
ADVANCES IN CYBER-PHYSICAL SYSTEMS

Vol. 7, Num. 2, 2022

FEATURES OF DEVELOPMENT AND ANALYSIS OF REST SYSTEMS

Bohdan Marii, Ivan Zholubak

Lviv Polytechnic National University, 12, Bandera Str, Lviv, 79013, Ukraine.

Authors’ e-mails: marii.bohdan1@gmail.com, IvanZholubak7@ukr.net

https://doi.org/10.23939/acps2022.__.___

Submitted on 01.10.2022
© Marii B., Zholubak I., 2022

Abstract: The paper analyzes and presents the architecture of

REST systems construction. What is the REST API and why it

should be used? It describes the basic principles for what the

system could be called Restful. Examples of REST-like systems,

their comparison, advantages, and disadvantages of REST, and

why this particular architecture was chosen, have been given. It

aims at which technologies can be used for the REST system, etc.

A description of all technologies used during the development of

this system, with all the advantages and disadvantages of using

certain technologies and the system in general have been

considered. A description of the development environment and

some of its functions have been provided. Implementation of the

REST system is based on the web application of the forum.

Index Terms: client-server system, database, server, client,

REST.

I. INTRODUCTION

REST, or REpresentational State Transfer, is an

architectural style for providing standards between computer

systems on the Internet, making it easier for systems to

communicate with each other [1]. You can build a working

application, but it must also have good architecture, as it is

critical to support future growth. The architecture is a plan to

support future growth that may arise from increased demand,

future interoperability, and increased reliability requirements.

In 1999, the API environment was free for all. At the time,
most developers had to deal with SOAP (Simple Object

Access Protocol) to integrate APIs. And the "simple" part of

this abbreviation should not be taken literally. To make the

call, developers had to manually write an XML document with

the RPC call in the body. But a small group of expert

developers have realized the true potential of Web APIs. Due

to this small group led by Roy Fielding, REST was created

and the API landscape changed forever. In 2000, Roy Fielding

and his colleagues had one goal: to create a standard so that

any server could communicate with any other server in the

world. Here's what he came up with in his PhD thesis: “I had

input from more than 500 developers, many of whom were
distinguished engineers with decades of experience, and I had

to explain everything from the most abstract notions of web

interaction to the smallest details of HTTP syntax. This

process refined my model to a core set of principles,

properties, and constraints that are now called REST.” With

the help of REST, the organizational design of the web

application architecture defines exactly how the application

will function [2]. Some features include:

• Providing persistent data over HTTP that can be

understood by client code and vice versa

• Ensuring that queries contain valid data
• Authentication for users

• Restrict user visibility based on permissions

• Creating, updating, and deleting resources.

The resource [3] shows the REST API design. Here are a

few attributes required for a good web application

architecture: solving problems consistently and evenly,

maximum simplification, support of the latest standards,

including A/B testing and analytics, fast response time,

security standards, easy scaling, easy creation of known data,

errors registered in a user-friendly way, automatic

deployment. The above factors are necessary because, with the
right attributes, you can create a better app. Not to mention, by

supporting horizontal and vertical growth, software

deployment is much more efficient, convenient and reliable.

According to the resource [4], the REST architecture

allows for the above build requirements. REST-compliant

systems often referred to as RESTful systems, are

characterized by being stateless and separating client and

server concerns. REST is easy to understand and implement,

so it helps improve the productivity of your development

team. There are 2 main reasons why REST helps make your

application more scalable: stateless and caching. As we'll see

in the following sections, one of the fundamental principles of
REST is that it is stateless on the server side, so each request

will be processed independently of previous ones. In the

resource [5], the caching of REST services is explained.

Caching is easier with REST. Caching is a critical factor in the

scalability and performance of a modern web application. A

well-tuned cache mechanism (with the best possible hit rates)

can dramatically reduce your server's average response time.

Since the server is stateless and each request can be handled

individually, GET requests should generally return the same

response regardless of the previous ones. REST is flexible. By

flexible, I mean that it's easy to modify, and it can respond to
many clients that may request different types of data (XML,

JSON, etc.). The client can specify the type using the Accept

header, and the REST API can return different responses

depending on that.

mailto:IvanZholubak7@ukr.net

Bohdan Marii, Ivan Zholubak 2

The article further shows the construction of a REST

system based on the forum [6]. An Internet forum is an online

discussion site where people can have conversations in the

form of posted messages. Forums make it easy to organize

conversations by specific categories or topics and browse
trending or recent content. Forums are good for building a

REST system because there will be many requests for data,

topic updates, many similar requests that can be cached, etc.

II. OVERVIEW OF KNOWN METHODS AND TOOLS FOR

SOLVING PROBLEMS

Currently, web applications running on remote APIs or

services, service-oriented applications or service

compositions, mobile applications built on cloud services, and
similar web technologies are the most advanced. The resource

[7] explains the opportunities for REST to be used for

automation. Two main types of remote programming

resources have emerged over the years: SOAP/WSDL web

services and REST APIs. While the former can rely on a very

rich set of standards and reference specifications, and

developers know well how to use WSDL to describe a service

and SOAP to communicate with clients, REST APIs have not

experienced this kind of standardization (we specifically refer

to JSON/XML API). The resource [8] shows the basic

principles of the REST architecture:
• Addressing the resources. APIs manage and expose

resources representing domain concepts; each resource is

uniquely identified and addressed by a corresponding Uniform

Resource Identifier (URI).

• Presentation of resources. Clients do not directly know

the internal format and state of resources; they work with

resource representations (such as JSON or XML) that

represent the current or expected state of the resource.

Declaring content types in HTTP message headers allows

clients and servers to handle representations correctly.

• Unified interface. Resources are accessed and managed

using standard methods defined by the HTTP protocol (GET,
POST, PUT, etc.). Each method has its own expected,

standard behaviour and standard status codes.

• Stateless. The interaction between the client and the

API is stateless, meaning that each request contains all the

information needed to process the API; the server does not

store the state of the interaction.

• HATEAOS (Hypermedia as the Engine of Application

State). Resources as concepts of the subject area can be related

to other resources. Relationships between resources

(embedded in their representations) allow clients to discover

and navigate relationships and maintain an interaction state.
According to the resource [9], about two-thirds of REST

APIs (64 %) have from 2 to 50 operations. Approximately half

of the analyzed services (56.2 %) provide no more than 20

operations, and about a third offer from 2 to 10 operations. In

the analyzed set, 5.2 % provided a huge number of

transactions (more than 200), ranging from social platform

services such as Facebook.com to trading sites such as

ebay.com Sell API. REST web service APIs typically provide

a relatively small number of operations. The output format

selection function refers to how the output format of the

service is selected. The results show that almost half (45 % -

223 APIs) of the 500 APIs support only one output format and

do not require any output format selection. In other cases, the

most popular way to select the output type is in the HTTP

header field (24.0 %). Then 2.4 % use the URI path, 13.6 %

use the URI suffix, and 15.4 % use the query parameter to
specify the format.

The resource [10] lists the different stages of API

development:

• Design — The main goal here is to define the shape of

the API, document interfaces, and provide stub endpoints.

Platforms such as Swagger and Apiary are used for design.

• Testing - Here we perform functional testing of the API

by sending a request and analyzing the response at different

levels of visibility, namely application, HTTP and network.

Postman, Wireshark, cUrl, Burp suite and others are usually

used.

• Web Hosting - When deploying to the web, there are
HTTP tools to help host APIs for better performance, security,

and reliability. HTTP Caching, DNS, and TLS are used.

• Productivity. Before we go into production, we use API

performance testing tools that tell us what kind of load the API

can handle. Loader.io and others are suitable for performance

measurement.

• Monitoring — After API deployment, testing ensures

the overall health of live APIs and alerts us if any issues arise.

For this, we use logging services: Splunk, ELK, Zipkin,

Prometheus and others.

• Management. Finally, we'll look at some tools for API
management activities like traffic shaping, blue-green

deployment, and more. We use API Gateway.

According to the resource [11] to get baseline API

performance, you can run different kinds of load tests with

increasing load, measured in requests per second, to find

performance metrics quantified by errors and response times:

• The default test is an average load over a long period,

for example, running for 48 hours at 1 request per second.

This will reveal any memory leaks or such other hidden bugs.

• Load test - peak load, e.g. run 2k requests per second

with 6 API instances.

• Stress test — exceeding the peak load, for example,
execution of 10,000 requests per second for 10 minutes.

It also allows us to determine the infrastructure that will

allow us to deliver the API with the desired performance

metrics and whether our solution will scale linearly. Once the

API is deployed, it doesn't mean we can forget about the API.

Deployment to production initiates another phase of testing—

production testing, which can uncover issues that went

undetected in previous phases. Production testing includes a

set of activities grouped as observability that includes logging,

monitoring, and tracing. The tools for these activities will help

us diagnose and solve problems found in production.
In the resource [12] the implementation of logging in the

ASP .NET Core is explained. Logging - Developers should

explicitly log using their preferred logging structure and

logging standard. For example, one log statement for every 10

or more lines of code if the code is complex with log levels

split as - 60 per cent DEBUG, 25 per cent INFO, 10 per cent

WARN, and 5 per cent ERROR.

Monitoring - Monitoring is done at a higher level than

logging. While logging tells us what's happening with the API,

Features of Development and Analysis of REST Systems 3

monitoring ensures the overall health of the API using general

metrics provided by the platform and the API itself. Metrics

are typically accessed by an agent deployed on a server or may

be part of a solution and periodically collected by a

monitoring solution deployed remotely.
In the resource [13] the tracing of web API is explained.

Diagnostic endpoints can be included in the solution to tell us

about the overall health of the API. Tracking - Zipkin is a

distributed tracking system. This helps collect the timing data

needed to troubleshoot latency issues in microservices

architectures. Enabling centralized logging covers both

logging and tracing. For monitoring, metrics of interest can be

stored in a time series repository like Prometheus and

visualized with Grafana. Further information is taken from the

resource [14].

REST uses HTTP methods - methods or actions that are

available to interact with resources on the server. The limited
number of verbs in RESTful systems is confusing and

frustrating for people unfamiliar with the approach. Further

information is taken from the resource [15]. What appears to

be arbitrary and unnecessary restrictions are intended to

encourage predictable program-independent behaviour. By

clearly defining the behaviour of these methods, customers

can make independent decisions in the face of network

outages and failures.

There are four main HTTP verbs used by developed

RESTful systems.

GET
The GET request is the most common method on the

Internet. A GET request transfers a representation of a named

resource from the server to the client. Although the client does

not know anything about the resource it requests, the request

returns a stream of bytes with metadata tags indicating how

the client should interpret the resource. This is usually

displayed on the web as "text/HTML" or

"application/xhtml+xml". One of the key points about a GET

request is that it doesn't have to change anything on the server

side. This is essentially a secure request. GET requests must

also be idempotent. This means that submitting a request more

than once will have no consequences. This is an important
property in a distributed network infrastructure. If the client is

interrupted while performing a GET request, it should be

authorized to resend it via verb idempotency. This is an

extremely important point. In a well-designed infrastructure, it

doesn't matter what the client requests from which application.

There will always be characteristic application behaviour, but

the more we can dive into non-application behaviour, the more

resilient and lightweight our systems will be.

POST

The situation becomes a little less clear if we consider a

set of POST and PUT requests. Based on their definitions,
both appear to be used to create or update a resource from the

client to the server, but they serve different purposes. POST is

used when the client cannot predict the ID of the resource it is

requesting to create. When we hire people, place orders,

submit forms, etc., we can't predict what the server will call

these resources we create. That's why we publish the resource

view to the handler. The server will accept the input, validate

it, verify the user's credentials, etc. After successful

processing, the server will create the resource.

POST can also be used to update a known resource, such

as adding a new shipping address to an order or updating the

quantity of an item in the cart. Because of this potential for

partial updates, POST is neither secure nor idempotent. A final

common use of POST is to send requests. Either the request
representation or URL-encoded form values are passed to the

service to interpret the request. It is usually fair to return

results directly from this type of POST, as there is no

identification associated with the request.

PUT

Many developers largely ignore the PUT method because

HTML forms do not currently support it. However, it serves

an important purpose and is part of the overall vision of

RESTful systems. A client can send a PUT request to a known

URL to pass the view back to the server to perform an

overwrite operation. This distinction allows a PUT request to

be idempotent in a way that a POST update is not. If a client is
in the process of overwriting a PUT and it is interrupted, it

may feel empowered to do it again because the overwrite

action can be re-executed without consequence; the client is

trying to control the state, so it can simply override the

command. PUT can also be used to create a resource if the

client can predict the identity of the resource. This is usually

not the case, as we discussed in the POST section, but if the

client controls the information spaces on the server side, it is

reasonable to allow it.

DELETE

The DELETE method is not widely used on the public
network, but for information spaces that you control, it is a

useful part of the life cycle of a resource. DELETE requests

must be idempotent. A DELETE request may be interrupted

by a network failure. Regardless of whether the request was

successfully processed on the first request or not, the resource

should return a 204 (No Content). Additional processing may

be required to track previously deleted resources and resources

that never existed (in which case the API should return 404

Not Found). Some security policies may require that 404 be

returned for non-existent and deleted resources so that

DELETE requests do not miss resource availability

information.
According to the resources [16], REST assumes a

client/server architecture—a computing model in which a

server hosts, supplies, and manages most of the resources and

services consumed by a client. This type of architecture has

one or more client computers connected to a central server via

a network or the Internet. This system shares computing

resources. Also, the resource [17] shows how the client-server

architecture needs to be built. A client/server architecture is

also known as a network computing model or a client/server

network because all requests and services are delivered over a

network.

III. THE GOAL OF THE WORK

The purpose of the work is to speed up the processing of

requests in forums by implementing them based on REST

requests, using the example of the implementation of a student

discussion forum. The advantages of the REST system are

given. Apart from that, the goal is to research and analysis of

REST systems. Analysis of the architecture and principles of

Bohdan Marii, Ivan Zholubak 4

construction of such systems. A Restful system must support a

unified interface, client-server architecture, multi-layer

system, caching, and non-constancy.

IV. AN OVERVIEW OF THE REST ARCHITECTURAL

STYLE, ITS ADVANTAGES AND DISADVANTAGES

REST systems must satisfy the 6 main guidelines or

constraints of the RESTful architecture. These are:

• Unified interface: By applying the principle of

commonality to the component interface, we can simplify the

overall system architecture and improve the visibility of

interactions. Various architectural constraints help achieve a

uniform interface and control the behaviour of components.

The following four constraints can achieve a uniform REST
interface:

1. Resource identification – the interface must uniquely

identify each resource involved in the interaction between the

client and the server.

2. Manipulation of resources using representations -

resources must have unified representations in the server

response. API consumers must use these views to change the

state of resources on the server.

3. Self-descriptive messages - Each resource

representation must contain enough information to describe

how to process the message. It should also provide
information about additional actions that the client can

perform on the resource.

4. Hypermedia as an application state mechanism - the

client should only have the initial URI of the application. The

client application must dynamically manage all other

resources and interactions using hyperlinks.

• Client-server architecture. Both the client and the server

have different sets of challenges. The server stores and/or

manipulates information and effectively provides it to the user.

The client takes this information, displays it to the user, and/or

uses it to fulfil subsequent requests for information. This

separation of concerns allows both the client and the server to
evolve independently, as it only requires the interface to

remain the same.

• Indecisiveness. This means that the communication

between the client and the server always includes all the

information necessary to fulfil the request. There is no session

state on the server, it is stored entirely on the client side. If

authentication is required to access the resource, then the

client must authenticate itself with each request.

• Caching. The cacheable constraint requires that the

response implicitly or explicitly designates itself as caching or

non-caching. If the response is cached, the client application
gets the right to reuse the response data later for equivalent

requests and a certain period.

• Multi-layered system. Individual components cannot

see beyond the immediate layer with which they interact. This

means that a client connecting to an intermediate component,

such as a proxy, is unaware of what lies beyond it. This allows

the components to be independent and thus easily replaced or

extended.

• Code on demand (optional). REST also allows to

extend the functionality of the client by loading and executing

code as scripts. Downloaded code simplifies the customer

experience by reducing the number of features that need to be

implemented upfront. Servers can provide some of the

functionality that is provided to the client as code, and the

client only needs to execute the code.

Advantages of REST API:
• REST API is easy to understand and learn due to its

simplicity.

• With the REST API, you can organize complex

applications and facilitate the use of resources.

• High load can be managed with HTTP proxies and

cache.

• REST APIs are easy to explore and discover.

• It makes it easier for new customers to work with other

applications, whether or not it is purpose-built.

• Use standard HTTP procedure calls to retrieve data and

requests.

• REST API depends on code, and can synchronize data
with websites without any complications.

• Users can access the same standard objects and data

model compared to SOAP-based web services.

• It provides format flexibility by serializing data in

XML or JSON format.

• It allows to use standard security using OAuth

protocols to validate REST requests.

Disadvantages of REST API:

• The biggest problem with REST APIs is the multi-

endpoint nature. They require clients to make multiple round

trips to retrieve their data.
• REST is a lightweight architecture, but it is not suitable

for working in complex environments.

• REST requests (especially GET) are not suitable for

large amounts of data.

• Oversampling is a waste of network and memory

resources for both the client and the server.

V. COMPARISON OF REST ARCHITECTURAL STYLE

WITH OTHER ARCHITECTURES

Alternative technologies to REST for building SOA-

based systems or building APIs for calling remote

microservices include XML over HTTP (XML-RPC),

CORBA, RMI over IIOP, and Simple Object Access Protocol

(SOAP) [9], [10]. In general, each technology has advantages

and disadvantages. REST insists that the best way to

implement networked web services is to use the underlying

design of the network protocol itself, which in Internet terms

is HTTP. This is an important component because REST is not

just for the web; rather, its principles are intended to apply to

all protocols, including WebDav and FTP. Fig. 1 shows an
illustration of a sample client-server architecture.

Two competing styles for implementing web services are

REST and SOAP. The fundamental difference between them

lies in the philosophical approach to distant challenges. REST

takes a resource-based approach to web interactions. With

REST, you find a resource on the server and decide to update

that resource, delete it, or get some information about it. With

SOAP, the client does not decide to interact with a resource

directly but instead calls a service, and that service provides

access to various objects and resources behind the scenes.

SOAP has also spawned a large number of HTTP-based

Features of Development and Analysis of REST Systems 5

frameworks and APIs, including the Web Services Description

Language (WSDL), which defines the structure of the data

that is passed back and forth between a client and a server.

Some problem domains are well served by being able to

explicitly define the message format or can benefit from using
various SOAP-related APIs, such as WS-Eventing, WS-

Notification, and WS-Security. There are times when HTTP

cannot provide the level of functionality that an application

may require, and in these cases, using SOAP is preferable.

Fig. 2 shows the difference between SOAP and REST [11].

Browser / WEB

ANDROID Apps

IOS Apps

Desktop Apps

GET

POST

PUT

CUSTOM

METHODS

JSON/

XML

JSON/

XML

Apache

Nginx

Lighttpd

Node.JS

Http/s

REST API Architecture

Fig. 1. The working principle of the REST architectural style

SOAP VS RESTREST

Data

Client

Server

Client

SOAP

Data +
SOAP

Standard
=

Huge

Data
Server

Sending data as it s

Fig. 2. Difference between REST and SOAP

1) Difference between REST and gRPC.

gRPC stands for Google Remote Procedure Call and is a

variant based on the RPC architecture. This technology

follows the RPC API implementation, which uses the HTTP

2.0 protocol, but HTTP is not exposed to either the API

developer or the server. So, there is no need to worry about

how RPC concepts map to HTTP, which reduces complexity.

In general, gRPC aims to make data transfer between

microservices faster. It is based on the approach of defining a

service, setting methods and appropriate parameters to enable
remote invocation and return types.

Now that we have an overview of gRPC and REST, let's

look at their main differences.

HTTP 1.1 vs HTTP 2

REST APIs follow a request-response communication

model that is typically built on top of HTTP 1.1.

Unfortunately, this means that if a microservice receives

multiple requests from multiple clients, the model must handle

each request one at a time, which therefore slows down the

entire system. However, REST APIs can also be built on top

of HTTP 2, but the request-response communication model
remains the same, preventing REST APIs from taking full

advantage of HTTP 2's benefits, such as streaming and

bidirectional support. gRPC faces no such obstacles. It is built

on top of HTTP 2 and instead follows a client response-based

communication model. These conditions support bidirectional

communication and streaming due to gRPC's ability to receive
multiple requests from multiple clients and process those

requests concurrently, continuously streaming information. In

addition, gRPC can also handle " unnecessary" interactions,

such as those built on HTTP 1.1.

Browser support

This aspect is probably one of the main advantages of the

REST API over gRPC. On the one hand, REST is fully

supported by all browsers. On the other hand, gRPC is still

quite limited when it comes to browser support.

Unfortunately, conversion between HTTP 1.1 and HTTP 2

requires gRPC-web and a proxy layer.

Payload data structure
As it has been mentioned earlier, gRPC uses a protocol

buffer by default to serialize data. This solution is easier

because it provides a highly compressed format and reduces

the size of messages [12]. Also, the Protobuf (or protocol

buffer) is binary; thus, it serializes and deserializes structured

data to transfer it. In other words, strongly typed messages can

be automatically converted from Protobuf to client and server

programming languages. In contrast, REST primarily relies on

JSON or XML formats to send and receive data. In fact,

despite not requiring any structure, JSON is the most popular

format due to its flexibility and ability to send dynamic data
without necessarily following a strict structure. Another

important advantage of using JSON is its level of readability,

which Protobuf cannot yet compete with.

Features of code generation

Unlike gRPC, the REST API does not provide built-in

code generation functionality, which means that developers

must use third-party tools such as Swagger or Postman to

generate code for API requests. In contrast, gRPC has code

generation capabilities due to its protocol compiler, which is

compatible with several programming languages. This is

especially useful for microservice systems that integrate

different services developed in different languages and on
different platforms.

2) Difference between GraphQL and REST

The main difference between GraphQL and REST API is

that GraphQL is a specification, a query language, while

REST is an architectural concept of network software.

GraphQL is great for being well-typed and self-documenting

based on schema types and descriptions and integrates with

code generator tools to reduce development time. Looking at

one of the most well-known differences – the difference in

expected responses to requests – in very simple terms, we can

think about the process of ordering hamburgers. Although the
GraphQL meme-burger has been around for a while, the

clarification it provides still makes the concepts easier to

understand.

Imagine you walking into a hamburger restaurant and

ordering a cheeseburger. No matter how many times you order

(call your RESTful API), you get every ingredient in that

double cheeseburger every time. It will always be the same

shape and size (which is returned in the RESTful response).

With GraphQL, you can "make it your own" by describing

Bohdan Marii, Ivan Zholubak 6

exactly what you want that cheeseburger to be. Now you can

make a cheeseburger (answer) as a bun on top, followed by a

patty, pickles, onions and cheese, without the bottom bun. A

REST API is an "architectural concept" of networking

software. GraphQL, on the other hand, is a query language and
set of tools that work on a single endpoint. Additionally,

REST has been used to build new APIs over the past few

years, while GraphQL's focus has been on optimizing for

performance and flexibility. Fig. 3 shows the difference

between REST and GraphQL.

Client

GraphQL API

{Sections, Subsections, Themes}

REST API

/Sections /Subsections /Themes

Client

Fig. 3. Differences between REST and GraphQL

VI. AN EXAMPLE OF REST SYSTEM

IMPLEMENTATION ON THE EXAMPLE OF A STUDENT

FORUM

All forums are built according to approximately the same

scheme. They will include certain sections where users

communicate, and exchange information and opinions on a
certain topic. The general structure of the forums looks

something like this: Sections -> Topics -> User Replies.

Consider three main types of forums:

• discussion - discussion forums are the most traditional

type of forum: after creating a thread on the forum, other

participants can reply and continue the conversation, enter text

in the reply field and click the "Publish" button to participate.

• Questions (Q&A) – The Q&A format represents the

initial posting of a thread as a question that requires an answer

and provides respondents with a field to answer and a

suggestion as an answer checkbox.
• QA and Discussion – Both questions and traditional

discussions are enabled for this type of forum thread.

Most forums provide functionality for user registration,

logins, roles, moderation, etc. However, the main difference

between all forums remains mainly the topic. Moreover, it can

be diverse from medicine to electronics. The most popular

topics are development and technology (Adobe,

StackOverflow, Subsekt, etc.), medicine (Doctor's Lounge,

Health24, eHealth, Patient.Info, etc.), gaming (Steam

Discussions, GameFAQs, IGN Boards, GameSpot Boards,

etc.) and also forums on various topics that allow users to
create topics of interest to them, for example, Reddit, Quora

and others. According to the topic, forums can also add their

specific functionality. For example, medical forums,

communication with a doctor, the location of pharmacies, etc.,

or technical forums that allow to collect the necessary

equipment, repair equipment, etc. Role support for forums is

also widespread: administrator, moderator, OP (opener of the

post) and regular user, etc. Fig. 4 shows the typical forum

structure. Fig. 5 shows the possible additional functions of the

forum.

Forum

Category1 Category2

Subforum1 Subforumn

Thread1 Threadn

Posts Posts

Subforumn+1

Threadn+1

Posts

Fig. 4. Typical forum structure

FORUMS

General

Features

Calendar Notifications Assesment Let us improve Quizes

Fig. 5. Some of the possible additional functions of the forum

A special feature of the developed forum is its topic -

student discussions, which is quite relevant in the conditions

of distance learning. It looks something like this: Sections->
Subsections-> Topics-> Posts. Roles are also available:

teacher, student, user, and admin. Additional functionality is a

calendar in which a student or teacher can set the necessary

events, receive notifications, and give access to other people.

There is also the possibility to organize ZOOM conferences

using the ZOOM API. Fig. 6 shows the structure of the

developed forum.

Sections1

Subsections1

Themes

Posts

Features

Calendar Zoom API

Sectionsn

Subsectionsn

Themes

Posts

Notifications

Forum

Fig. 6. Structure of the developed forum

Creating a database for the REST system

Both SQL and NoSQL databases are suitable for REST

systems [13]. From SQL databases you can use MSSQL,
Oracle, Sybase, MySQL, Postgres and others, from NoSQL

Features of Development and Analysis of REST Systems 7

suitable Aerospike, Google Cloud Bigtable, MarkLogic,

Couchbase, Amazon DynamoDB, DreamFactory, AnyChart

and others. To create a database, we use the MS SQL

relational database. Using Entity Framework Core is a

lightweight, extensible, cross-platform version of the popular
Entity Framework data access technology. EF Core can serve

as an object-relational mapper (O/RM) that allows .NET

developers to interact with the database using .NET objects. It

eliminates the need for most of the data access code that

would normally need to be written. With EF Core, data is

accessed using a model. The model consists of entity classes

and a context object representing a database session. A context

object allows to query and store data. After successfully

creating the database, it needs to be connected to the server

using the connection thread. The Microsoft Identity library is

used to store user data, login and registration. The structure of

the database is indicated. The query methodology is based on
CRUD - Create, Read, Update, Delete.

Creation of the server part of the application

NodeJs, Spring, Django, Larabel, Ruby on Rails,

ASP.NET and other frameworks are suitable for building

APIs. The architecture of the server part is shown in Fig. 7.

Fig. 7. Architecture of the server part

Configure the server and dependencies as follows [14],

[15]. We create the server using ASP.NET Core Web API

technology to create a full-featured REST API. Using in-

process hosting, an ASP.NET Core app runs in the same

process as its IIS worker process. In-process hosting provides
improved performance over out-of-process hosting because

requests aren't proxied over the loopback adapter, a network

interface that returns outgoing network traffic to the same

machine. We add the model class and the database context.

Then we assemble the controller using CRUD (Create, Read,

Update, Delete) methods. After that, we configure routing,

URL paths, and return values. The server starts on port 44381,

based on the IIS (Internet Information Services) web server.

Fig. 8 shows the architecture of the server part.

The system is implemented based on CRUD operations

(Create, Read, Update, Delete) [16]. Let's consider queries

using topics as an example. To obtain a theme, a GET

theme/{id: int} request is used, where it is the theme identifier,

to add, respectively, a POST theme/ with a request body that
specifies the model of the theme that the user is adding. For

modification, PUT with the request body specifying the

modified model of the topic that the user is adding, and

DELETE with the topic ID accordingly. Accordingly, there is

a client/server separation where the client and server can

operate independently of each other without knowing about

each other. This means that client-side code can be changed at

any time without affecting server performance, and server-side

code can be changed without affecting client performance.

Controller

Read/

write
Model

Client

HTTP request

HTTP response
{Id:1}
Serialize

Fig. 8. Application design

Resources have the same representation in the server

response. API consumers use these models to change the state

of resources on the server. The client only has the application's

initial URI, the client dynamically manages all other resources

and interactions through hyperlinks. The interface uniquely

identifies each resource involved in the client and server

interaction. Each request from the client to the server contains
all the information necessary to understand and execute the

request. The server cannot use any previously stored context

information on the server. For this reason, the client program

completely preserves the session state. Caching is present,

which implies that the server's response implicitly or explicitly

marks itself as cached or uncached. If the response is cached,

the client application gets the right to reuse the response data

later for equivalent requests and a certain period. The system

is divided into three layers: Business Logic Layer (BLL), Data

Access Layer (DAL) and Presentation Layer (PL).

Components cannot see beyond the immediate layer they

interact with. The Business Logic Layer is a layer that
manages the communication between the end-user interface

and the database, the main components of which are work

processes and business rules. A DAL is a layer that provides

simplified access to data stored in some persistent storage,

such as an object-relational database. The presentation Layer

Server

Requests

from Client

Registration

, login, user

information

Themes,

content,

sections,

subsections

Upvotes/

downvotes

Bohdan Marii, Ivan Zholubak 8

is the highest level of the program where the user performs his

activities. Consider an example of any application where the

user needs to fill out a form. This form is nothing more than a

presentation layer. Basically, at this level, user input is

checked and rules are processed.
Testing of the developed REST system and comparison

with others.

Testing was done by sending a certain number of

requests to our REST system and the systems of other

architectural styles and comparing the results. Requests are

processed by the server and then a response is generated.

Processing the request means that the server parses the

requested URL, retrieves the file name from it, looks for that

file in the directory, and generates a response code according

to the result, i.e. 404 for file not found and 200 if the file is

found. After finding a file in the directory, it is written to a

socket, which is later displayed in browsers. During testing,
the number of concurrent requests sent to the server and the

results was noted and compared to the SOAP architecture.

Results are shown in Tables 1 and 2 and displayed in Fig. 9.

Table 1.

REST web service performance analysis
Number,i Number

of

requests

Number

of

responses

Number

of

successful

responses

The

percentage

of failed

requests, %

Average

time of

execution

(ms),

ai

1 60 60 60 0.0 30

2 100 100 100 0.0 33

3 130 130 130 0.0 35

4 150 150 150 0.0 36

5 170 170 170 0.0 45

Table 2.

SOAP web service performance analysis
Number,i Number

of

requests

Number

of

responses

Number

of

successful

responses

The

percentage

of failed

requests, %

Average

time of

execution

(ms),

bi

1 60 60 60 0.0 31

2 100 100 100 0.0 36

3 130 130 130 0.0 41

4 150 150 150 0.0 47

5 170 170 170 0.0 52

The formula for looking at how much our developed
REST system is faster than a similar SOAP in percentage:

𝐶𝑠 = |100 ×
1

𝑛
∑ 𝑎𝑖

𝑛
𝑖=1

1

𝑛
∑ 𝑏𝑖

𝑛
𝑖=1

− 100| . (1)

Using (1), where ai is the average REST request

execution time for test sequence number (i), bi is the average
SOAP request execution time for test sequence number (i),

and n is the download sequence number, we calculate the

percentage of how much our developed REST system is faster

than a similar SOAP system – Cs. After calculating the result,

we get a value of 13.5 %, which means that, on average, the

average execution time in our developed REST system is

13.5 % faster than in a similar SOAP system.

Due to the large size of XML files, SOAP services

require a lot of bandwidth. The ability to use REST with

different file types is an advantage of this architectural style.

In particular, JSON (JavaScript Object Notation) is useful

because it is a lightweight data exchange format, easy for

humans to read and write, and easy for machines to parse,

serialize, and generate.

Fig. 9. Display of performance results

VII. CONCLUSION

The processing of requests in forums was accelerated by

implementing them based on REST requests, using the

example of implementing a student discussion forum. The

advantages of the REST system were given. In addition, REST

systems were studied and analyzed. An analysis of the

architecture and principles of construction of such systems

was conducted. The Restful system supports a unified

interface, client-server architecture, multi-tier system, caching

and volatility. The advantages and disadvantages of the REST
architectural style compared to other styles were listed.

Features of the forum were introduced to the REST system.

The speed of architectural styles for the implementation of

web applications was studied. The implementation of REST

web applications was demonstrated in the example of a

student forum. A forum based on the REST system was

implemented. By and large, the average execution time in our

developed REST system was 13.5 % faster than in a similar

SOAP system, which is quite a high result if we care about the

overall performance of the system. Also, this value will be

even larger for larger response file sizes, as JSON is
potentially smaller and lighter than XML in SOAP. The REST

architectural style supports a large number of file types and is

easy to learn. The developed REST system of the student

discussion forum also implemented features that distinguish

the system from others. A calendar was implemented that

allows teachers and students to add and monitor important

events, it works with CRUD (CREATE, READ, UPDATE,

DELETE) operations. A notification system using RabbitMQ

was also created, which would process and send notifications

to forum users regarding their specified events in the calendar,

including using the ZOOM API for organizing meetings.

Simple survey systems using GET, POST requests, and rating
systems were implemented. Analysis and research of REST

systems were conducted. It was considered what REST API

Features of Development and Analysis of REST Systems 9

was, why it was worth using this architecture, its principles,

and the nuances of building such systems. The advantages and

disadvantages of the REST architectural style and a

comparison with other styles were given. A Restful system

must support a unified interface, client-server, multi-layered
system, caching and restlessness. It was described what

technologies could be successfully used for the REST system,

etc. Features and stages of building a REST system were

provided. An example of a REST system implementation

based on a forum web application was described. A

description of the tools used during the development of this

system was given, with all the advantages and disadvantages

of using certain technologies and the system in general. A

description of the development environment and some of its

features were provided. The peculiarity of this system was that

the issue of education and discussion, finding the necessary

information online, currently occupied an important place. So,
based on the purpose of the work, it can be said that the task

that had to be performed was completed, which means that

this system is relevant in this field.

References
[1] Lokesh Gupta, (2022). What is REST? Restful API, pp.1–5.

Available at https://restfulapi.net/ (Accessed: 27 October 2022).
[2] Saifulfiul Tarek, (2020). What is a RESTful API (REST API)

and How Does it Work? Namespace, pp. 1–4. Available at
https://namespaceit.com/blog/what-is-a-restful-api-rest-api-and-
how-does-it-work (Accessed: 27 October 2022).

[3] L. Li and W. Chou, (2011). "Design and Describe REST API

without Violating REST: A Petri Net Based Approach,". IEEE
International Conference on Web Services, pp. 508–515, DOI:
10.1109/ICWS.2011.54.

[4] Randhir Singh, (2019). Developing REST APIs. DZONE,
pp. 1–9. Available at https://dzone.com/articles/developing-
rest-apis (Accessed: 27 October 2022).

[5] Jamie Kurtz, Brian Wortman, (2014). Designing the Sample
REST API. ASP.NET Web API 2: Building a REST Service

from Start to Finish, pp. 21–29. DOI: 10.1007/978-1-4842-
0109-1_3

[6] L. Li, W. Chou, W. Zhou and M. Luo, (2016). "Design Patterns
and Extensibility of REST API for Networking Applications,"
in IEEE Transactions on Network and Service Management,
vol. 13, no. 1, pp. 154–167, March 2016, DOI:
10.1109/TNSM.2016.2516946.

[7] Brian Sletten, Chase Doelling, (2019). Foundations of RESTful

Architecture. DZONE, pp. 1–
9. Available at https://dzone.com/refcardz/rest-foundations-rest
ful?chapter=1#section-4 (Acces-sed: 27 October 2022).

[8] S. Stoudenmier and A. Olmsted, (2017). "Efficient retrieval of
information from hierarchical REST requests,", 12th
International Conference for Internet Technology and Secured
Transactions (ICITST), pp. 452–454, DOI:
10.23919/ICITST.2017.8356445.

[9] Carlos Rodríguez, Marcos Baez, Florian Daniel, Fabio Casati,
Juan Carlos Trabucco, Luigi Canali & Gianraffaele
Percannella, (2016). REST APIs: A Large-Scale Analysis of
Compliance with Principles and Best Practices. Lecture Notes
in Computer Science vol. 9671, pp. 21–39. DOI: 10.1007/978-
3-319-38791-8_2.

[10] Christian Nagel, (2018). Web API. Professional C# 7 and .NET
Core 2.0, vol. 32, pp. 1039–
1080. DOI:10.1002/9781119549147.ch32.

[11] L. Li, W. Chou, W. Zhou and M. Luo, (2016). "Design Patterns
and Extensibility of REST API for Networking Applications,"
in IEEE Transactions on Network and Service Management,

vol. 13, no. 1, pp. 154–167, DOI:
10.1109/TNSM.2016.2516946.

[12] H. Garg and M. Dave, (2019). "Securing IoT Devices and
SecurelyConnecting the Dots Using REST API and
Middleware," 4th International Conference on Internet of

Things: Smart Innovation and Usages (IoT-SIU), pp. 1–6, DOI:
10.1109/IoT-SIU.2019.8777334.

[13] S. M. Sohan, F. Maurer, C. Anslow and M. P. Robillard,
(2017). "A study of the effectiveness of usage examples in the
REST API documentation,", IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), 2017,
pp. 53–61, DOI: 10.1109/VLHCC.2017.8103450.

[14] A. Hasibuan, M. Mustadi, I. E. Y. Syamsuddin and I. M. Anis

Rosidi, (2015). "Design and implementation of modular home
automation based on the wireless network, REST API, and
WebSocket," International Symposium on Intelligent Signal
Processing and Communication Systems (PACS), pp. 362–367,
DOI: 10.1109/ISPACS.2015.7432797.

[15] K. Boonchuay, Y. Intasorn and K. Rattanaopas, (2017).
"Design and implementation a REST API for association rule
mining,", 14th International Conference on Electrical

Engineering/Electronics, Computer, Telecommunications and
Information Technology (ECTI-CON), pp. 668–671, DOI:
10.1109/ECTICon.2017.8096326.

[16] Artur Britvin, Jawad Hammad Alrawashdeh, Rostyslav
Tkachuck, (2022). Client-Server System for Parsing Data from
Web Pages in Advances in Cyber-Physical Systems, vol. 7, no.
1, pp. 8–14. DOI: https://doi.org/10.23939/acps2022.01.008

[17] Andy Neumann, Nuno Laranjeiro, Jorge Bernardino, (2021).

An Analysis of Public REST Web Service APIs. IEEE
Transactions on Services Computing, vol.14, pp. 1–
8. DOI:10.1109/TSC.2018.2847344.

Ivan Zholubak is a Senior Lecturer of the

Computer Engineering Department at Lviv
Polytechnic National University, Ukraine. He
graduated from Lviv Polytechnic National
University with an engineering degree in

Computer Engineering in 2013. In 2016 he
graduated from Postgraduate courses at Lviv
Polytechnic National University, Department of
Computer Engineering. He has scientific,

academic and hands-on experience in the field of algorithms for
hardware data protection in cryptography, robotic systems and AI. He
is the author of 7 scientific papers.

Bohdan Marii received his B.S. degree in
Computer Engineering at Lviv Polytechnic
National University, Ukraine, in 2022. His
research interests include the architecture,
patterns and development of web applications,
SQL databases, and programming and
technologies for web programming.

https://namespaceit.com/blog/what-is-a-restful-api-rest-api-and-how-does-it-work
https://namespaceit.com/blog/what-is-a-restful-api-rest-api-and-how-does-it-work
https://dzone.com/refcardz/restfoundationsrestful?chapter=1#section-‍‍‍4
https://dzone.com/refcardz/restfoundationsrestful?chapter=1#section-‍‍‍4
https://doi.org/10.23939/acps2022.01.008

	I. INTRODUCTION
	II. Overview of known methods and tools for solving problems
	III. THE GOAL OF THE WORK
	IV. An overview of the REST architectural style, its advantages and disadvantages
	V. Comparison of REST architectural style with other architectures
	1) Difference between REST and gRPC.
	2) Difference between GraphQL and REST

	VI. An example of REST system implementation on the example of a student forum
	VII. Conclusion

