

To estimate the fault tolerance of the multi-agent 

coordination method, we used the increase rate of the 

average time to solve a coordination game 

WТ = (Tn / Tf)  100 %, where Tn is the average time to 

solve a coordination game without agent failures, and Tf is 

the average time to solve a coordination game with agent 

failures. A failure model is in the form of a stationary 

Poisson process of agents’ failures with the intensity  in 

the range from 0.001 to 0.02. 
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Fig. 1.  An example of a section of the coordination space M with two agents (a1, a2) that move through its nodes, 

leaving behind a trail: h(a1) = 4, h(a2) = 3. 

IV. DISTRIBUTED COORDINATION SPACE  

The distributed coordination space is defined by an 

undirected graph with every node’s minimum local degree 

strictly greater than 2 (i.e. each node is connected to at 
least two other nodes). In the general case M = (V, E), 

where V = {v} is a set of nodes of the coordination space, 

and E = {e} is a set of edges such that e = {vi, vj}, i  j. 

The following tuple is defined for each node v 

(E(v), C(v), St(v), Dt(v), Qt(v)), 

where  

E(v) = {e1,e2,...,en(v)} is a set of edges connected to 

node v, and n(v) is the number of those edges;  

C(v) = {c1,c2,...,cm(v)} is a set of all possible pairs of 

edges (i.e. paths through the node) such as ck = (ei,ej), ij, 

ei,ej  E(v), m(v) is a number of these pairs, and 

C(v,ei)  C(v) is a set of all pairs of edges which include 

edge ei; 

St(v) = {st(c1),st(c2),...,st(cm(v))} is a set of states of all 

pairs of edges for node v at time step t with st(ck)  {0;1} 

being a state of pair of edges ck at time step t such that if 

st(ck) = 0, then pair of edges ck is closed (i.e. the agent 

cannot pass through the node in this direction), and if 

st(ck)=1, then pair of edges ck is open (i.e. the agent can 
move through this node in this direction); 

Dt(v) = {dt(e1), dt(e2),..., dt(en(v))} is a set of 

alternatives' indicators such as 

dt(ei) = st(cj), for all cj  C(v,ei); 

i.e. dt(ei) is the sum of states of all pairs of edges 

which include edge ei and it indicates the number of 

alternatives available to the agent if it enters node v from 

edge ei: if dt(ei) = 0, then an agent cannot exit node v 

through edge ei since all corresponding pairs of edges are 

closed; if dt(ei) = 1, there is no choice as such, agent has a 

single way to exit only (through the open pair of edges); 

Qt(v) = {qt(c1), qt(c2),..., qt(cm(v))} is a set of time 

counters; if pair of edges ck is closed, then corresponding 

counter qt(ck) indicates the number of time steps until the 

pair of edges ck become open; if st(ck) = 1 (i.e. when a pair 
of edges ck is open), then qt(ck) = 0. 

The integral state of node v is defined as the current 

configuration of all values in (St(v), Dt(v), Qt(v)). 

The A = {a} set consists of N agents, such as N<K, 

where K is the number of nodes in the coordination space 

M. The following tuple is defined for each agent:  

(x0(a), xt(a), st(a), h(a), fa), 

where 

x0(a)  V is a node of the space M, where the agent 

is placed at the beginning (t = 0), 

xt(a)  V is a node of the space M, where the agent 

currently is, 

st(a)  {0;1} is a state of the agent at time step t, 

such as if the agent can move, then st(a) = 1, and if the 

agent is trapped (i.e. has no alternatives), then st(a) = 0, 

h(a) is the agent's trail length, 
fa is the agent’s movement function, such as 

xt+1 = fa(xt, yt), 

where 

xt+1  V is a node where the agent moves next, 

yt = {t(ei)}, ei  E(xt, I(xt)) is a vector, indicating 

whether it is possible to move into an adjacent node 

through the corresponding edge ei, here I(xt) is a set of 

nodes adjacent to node xt (excluding xt-1); E(xt, I(xt)) is a 
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set of edges between node xt and I(xt) nodes (i.e. if 

ei  E(xt) and ei  E(I(xt)), then ei  E(xt, I(xt))); and t(ei) 

is a transition possibility indicator, such as 

t(ei) = 0, if dt(ei) = 0, 

t(ei) = 1, if dt(ei) > 0, 

where dt(ei) is an indicator of alternatives, that shows 

the number of paths available at time step t+1 if the agent 

enters node through edge ei at time step t. 

V. RULES OF NODE STATE TRANSITIONS 

RM are the rules of node state transitions resulting 

from agents passing through the node. In general, RM 

consists of three rules: RM = {RM1, RM2, RM3}. 

RM1 is a “node closing” rule, that defines a state 

transition for pairs of edges C(v) depending on the agents' 

moves: 

 v  V: if edge ei  E(v) is used by the agent to 

enter or exit node v at time step t, 

then  ck  C(v,ei)  

set 1) st(ck) = 0; 2) qt(ck) = h(a). 

RM2 is a “trail fading” rule, that defines the 

temporal state transition for pairs of edges C(v). Each time 

a step counter qt(ck) for each closed pair of edges ck is 

decreased by one. If it reaches 0 for a particular pair, then 
the pair opens (i.e. the trail finally fades away): 

 v  V, ck  C(v): 

if qt(ck) > 0, then qt+1(ck) = qt(ck) – 1. 

if qt+1(ck) = 0, then st+1(ck) = 1. 

RM3 is an “edge dependence” rule that defines a 

state transition for pairs of edges caused by the state 

change of other pairs of edges. To reflect the different 

aspects of the domain represented by the coordination 

space we can define additional dependencies between 

independent pairs of edges of C(v). According to this 

dependence, if one pair of edges goes into a closed state, 

then the other one also closes. Employing the predicate 

P*(ei,ej), ei,ej  E(v) such a dependence would take on the 

following form: 

 v  V: if (ei, ej), ij, ei, ej  E(v) is a pair of edges 

used to enter and exit node v at time step t 
and P*(ei, ej) = true, 

then  ck  C(v, el), P*(ei, el)  =  true, l  j 

set 1) st(ck) = 0; 2) qt(ck) = h(a). 

VI. RULES OF AGENT MOVE AND  

STATE TRANSITION 

RA are the rules of agents’ movements and state 

transitions depending on the states of passed nodes.   They 

define how agents move through the coordination space 

and how their states change depending on the state of 
passed nodes. In general, RA consists of five rules: RA = 

{RA1, RA2, RA3, RA4, RA5}. 

RA1 is a “scattered start” rule, that sets agents’ 

unique starting positions: 

(ai, aj), ai, aj  A, ij: x0(ai)  x0(aj). 

RA2 is a “move forward” rule, that forbids the agent 

to move back along the traversed path: 

xt+1  xt-1, xt-1  I(xt). 

RA3 is a “keep moving” rule that forbids the agent 

to stay in the same node if there are alternatives available: 

if  ei  E(xt, I(xt)): t(ei)  =  1, 

then xt+1  xt & xt+1  I(xt)  

& t(e) = 1 & e  E(xt), E(xt+1) 

RA4 is a “mutual exclusion” rule that forbids any 

two agents passing the same node at the same time to exit 

in the same direction: 

if  ai, aj  A, ij, such as xt(ai) = xt(aj), 

then xt+1(ai)  xt+1(aj). 

RA5 is a “trapping” rule that defines conditions 

when agents are unable to move forward due to a lack of 

alternatives and conditions when such alternatives become 

available again. If at a time step t only one agent is at node 

v (N(v) = 1), then 

if st(a) = 1 & ( ei  E(xt, I(xt)): t(ei)  = 0), 

then set st(a) = 0, 

if st(a) = 0 & ( ei  E(xt, I(xt)): t(ei)  = 1), 

then set st(a) = 1, 
else, if at the time step t more than one agent is at 

node v (N(v) > 1) and  = t(ei) for all ei  E(xt, I(xt)), 

then 

if  < N(v), 

then  a  A(v) set st(a) = 0 

if ( a  A(v): st(a) = 0) & (  N(v)), 
then set st(a) = 1. 

VII. MULTI-AGENT COORDINATION GAMES 

Based on the coordination space M and the 

<RM, RA> rules, various multi-agent coordination games 

can be implemented that reflect the specifics of solving 

various problems by a multi-agent system. Here one needs 

to choose the required structure of the coordination space 

M, if necessary, refine the rules <RM, RA>, and specify 
the rules of the coordination game itself. In this case, 

agents are players playing an implemented coordination 

game. This ensures the coordination of their joint actions 

in solving a common task. To do this, the developer needs 

to map the problems of organizing collective behavior into 

the goals and rules of a multi-agent coordination game. At 

the same time, one can follow the path of interpretation. 

That is, to find necessary aspects of collective behavior in 

some known multi-agent coordination game. 

Multi-agent coordination games can be used to study 

various aspects of the collective behavior of intelligent 
agents. The goals of the corresponding experiments can 

be: 1) evaluation of the efficiency of the architectures of 

intelligent agents participating in the coordination game; 

2) determination of the advantages and disadvantages of 

the developed algorithms of collective behavior; 3) study 

of the joint collective behavior of humans and intelligent 

agents in a coordination game. 

To demonstrate the capabilities of the proposed 

coordination method, we consider four multi-agent 

coordination games: the weaving game, the pursuit game, 

the expansion game, and the waiting game. The first three 
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games are considered at the level of a general description 

and discussion of options. The waiting game is considered 

in more detail. In all the games considered, the 

coordination space M is a regular square grid closed in 

one of the coordinates into a ring. It is also assumed that 

1) the player can see the state of only neighboring nodes 

of the coordination space, 2) the player can make only one 

transition between nodes in one time step, 3) the player 
does not know the number of players participating in the 

game, 4) the player does not know the size of the 

coordination space. 

VIII.THE WEAVING GAME 

At the beginning of the game, agents are randomly 

placed at the nodes of the coordination space M. After 

that, the agents begin to move from node to node, leaving 

behind a trail of closed and half-closed nodes. At each 
time step, each agent must make a move (according to the 

RA3 rule). If the agent cannot make a move, i.e., gets into 

a situation where all neighboring nodes are closed, he 

loses. The agent who falls into the trap last wins. There 

may be several such agents. If the length of the trail is not 

limited, then the game is guaranteed to end in a countable 

number of time steps. On average, the game will last 

longer, the smaller the ratio of the number of agents to the 

number of nodes in the coordination space, that is, the 

more "free space" there is in the coordination space. The 

fault tolerance of the proposed coordination method for 
the case of this game was studied. The simulation results 

showed that the maximum increase in the average time to 

solve the game due to agent failures for different 

combinations of values K={100,…,2000}, N = {10, …, 

100}, ={0.001,…,0.02}) was WТ=26.4 %. 

IX. THE PURSUIT GAME 

In this game, the idea of a changing trail length is 

used. At the beginning of the game, the agents are 

randomly placed at the nodes of the coordination space M. 
After that, they begin to move through the nodes, leaving 

behind a trail of limited length h0(a). At the end of each 

trail there is the agent's pursuer. The pursuer follows the 

trail, his goal is to catch the agent. If the agent, in the 

course of his movements, gets into a trap, then the pursuer 

approaches him by two transitions in one-time step, that 

is, the length of the trail decreases by two: ht(a)=ht-1(a)-2. 

If the agent in the course of his movements is forced to 

cross the trail of another agent, then the pursuer 

approaches him by one transition, that is, the length of the 

track decreases by one: ht(a)=ht-1(a)-1. The length of the 

trail of the agent who owns the crossed trail is increased 
by one, that is, his pursuer moves away from him by one 

transition: ht(a)=ht-1(a)+1. The agent caught by his pursuer 

loses. The winner is the agent whose trail length reaches 

the given value hw(a), hw(a) > h0(a) earlier than other 

agents. Some other options for determining the winner: 

the last agent remaining not caught wins, or the agent with 

the longest trail after a given number of time steps wins. 

The fault tolerance of the proposed coordination method 

for the case of this game was studied. The simulation 

results showed that the maximum increase in the average 

time to solve the game due to agent failures for different 

combinations of values K = {100, …, 2000}, N = {10, …, 

100}, ={0.001,…,0.02}) was WТ=18.2 %. 

X. THE EXPANSION GAME 

The game is played by two rival teams of agents. 

The number of agents in each team is the same. At the 

beginning of the game, agents are randomly placed at the 

nodes of the outer level of the coordination space M. After 

that, they begin to move through the nodes, leaving 

behind a trail of gradually increasing length. The goal of 

each team is to maximize the number of nodes covered by 

the trails of the team's agents. The nodes in which the 

trails of the agents of the rival teams intersect are not 

taken into account. The team whose trails occupy the 

largest area of the coordination space wins. The different 
ways to end the game are as follows: 1) when there are no 

open nodes left, 2) when all agents fall into a trap, or 

3) after a given number of time steps. When an agent falls 

into a trap, his trail decreases by one at each subsequent 

time step, which reduces his team's payoff. Thus, each 

team needs its members to get trapped as little as possible, 

and members of the opposing team to get trapped as often 

as possible. The fault tolerance of the proposed 

coordination method for the case of this game was 

studied. The simulation results showed that the maximum 

increase in the average time to solve the game due to 

agent failures for different combinations of values K = 

{100,…,2000}, N1=N2={10,…,100}, ={0.001,…,0.02}) 
was WТ=27.2 %. 

XI. THE WAITING GAME 

The waiting game resembles games of timing [10, 

11] while having the main features of classical maze 

problems. At the beginning of the game, N agents are 

randomly placed at the nodes of the outer level of the 

coordination space M. At each subsequent time step, an 

agent must make a move, that is, go to one of the 
neighboring open nodes. Moving in the coordination 

space, an agent leaves a trail of closed and half-closed 

nodes. The length of the agent's trail is not limited and 

grows with each time step by one. If during the movement 

the agent falls into a trap, then he loses. The agent's goal 

here is to keep moving for as long as possible in the 

coordination space, that is, to make as many transitions 

between nodes as possible and not get trapped. 

At any time, an agent may decide to leave the 

coordination space and move into its inner area. The agent 

who makes this decision becomes a contender for victory. 
As soon as any other agent is trapped, the contender 

moves closer to the center of the inner area. Thus, the 

more other agents are trapped, the closer the contender 

approaches the center and his victory. However, if a new 

contender, that has moved longer in the coordination 

space, appears in the inner area, then all the previous 
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contenders lose. The game is won by the last contender, 

after which no other agent could enter the inner area. 

The game ends when no moving agents remain at the 

nodes of the coordination space, that is when all agents 

either become contenders or fall into a trap. At this 

moment, the last contender or contenders, if there are 

several of them, reaches the center of the inner area and 

wins the game (Fig.2, Fig.3). 
The waiting game has two components. At the level 

of tactics, the agent is busy finding his way through the 

maze of trails of other agents. At the level of strategy, the 

agent is busy choosing the moment in time when to 

become a contender. By becoming a contender too early, 

the agent risks losing new contenders. Staying in the 

coordination space for too long the agent risks being 

trapped as the maze of trails becomes more complex with 

each time step. Note that the interaction of these two 

components of the game is of particular interest for the 

development of collective behavior algorithms. 

To demonstrate basic player logic in the waiting 
game let us examine a simple artificial player algorithm. 

The algorithm is based on a simple principle: if with each 

next move it becomes more difficult for the player to find 

his way in the maze of trails, then this stimulates him to 

become a contender, that is, to move into the inner area. 

To implement this principle, let's introduce a player's 

confidence level ct. The higher the ct, the less the player 

tends to become a contender, and the lower the ct, the 

more the player is afraid of being trapped and tends to 

enter the inner area by becoming a contender. Due to this, 

two levels of decision-making interact: tactical (maze 
task) and strategic (game of timing). 

Given the confidence level and the fact that the 

player only sees the state of neighboring nodes, the 

decision-making rules of the simple artificial player are as 

follows. 

1. Do not select closed nodes. 

2. Choose open nodes with greater probability than 

half-closed ones. 

3. Choose with greater probability open nodes in 

which there are no other players. 

4. If the number of alternatives has decreased 
compared to the previous time step, then lower the 

confidence level is. 

5. The lower the level of confidence, the more likely 

it is to choose those nodes that lead the player to the inner 

area. 

In this case, one needs to choose 1) a method for 

calculating the probabilities of choosing a neighboring 

node for a transition (a question of tactics), 2) a method 

for changing the player’s confidence level ct based on the 

information available to him about the game situation (a 

question of strategy). 

In the proposed algorithm, the player's tactics are 
implemented based on the idea of a stochastic learning 

automaton. Accordingly, the probabilities of choosing 

neighboring nodes change as follows 

pi,t+1 = pi,t – , 

pj,t+1 = pj,t + /( n - 1), ij, 

where pi is the probability of choosing the i-th 

unfavorable node (a half-closed node or a node in which 

another agent is located), {pj} are the probabilities of 

choosing all other neighboring nodes,  is the step of 

changing the probabilities, n is the number of neighboring 

nodes available for transition. 

As a simple strategy, a linear decrease in the 

confidence level depending on the decrease in the number 

of neighboring nodes available for transition is chosen. At 
each time step, the level of confidence is calculated 

according to the following rules: 

if dt(ei) < dt-1(ei), then ct = ct-1 – (dt-1(ei) – dt(ei)), 

if dt(ei) = dt-1(ei) and dt(ei) < 3, then ct = ct-1 – 1, 

3,t = 3,t-1 + 1 / ct , 

where dt-1(ei) is the number of alternatives available 

to the player at the previous time step, dt(ei) is the number 

of alternatives available to the player at the current time 

step, ct – is the player's current level of confidence, 3 is 

the step of decreasing the probabilities of choosing those 

nodes that do not bring the player closer to the inner area. 

According to these rules, the level of confidence 

decreases in proportion to the decrease in the number of 

available alternatives. Otherwise, the player checks how 
many alternatives are available to him. If the number of 

alternatives is less than three and this situation repeats, 

then the level of confidence decreases by one. 

It should be emphasized that the method of changing 

the level of confidence is the key to develop a strong 

artificial player. This method can be more complex and 

take into account more aspects of the current game 

situation. For example, there may be an increase in the 

level of confidence when the player enters a trail-free 

region of the coordination space. 

Thus, a simple artificial player algorithm is as 

follows. At the beginning of the game, the player is 
assigned a starting confidence level c0. Then, at each time 

step, the player does the following: 

1. Determine available alternatives based on the state 

of neighboring nodes. 

2. Remove closed nodes from the list of alternatives. 

3. If the list of alternatives is empty, then admit 

defeat, otherwise, go to step 4. 

4. Determine the nodes from the list, where other 

players are located, and reduce the probabilities of 

choosing these nodes by 1. 

5. Determine which nodes from the list of 

alternatives are half-closed and reduce the probabilities of 

choosing these nodes by 2. 

6. Change the confidence level ct according to the 
given rules. 

7. Change the value of 3,t according to the new 

confidence level ct. 
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Fig. 2.  An example of the end of a waiting game with one 

winner (N=11, K=140). 

 

Fig. 3.  An example of the end of a waiting game with two 

winners (N=11, K=140). 

 

8. Determine which nodes do not bring the player 

closer to the inner area and reduce the probabilities of 

choosing these nodes by 3,t. 

9. Using the resulting probability distribution, 

randomly select a node for the transition. 

10. Move to the selected node. 

The fault tolerance of the proposed coordination 

method for the case of this game was studied. The 

simulation results showed that the maximum increase in 
the average time to solve the game due to agent failures 

for different combinations of values K={100,…,2000}, 

N={10,…,100}, ={0.001,…,0.02}) was WТ=21.9 %. 

XII.CONCLUSION 

The article proposed a method of multi-agent 

coordination with deferred asynchronous messaging in a 

distributed coordination space. The method implemented 

the idea of preserving and using the history of inter-agent 

interactions in an explicit convenient form, which made it 
possible to organize the spontaneous emergence of 

coordinated collective behavior. The method was based on 

the concept of multi-agent conditional interaction. The 

method used 1) a distributed coordination space in which 

agents move, 2) the rules of state transitions for the 

coordination space nodes depending on the movements of 

agents, 3) the rules of agents move and state transitions 

depending on the states of the coordination space nodes, 

4) a multi-agent coordination game based on the 

coordination space and the rules. 

The coordination space was implemented based on 

the distributed shared memory of agents. The rules were 
applied by exchanging deferred asynchronous messages 

between agents through the distributed shared memory. 

The agent's decisions about movement in the coordination 

space and their consequences were interpreted according 

to the rules in asynchronous messages. Delivery of 

messages to other agents had been deferred until these 

agents visited the corresponding nodes of the coordination 

space. This ensured 1) mutual exclusion when agents 

choose conflicting actions, and 2) resilience of multi-agent 
coordination to agent failures and loss of coordinating 

messages. 

The proposed coordination method met the above 

requirements in the following way. 

1. The emerging structure of cause-and-effect 

relationships is mapped into a dynamic system of agents’ 

trails in the coordination space. The actions of some 

agents cause general restrictions on the actions that other 

agents may choose in the future. By changing the length 

of the trail, it becomes possible to take into account and 

control the cause-and-effect relationships that arise in the 

course of inter-agent interactions. 
2. The agent's level of awareness about the general 

situation is regulated by the number of nodes in the 

coordination space, the state of which is known to the 

agent. That is, the agent is more informed, the more 

neighboring nodes it can see around him. The agent's 

freedom of action is regulated by the number of nodes that 

it can pass in one-time step. 

3. Wide range of meaningful interpretations of the 

processes of inter-agent interactions is based on different 

ways of interpreting the elementary choices that agents 

make in the course of coordination. Depending on how the 
nodes of the coordination space and the edges between 

them are interpreted, different ways for using the 
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proposed multi-agent coordination method in practical 

problems can be taken. 

4. The proposed approach makes it possible for 

humans to participate in multi-agent coordination. Of 

great interest here is the competition between a team of 

humans and a team of intelligent agents in multi-agent 

coordination games. A human can act 1) as an 

experimenter, exploring the abilities of intelligent agents; 
2) as an agent in scenarios for coordinating the joint 

actions of humans and intelligent agents. 

5. The history of the process of inter-agent 

interactions is represented as a collection of agents’ trails 

in the coordination space and the states of coordination 

space nodes. This allows to see a complete picture of 

multi-agent coordination unfolded in time with both the 

history and the current state of the process of inter-agent 

interaction directly presented. 

As examples, four multi-agent coordination games 

(the weaving game, the pursuit game, the expansion game, 

and the waiting game) were considered. The waiting game 
was considered in more detail. A simple artificial player 

algorithm was proposed for this game. 

The issue of fault tolerance of the proposed 

coordination method was considered. The simulation 

results showed that the use of the method ensured the 

resilience of multi-agent coordination to agent failures in 

the considered coordination games. In particular, the use 

of the proposed coordination method limited the increase 

in the average solution time of a coordination game due to 

agent failures to 30 % for the intensity of the stationary 

Poisson process of agents’ failures in the range from 0.001 
to 0.02. 
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