
ADVANCES IN CYBER-PHYSICAL SYSTEMS

Vol.7, Num.2, 2022

SOFTWARE SYSTEM FOR MOTION DETECTION AND TRACKING

Bohdan Tsiunyk, Oleksandr Muliarevych

Lviv Polytechnic National University, 12, Bandera Str., Lviv, 79013, Ukraine.

Authors’ e-mails: bohdan.tsiunyk.mkiks.2021@lpnu.ua; oleksandr.v.muliarevych@lpnu.ua;

https://doi.org/10.23939/acps2022.__.___

Submitted on
© Tsiunyk B., Muliarevych O., 2022

Abstract: The goal of the work is to develop a software

system for motion detection of and tracking object. It consists

of the user interface which is presented as a desktop

application. This paper describes the process of developing a

desktop software system stage using the latest technologies

which will be relevant and easy to maintain in future

development and upgrade. The technologies used in the

development process, the systems and modules which were

integrated into the project, the main approaches to software

development, as well as an explanation of why this particular

stack of technologies was preferred for the implementation of

this software system have been described. To make sure that

the developed desktop application meets common optimization

requirements it has been tested for resource usage.

Index Terms: desktop architecture, development, Open CV,

Python.

I. INTRODUCTION

Today, more than ever before, our community of

people must ensure its safety, the safety of its settlement,

because the health and even the lives of its residents depend

on it. This is one of the most important components of
everyone's life because without the rest it makes no sense.

The relevance of the topic of home security lies in the

implementation of certain security steps, electronics,

equipment, and other means. To inform and protect

everyone who risks becoming a participant or victim of an

emergency, a home invasion, or theft in their home, when

any threat to the health or life of people is detected. And to

improve this process, so that ordinary people take a direct

part in protecting security themselves and improving the

well-being of their neighborhood, it was planned to create a

system for monitoring the movement of surveillance

cameras. This is the main goal, the primary task, which is
solved in the software system of this work.

A motion detection system [1] is a collection of

software-integrated tools and components, as well as

hardware, that meets the needs of a specific group of users

of a given software system and is stored in a common user

database. Because of their flexibility in implementation,

today's detection software systems can meet any user's

needs.

According to the Automated Imaging Association

(AIA), machine vision refers to all industrial and non-

industrial applications in which a combination of hardware

and software guide devices in the execution of their

functions based on image capture and processing. [2].

Though industrial computer vision employs many of the

same algorithms and approaches as academic/educational

and governmental/military computer vision applications, the

constraints are distinct. When compared to

academic/educational vision systems, industrial vision

systems require more robustness, reliability, and stability

and typically cost much less than those used in

governmental/military applications. As a result, industrial
machine vision implies low cost, acceptable accuracy, high

robustness, high reliability, and mechanical and thermal

stability. Machine vision systems are reliant on [3] digital

sensors protected inside industrial cameras with specialized

optics to acquire images so that computer hardware and

software can process, analyze, and measure various

characteristics for decision-making. As an example,

consider a fill-level inspection system at a brewery.

For years we've been reaping the small-scale rewards

of Artificial Intelligence (AI) research [4]. Checks can now

be read into an ATM without human intervention, auto-
focusing cameras can recognize faces in a photograph,

social media can auto-tag friends based on their faces, and

more. As the world's access to computing power grows, so

will AI's democratization. Every day, new real-world AI use

cases are discovered, which is why metro star is constantly

expanding our capabilities. The aim is to provide our

partners with access to the same efficiencies that the rest of

the world enjoys in their daily lives. In this blog, we will

discuss some of the ways we have begun to use AI to assist

our Defense clients. As an example, consider coffee. It's

disappointing to brew an entire pot of coffee only to have

your cup taste bitter. By allowing us to focus on the most
important aspects of coffee or data in our world, AI can

make every cup the perfect cup. We can now use machines

to parse through hours of video data to highlight specific

events of interest, translate foreign languages in seconds,

and even understand commands to perform specific tasks

when called upon. While we are still a long way from true

generalized AI, modern Machine Learning (ML) has

demonstrated that this technology is capable of solving

specific, time-consuming tasks.

In recent years, we have witnessed unprecedented

advancements in the automatic analysis of visual data by

Bohdan Tsiunyk, Oleksandr Muliarevych 2

computer algorithms, due to a series of factors that

unleashed the potential of convolutional neural networks,

The biologically inspired design of such models may

explain part of their success: while the classic artificial

neuron may only be an extreme simplification of the

biological neuron, the increasing representational

complexity learned by CNN may be more faithful to the

layered structure of the lower areas of the human visual
cortex. However, the road to achieving a level of artificial

emulation of the human visual system high enough to

interpret an environment in the same way that humans do

remains long: while we can identify low- to high-level

visual patterns from images and videos, artificial models

largely miss the human capability [5] to make sense of this

information, recognize semantic patterns, correlate to

memory and experience, and so on. Furthermore, even the

neural computational models we use are only loosely based

on biological structures and connections: human visual

analysis, for example, transmits information across cortical

brain regions in both feedforward and feedback patterns.
Computer vision systems that provide vision and

simulation via computers are used in many fields in daily

life. The vision action can be performed by single, stereo, or

multiple camera systems [6]. Using doubled or multi-

camera systems, stereo systems can realize computer vision

events. Stereo vision systems are visualization techniques

that allow point coordinates to be reproduced in three

dimensions on images captured by two different cameras.

Stereo vision systems are typically dual in nature and based

on multiple visions. These vision systems are used in a

variety of applications, including portable autonomous
robotic systems, 3D measurements, object tracking, the film

industry, augmented reality, and object recognition [7].

Python is one of the few languages that can be both

simple and powerful. It can be surprising at how easy it is to

focus on the solution to the problem rather than the syntax

and structure of the language you're programming in.

Python's official introduction is: Python is a powerful

programming language that is simple to learn. It has high-

level data structures that are efficient and a simple but

effective approach to object-oriented programming.

Python's elegant syntax, dynamic typing, and interpreted
nature make it an ideal language for scripting and rapid

application development across a wide range of platforms.

Python is a straightforward and minimalistic

programming language. Reading a good Python program is

similar to reading English, albeit very strict English.

Python's pseudo-code nature is one of its greatest strengths.

It allows to focus on the problem solution rather than the

language itself.

As you will see, Python is extremely easy to get

started with. Python has an extraordinarily simple syntax, as

it has been already mentioned. Python is an example of a

FLOSS (Free/Libré and Open-Source Software). To put it
simply, you can freely distribute copies of this software,

read its source code, make changes to it, and incorporate

parts of it into new free programs. FLOSS is based on the

idea of a knowledge-sharing community. This is one of the

reasons Python is so good; it was created and is constantly

improved by a community of people who simply want to

see a better Python. When writing programs in Python, you

never have to worry about low-level details like managing

the memory used by your program, etc. Because Python is

open-source, it has been ported to (i.e., changed to work on)

many platforms. Python can be used Python on
GNU/Linux, Windows, FreeBSD, Macintosh, Solaris, OS/2,

Amiga, AROS, AS/400, BeOS, OS/390, z/OS, Palm OS,

QNX, VMS, Psion, Acorn RISC OS, VxWorks,

PlayStation, Sharp Zaurus, Windows CE, and PocketPC.

You can even use a platform to create games for your

computer and iPhone, iPad, and Android [8].

A program written in a compiled language, such as C

or C+, is converted from the source language, C or C+, into

a language that your computer understands (binary code, i.e.

0s and 1s), using a compiler with various flags and options.

The linker/loader software copies the program from the

hard disk to memory and starts it when you run it. Python,
on the other hand, does not require binary compilation. You

just run the program directly from the source code.

Internally, Python converts the source code into an

intermediate form called bytecodes and then translates this

into the native language of your computer, and then runs it.

All of this makes using Python much easier because you

don't have to worry about compiling the program, ensuring

that the proper libraries are linked and loaded, and so on.

This also makes your Python programs much more portable,

as you can simply copy your Python program and run it on

another computer!
Python supports both procedure-oriented and object-

oriented programming. The program in procedure-oriented

languages is built around procedures or functions, which are

nothing more than reusable pieces of code. The program in

object-oriented languages is built around objects that

combine data and functionality. When compared to large

languages like C++ or Java, Python has a very powerful but

simple way of doing OOP.

If you need a critical piece of code to run very fast or

want to have some piece of algorithm not be open, you can

code that part of your program in C or C\++ and then use it
from your Python program.

The Python Standard Library is enormous. It can assist

you with regular expressions, documentation generation,

unit testing, threading, databases, web browsers, CGI, FTP,

email, XML, XML-RPC, HTML, WAV files, cryptography,

GUI (graphical user interfaces), and other system-specific

tasks. Remember that all of this is available wherever

Python is installed. Python's Batteries Included philosophy

is known as this. Python is a fascinating and powerful

programming language. It has the right combination of

performance and features to make writing Python programs

both enjoyable and simple.
Because it can reconstruct local or full-field 3D profile

information in a convenient, fast, and easy-to-implement

manner, vision-based 3D technology has a wide range of

Software System for Motion Detection and Tracking 3

applications in many fields, including 3D shape

measurement, visual inspection, medical assistance, robot

visual guidance, and so on. It is the foundation for

calibrating the parameters of industrial cameras in order to

obtain internal or external parameters for subsequent

measurement or detection tasks in the application of such

vision-based technologies. The precision of measurement is

directly determined by the accuracy of camera calibration,
especially in industrial precision measurement. Direct linear

transformation (DLT), the Tsai method, and Zhang's plane

calibration method are examples of common camera

calibration methods. Using 3D space points, the DLT

method can calibrate the basic camera perspective model.

However, the DLT method typically ignores lens distortion.

Based on the radial constraint, Tsai's method employs a

two-step calibration strategy. To begin, this method

employs a radial alignment constraint to compute the closed

solution of the camera's external parameters. The internal

parameters must then be solved. If the camera lens is not

distorted, the closed solution of internal parameters can be
directly obtained. If there is radial distortion, nonlinear

iterative optimization is used to solve all of the remaining

parameters, including the radial distortion coefficient. The

DLT method and the Tsai method typically impose strict

constraints on the spatial pose of the calibration object,

whereas Zhang's method imposes no constraints on the

spatial pose of the calibration object. A flexible calibration

technique allows the camera or calibration target to be

placed arbitrarily during the calibration process. Zhang's

method first employs the undistorted model to solve the

closed solution of the camera's internal and external
parameters. The camera's internal and external parameters,

including radial and tangential distortion coefficients, are

then further optimized using this closed solution as the

initial value and the minimization of the sum of squares of

reprojection errors as the objective function. Zhang's

method has currently become the most popular camera

calibration method due to its high flexibility and

adaptability [9].

OpenCV (Open-Source Computer Vision Library) is a

free and open-source software library for computer vision

and machine learning. OpenCV was created to provide a
common infrastructure for computer vision applications and

to speed up the incorporation of machine perception into

commercial products. Because OpenCV is an Apache 2

licensed product, it is simple for businesses to use and

modify the code. The library contains over 2500 optimized

algorithms, including a comprehensive set of classic and

cutting-edge computer vision and machine learning

algorithms. These algorithms can be used to detect and

recognize faces, identify objects, classify human actions in

videos, track camera movements, track moving objects,

extract 3D models of objects, produce 3D point clouds from

stereo cameras, and stitch images together to produce a
high-resolution image of an entire scene, find similar

images from an image database, remove red eyes from

images taken with flash, follow eye movements, recognize

scenery, and establish markers to override the algorithm.

The OpenCV user community numbers over 47 thousand

people, and the estimated number of downloads exceeds 18

million. Companies, research groups, and government

agencies all make extensive use of the library. Most CV

applications require image input. Most generate images as

output. A camera as an input source and a window as an

output destination may be required for an interactive CV
application. Image files, video files, and raw bytes are all

possible sources and destinations. Raw bytes, for example,

could be transmitted over a network connection or

generated by an algorithm if we incorporate procedural

graphics into our application. Let's take a look at each of

these options [10].

The human brain divides the vision signal into

numerous channels that feed various types of information

into your brain. Your brain has an attention system that

identifies important parts of an image to examine while

suppressing examination of other areas in a task-dependent

manner. There is a massive amount of feedback in the
visual stream that is currently unknown. Associative inputs

from muscle control sensors and all other senses are

common, allowing the brain to draw on cross-associations

formed over years of living in the world. The feedback

loops in the brain return to all stages of processing,

including the hardware sensors (the eyes), which

mechanically control lighting via the iris and tune reception

on the retina's surface. However, in a machine vision

system, a computer receives a grid of numbers from the

camera or disk and that's it. There is no built-in pattern

recognition, automatic focus and aperture control, or cross-
associations with years of experience. Most vision systems

are still fairly primitive. The computer "sees" only a grid of

numbers. Any given number within that grid has a high

noise component and thus provides little information on its

own, but this grid of numbers is all the computer "sees."

Our task now is to convert this noisy grid of numbers into

perception: “side mirror”.

The last but not least step in application development

is testing. It enables us to detect and fix common bugs early

in the development process. Typically, testers perform this

type of work. Testers are those who are in charge of
application testing. They should simulate all possible user

workflow scenarios. It allows to go through all of the

functions that the application offers, testing them all.

There are 2 (two) types of testing: manual and

automation. The advantage of automation tests is that they

are run independently from human participation so they can

be run even at night, on weekends, in one word – all the

time without exceptions. But the disadvantage is that

writing automation tests takes pretty a lot of time and

development resources.

Manual testing is another type of testing in which all

of the testing process is done by humans. Because it is more
flexible, it is more reliable and safer than automation

testing. During the development process, manual testing is

Bohdan Tsiunyk, Oleksandr Muliarevych 4

frequently performed. When developers implement a piece

of functionality, it can be manually tested right away.

The performance testing of the developed application

should be performed with special instruments. One such

instrument is Desktop Studio Profiler. It allows monitoring

of how the Desktop application uses the CPU resources,

RAM, and network and how it affects battery conditions

[11]. The main characteristic of such a system is the amount
of memory, which should be from 200 MB to 400 MB.

II. PROBLEM STATEMENT

Today it is shown that many solutions have been

developed that will allow consumers to monitor and track

the state of the external environment using a camera in their

home, neighborhood, or a separate place where moving

objects or people should not enter, such as a safe in a bank

or private sector. In case of violation of the visibility zone,
the system should notify the user in case of attack,

movement, or other actions. However, there is still no

generally accepted solution that would automate this entire

process.

The main feature of the system described in this work

is that the user needs only one device with a built-in camera

to use this functionality in the routine that will be described

in this article. In the event of situations when something

goes wrong, such as an attack on the private sector, the user

receives appropriate messages and notifications.

The functionality described above does not exhaust the
capabilities of this system for monitoring and detecting

moving objects. Of course, safety and health are among the

main, if not the most important, factors of human well-

being, but not only emergencies can be of interest to today's

society.

The feature of the existing software system and the

difference from analogs is the fully corrected and instant

response of moving objects and notification of movement

messages to the user. This means that the user can relax as

long as the safety and security system is activated.

This system is super-fast and processes images using a

minimum of resources for this.

III. PURPOSE OF THE WORK

The purpose of this work is to create a software

complex for motion detection and situation tracking in the

private sector or a surveillance camera using the latest

technologies for the development of this type of system,

namely the user part in the form of a desktop application

using Open CV and Python for cross-platform.
Another important requirement for the system is

program optimization. As this kind of computation and user

interface uses video stream rendering, there are often

problems with RAM usage and CPU load. The current

program must meet the requirements for standard desktop

programs. The amount of RAM for standard desktop

programs ranges from 200 to 500 MB. The calculation time

is usually 0.1ms for the detection of moving objects.

The result application should be a working system for

motion detection and tracking objects that meets all the

requirements described above and allows users to monitor

the situation in a defined area where security surveillance is

conducted.

IV. ALGORITHM FOR CONVERTING VIDEO

THREAD INTO CV OBJECT THE SOFTWARE

SYSTEM

The main requirement and idea for the implementation

of this software system was the use of modern technologies,

which are preferred today for the implementation of such

types of systems. The programming language used to

develop the entire system is Python, and the development

environment is Pycharm IDE.

As a result of studying pros and cons, it was decided to

use the following technology stack for desktop
implementation: Python, Open CV, and Pycharm.

By connecting a surveillance device, the user receives

a video stream. Next, the Open CV algorithm converts the

video format of the stream into CV video capture and CV

frame settings. Debugging the format and framerate, we get

the out object for further use. Fig.1.

Fig. 1. Video thread converting scheme

Last but not least part of application development is its

testing. Moreover, the testing part is one of the most

important in the development process as it allows us to

intercept common bugs and fix them right in the

development stage. The performance test is used.

V. DEVELOPMENT OF THE DESKTOP

APPLICATION AND USER INTERFACE

Even though web and mobile applications appear to
have taken over the software development market, there's

still demand for traditional graphical user interface (GUI)

desktop applications.

Software System for Motion Detection and Tracking 5

Creating a desktop interface consists of the following

stages: creating graphical user interfaces with Python,

connecting the user's events on the app's GUI with the app's

logic, organizing the proper project layout, create a fully

functional GUI application.

Fig. 2. Visualization of movement detection status

The above code creates a Window, the visible code is

very important, without that the UI is going to run but will

be invisible, with width and height as specified, with a title

of “feed”. And a Text that is centered in the parent (which

happens to be the window), the text displayed is “Hello

World”, a pixel size of 24px.
Formally, we had a property string that received our

current time string from Python, now we create a property

to receive the object from python. There are not that many

types. UI converts Python base types into a bool, int,

double, string, list, object, and var and can handle every

Python type.

First of all, the user interface should be as simple and

user-friendly as possible without displaying the processes

that take place under the hood of the entire system. The user

interface should display the monitoring status of the

external area, that is, the video stream and moving objects
should be illuminated. Also, the system should display the

state of the system, in the case of motion detection, a

motion message should be displayed on a part of the screen.

(see Fig. 2.)

The data parameter can be used to include data files in

the app folder. It's a list of tuples and the tuple always has

two items, the target path, which we will be including, and

the destination path, which should be stored in the

application’s folder. The destination path must be relative.

It is placed right there with the app’s executables, making it

an empty string (‘’), to be in a nested folder within the

application’s folder. The object CV out should be placed in
the same folder where there is the whole software system.

The result of the working system for motion detection

and tracking moving objects is presented in Fig. 3.

VI. ALGORITHM FOR CREATING A SOFTWARE

SYSTEM

For software systems, models can be learned from

behavioral traces, available specifications, knowledge of
experts, and other such sources. Software models help to

steer testing and model checking of software systems. The

model inference techniques extract structural and design

information of a software system and present it as a formal

model. This chapter briefly discusses the passive model

inference and goes on to present the active model inference

of software systems using the algorithm. This algorithm

switches between model inference and testing phases. In the

model inference phase, it asks membership queries and
records answers in a table to conjecture a model of a

software system under inference. In the testing phase, it

compares a conjectured model with the system under

inference. If a test for a conjectured model fails, a

counterexample is provided which helps to improve the

conjectured model. Different counterexample processing

methods are presented and analyzed to identify an efficient

counterexample processing method.

Fig. 3. Result of software system work

Software systems are part of our everyday life and

they become more complex day by day. The ever-growing

complexity of software and high-quality requirements pose

tough challenges to quality assurance. The quality of a

software system can be measured by software testing.

However, if manually done, testing is a time-consuming and

error-prone task. Especially test case design and test

execution are the most cost-intensive activities in testing. In

the previous 20 years, many automation tools have been
introduced for automating test execution by using test

scripts. However, the effort for creating and maintaining

test scripts remains. Model-based testing (MBT) aims at

improving this part by systematizing and automating the

test case design. Thereby, test cases or automatable test

scripts can be generated systematically from test models.

For this software system, all components such as video

thread, logic function, user interface, input devices, and

cameras should work properly to see the real result.

VII. ALGORITHM FOR TRACKING MOVING

OBJECTS

This software system uses Open CV and Python as a

core. Conceptually, a byte is an integer ranging from 0 to

255. In all real-time graphic applications today, a pixel is

Bohdan Tsiunyk, Oleksandr Muliarevych 6

typically represented by one byte per channel, though other

representations are also possible. An OpenCV image is a

2D or 3D array of the array type. An 8-bit grayscale image

is a 2D array containing byte values. A 24-bit BGR image is

a 3D array, which also contains byte values. We may access

these values by using an expression, such as image[0, 0] or

image[0, 0, 0]. The first index is the pixel's y coordinate or

row, 0 being the top. The second index is the pixel's x
coordinate or column, 0 being the leftmost. The third index

(if applicable) represents a color channel. For example, in

an 8-bit grayscale image with a white pixel in the upper-left

corner, the image[0, 0] is 255. For a 24-bit BGR image with

a blue pixel in the upper-left corner, image[0, 0] is [255, 0,

0].

The next problem facing computer vision is noise. To

typically deal with noise is by using statistical methods. For

example, it may be impossible to detect an edge in an image

merely by comparing a point to its immediate neighbors.

But if it looks at the statistics over a local region, edge

detection becomes much easier. A real edge should appear
as a string of such immediate neighbor responses over a

local region, each of whose orientation is consistent with its

neighbors. It is also possible to compensate for noise by

taking statistics over time. Still, other techniques account

for noise or distortions by building explicit models learned

directly from the available data. For example, because lens

distortions are well understood, one need only learn the

parameters for a simple polynomial model in order to

describe—and thus correct almost completely—such

distortions. The actions or decisions that computer vision

attempts to make based on camera data are performed in the
context of a specific purpose or task. We may want to

remove noise or damage from an image so that our security

system will issue an alert if someone tries to climb a fence

or because we need a monitoring system that counts how

many people cross through an area in an amusement park.

Vision software for robots that wander through office

buildings will employ different strategies than vision

software for stationary security cameras because the two

systems have significantly different contexts and objectives.

As a general rule: the more constrained a computer vision

context is, the more it can rely on those constraints to
simplify the problem and the more reliable our results will

be.

Using CV absdiff find the difference between the

initial state of the frame and the current one. The next step

is to convert the difference into the BGR2GRAY color it

needs for the GuassianBlur function to track changes

between two frames. In cases like noise removal, erosion is

followed by dilation. As erosion removes white noises, it

also shrinks our objects. So, we dilate it. Since the noise is

gone, they won't come back, but our object area increases. It

is also useful in joining broken parts of an object. Using CV

dilated filter the image from noise and then found contours
of moving objects in a live stream. (see Fig. 4.)

Fig. 4. Part of the coding scheme

OpenCV grew out of an Intel Research initiative to

advance CPU-intensive applications. Toward this end, Intel

launched many projects including real-time ray tracing and

3D display walls. One of the authors working for Intel at

that time was visiting universities and noticed that some top

university groups, such as the MIT Media Lab, had well-
developed and internally open computer vision

infrastructures—code that was passed from student to

student that gave each new student a valuable head start in

developing his or her own vision application. Instead of

reinventing the basic functions from scratch, a new student

could begin by building on top of what has come before.

VIII. APPLICATION TESTING

To test the current system, it was decided to use
manual testing as it is more flexible and reliable. And, as a

result of testing, all the found bugs and problems were

fixed.

In the process of performance testing, it was decided

to use Studio Profiled instrument as it is built into the IDE,

so there is no need to use any other external tool.

There are requirements for desktop application's

memory usage that applications should meet. The

“Standard” applications should use up to 500 MB of

Random-access memory (RAM), the “Media-intensive” –

from 400 MB to 700 MB, and the “Huge” – from 800 MB
and up to 1200 MB.

To test the application's performance, it is important to

make it work at full strength. This type of testing is called

stress testing. Stress testing is used to get the stability of the

tested system or application. During the test, there are

performed operations that bring the use of resources by the

application to the maximum.

In this case, the most resource-intensive operations are

the calculation of the location of the moving object relative

to the entire image and the live conversion of frames from

the video stream into a color filter. So, during testing in

stress mode, the maximum value of CPU load was 12% and
the maximum use of RAM was 450 MB. (see Fig. 5). The

rate of transformation is up to 0.02 milliseconds per frame.

Software System for Motion Detection and Tracking 7

Fig. 5. Performance test in stress mode

IX. CONCLUSION

As a result of this work, a software system for motion

detection and environmental tracking was created using the

latest technologies (which will be relevant and easy to

maintain in future development) for the development of this

type of system, namely the desktop side in the form of a

cross-platform user interface and using Python frameworks.

In addition, Open CV services were integrated for

authorization and live monitoring. The idea of a fully
customizable system for any video input device was also

implemented. This meant that end users could

independently configure the monitoring and tracking

system. This was a really important aspect of system

functionality. Another important requirement for the system

was application optimization. Since the desktop interface

used video stream rendering, there were often problems

with the use of RAM.

The current program met the requirements for standard

cross-platform programs. RAM usage for standard cross-

platform desktop interfaces was between 200MB and

400MB, up to 350.3MB under stress. The use of the
proposed algorithm ensured the use of 350 MB of memory

under the worst conditions which was quite a satisfactory

result for such a development. The resulting application was

a working system that allowed users to monitor the situation

at their observation post and directly participated in the

security of their observation post.

References

[1] Shubham Kumar; Jonathan Mi. et al. (2021). “Human-
Inspired Camera: A Novel Camera System for Computer Vision”,
International SoC Design Conference (ISOCC), pp. 1–20. doi:
10.1109/ISOCC53507.2021.9613914.

[2] Xin Zhang; Shuo Xu. et al. (2020). “Research on Image
Processing Technology of Computer Vision Algorithm”,
International Conference on Computer Vision, Image and Deep
Learning (CVIDL), pp. 20–25. doi:
10.1109/CVIDL51233.2020.00030.

[3] Ubiratan Ramos, Maurício Edgar Stivanello, Marcelo
Ricardo Stemmer (2020). “Adaptable Architecture for the
Development of Computer Vision Systems in FPGA”, IEEE Latin
America Transactions, pp. 8–14. doi: 10.1109/TLA.2020.9400438.

[4] Cheng Jiang; JiaQi Sun. et al. (2022). “Exploring a
Computer Vision and Artificial Intelligence-based Approach to
Sit-and-reach Distance Measurement”, 2022 3rd International

Conference on Computer Vision, Image and Deep Learning &
International Conference on Computer Engineering and
Applications (CVIDL & ICCEA), pp. 478–489. doi:

10.1109/CVIDLICCEA56201.2022.9825271.

[5] Honeye Rahmani; S. Mahmoud Taheri et al. (2020). “From
Brain Decoding To Brain-Driven Computer Vision”, International
Conference on Machine Vision and Image Processing (MVIP), pp.
320–321. doi: 10.1109/CVIDLICCEA56201.2022.9825271.

[6] Emre DANDIL (2019). “Computer Vision Based Distance
Measurement System using Stereo Camera View”, International
Symposium on Multidisciplinary Studies and Innovative

Technologies (ISMSIT), pp. 1–5. doi:
10.1109/ISMSIT.2019.8932817.

[7] Kshitij Meena; Manish Kumar. et al. (2020). “Controlling
Mouse Motions Using Eye Tracking Using Computer Vision”,
International Conference on Intelligent Computing and Control
Systems (ICICCS), pp. 10–16. doi:
10.1109/ICICCS48265.2020.9121137.

[8] A Byte of Python (2022). [Electronic resource]. – Access

mode: https://homepages.uc.edu/~becktl/byte_of_python.pdf.
(Accessed: September 29, 2022).

[9] Junshu Zhang; Jindong Zhang. et al. (2020). “A perspective
transformation method based on computer vision”, International
Conference on Artificial Intelligence and Computer Applications
(ICAICA), pp. 15–16. doi: 10.1109/ICAICA50127.2020.9182641.

[10] Learning OpenCV (2022). [Electronic resource]. – Access
mode:

https://www.bogotobogo.com/cplusplus/files/OReilly%20Learning
%20OpenCV.pdf. (Accessed: September 29, 2022).

[11] Serhii Kundys, Bohdan Havano, Mykola Morozov (2022).
“Software System for Monitoring the Situation in the Settlement”,
Advances in Cyber-Physical Systems, 7(1), pp. 38-45.
doi: 10.23939/acps2022.01.038.

Bohdan Tsiunyk is а student who
is currently receiving a B.S. degree in
Computer Engineering at Lviv

Polytechnic National University and a
senior AQA engineer at Epam Systems.
His research interests include computer
vision, machine learning, computer
engineering, and the development of
Python frameworks.

Oleksandr Muliarevych Ph.D. in

Computer Systems and Components,
Associate Professor at the Computer
Engineering Department at the Lviv
Polytechnic National University. His
research interests include distributed
highly scalable microservice systems,
swarm intelligence, IoT, cloud
computing, parallel computing

technologies, computer vision, machine
learning, and multi-agent systems applications.

	I. INTRODUCTION
	II. PROBLEM STATEMENT
	III. Purpose of the work
	IV. ALGORITHM FOR converting video thread into CV object THE SOFTWARE SYSTEM
	V. DEVELOPMENT OF THE desktop APPLICATION and user interface
	VI. Algorithm For creating A software system
	VII. ALGORITHM FOR Tracking Moving objects
	VIII. APPLICATION TESTING
	IX. Conclusion

