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Several families of new exact solutions for a general second order linear partial differential
equation with variable coefficients are derived in this paper. All the possible polynomial
and polynomial-like solutions of this equation are derived. It is shown that there exist ex-
actly two sets of such families of exact solutions. These solutions are extended to construct
different families of exact solutions in terms of hypergeometric functions, which include
polynomial solutions as particular cases. A total of eight families of exact solutions are
derived using a novel method of balancing powers of the variables simultaneously. Several
well known linear partial differential equations in applied mathematics and mechanics are
special cases of the general equation considered in this paper and all the polynomial and
polynomial-like solutions of these partial differential equations are also explicitly derived
as special cases.
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1. Introduction

The process of finding exact solutions to differential equations is the one of the most difficult problem
in applied mathematics. Exact solutions are available to only certain types of differential equations.
Finding exact solutions for linear or non-linear partial differential equations which represent real world
problems are much more difficult, they possess many solutions and only a few of them can be derived
using available methods. Exact solutions are always important as they give more insight in to the
physical problem compared to numerical or approximate solutions.

In this paper we derive certain families of new exact solutions of the linear second order partial
differential equation with variable coefficients given by

2 2
<a$fl71 + ByP? +7$p1+1% + 5yp2+1§y + lepl+2% + nyp2+2aa_y2> f=0, (1)
where f is a function of the variables x and y and «, 5, v, §, 1, i, p1 and po are various parameters.
Polynomial solutions of some constant coefficient partial differential equations are discussed in [1-8] and
polynomial solutions of some variable coefficient ordinary differential equations are discussed in [9-11]
and references therein. Exact solutions to the general partial differential equation (1) with variable
coefficients are not available in the literature, except for a very few special cases.

We derive all possible polynomial solutions of this equation in this paper. In addition to the polyno-
mial solutions, we derive several other exact solutions which are expressible in terms of hypergeometric
functions. The equation (1) and its special cases have a large number of applications in different fields
of mathematical physics such as fluid mechanics, theory of surfaces, heat and mass transfer, mechanics,
elasticity, propagation of sounds, relativity theory etc. Putting p; = —2 and ps = —2 in equation (1)
we get the equation,

o B oy0 50 0 9\
<$2+y2+ - Thgm Tga) f=0. (2)
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One of the most important special cases of this equation is the Beltrami equation given by

of w<82f 62f> _0

oz 922 " 02

This equation has applications in the case of Navier—Stokes fluid flows. A very good account of exact
solutions and applications of this equation can be found in [12-14]. The second important special case
of the equation (2) is the hyperbolic Euler—Poisson-Darboux (EPD) equation given by

0% f B 0’f A0 of

8—y2 ~ 02 T z 0z’
where A is any real or complex parameter. The importance of these equations, its review and further
solutions are given in the papers [15-17]. In addition to the exact solutions of these two equations we
obtain exact solutions of several other important partial differential equations, such as, steady state
Schrédinger equation in two dimension, the heat and mass transfer equation in a two dimensional
inhomogeneous anisotropic medium, etc. Some of these differential equations and their exact solutions
are also discussed in this paper.

First of all, all possible polynomial solutions of the equation (2) in the variables z and y are
derived. After assuming a polynomial solution for this equation, a new method of balancing powers of
the variables is used to derive the required solutions. Using this method we derive recurrence formula
for the powers of the variables as well as recurrence formula for the coefficients of the variables. This
method is different from the usual method of deriving series solutions for ordinary differential equations.
We solve these recurrence relations to find the required possible polynomial solutions. The obtained
solutions are not always polynomial solutions. Depending upon the value of the parameters «, 5, v,
d, n and p, the derived solutions can have different forms. Some of them are polynomial solutions. In
some other cases we get polynomials multiplied by some non-integer power functions of the variables
x and y. We can call all these solutions as polynomial-like solutions. After obtaining these polynomial
or polynomial-like solutions, they are used to generate other new exact solutions which are expressed
in terms of hypergeometric functions. These polynomial or polynomial-like solutions and other exact
solutions of equation (2) are derived in the second and third sections. In the fourth section we derive
all polynomial or polynomial-like solutions and other exact solutions for the general partial differential
equation (1). After that we discuss some important special cases of the equations (1) and (2) which
appear in the field of applied mathematics and mechanics with many applications. These equations
include equation governing heat and mass transfer in an anisotropic media, Beltrami equations, Euler—
Poisson—Darboux equation, Euler—Tricomi equation, Keldysh equation and Schrédinger equation. The
paper is concluded in the last section.

2. The method and first set of exact solutions

In this section we derive all possible polynomial or polynomial-like solutions for the partial differential
equation (2) by applying the method of balancing powers of the variables, as described in the proof of
the following theorem. After finding these solutions we derive the exact solutions which generalize the
polynomial solutions. We characterize all the possible polynomial or polynomial-like solutions of the
this equation in the following theorem:.

Theorem 1. The first set of different families of exact polynomial or polynomial-like solutions of the
second order partial differential equation (2) are given by

! _ S+m(3—4k) 2
y) = ch 2w Py e YR <1 SN ERT @;—””2—”> : (3)
y
(4k—3)—6 2
chx“zﬂ BT o) (1—k,—k—\1f+1;1—<1>;—:”2—”>, (4)
Y2
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_ 54n(3—4k) 2
ZCkﬂZ‘ 2W+q;. ]271 _\IlgFl <1—k,—]€+\1’+17¢+17—¥> (5)
Yy
and
N4 i QT3 n(4k—3)—38 4+ 7’](1}'2
falz,y) =) cpax 2 Ty ™ 2 F1 (1—1@—1{7—‘1’4—1;@-1'1;—@) (6)
k=1

where, for each summation, ¢, are any constants and N1, No, N3 and Ny are arbitrary positive integers.
Also

— )2 — —_m2 _
o Vo—w?—dap o V()4
21 2n
Here the hypergeometric function [18] 2 Fy(a, b;c; z) is given by

oFi(a,b;c;z) = Z Mzm

|
L= ml(C)m
with (@), = a(a+1)(a+2) ... (a+m—1) is the Pochhammer symbol. The function 9 F}(a, b; ¢; z) will be
a polynomial of degree k in z when a or b is a non-positive integer, —k, and ¢ # 0,—1, -2, -3, ... [18].

Since k > 1, it follows from the above equations that f;’s are always polynomials or polynomial-like
solutions in « and y depending on the values of the parameters. For certain values of the coefficients
of the PDE (2) these solutions will become polynomial solutions. We discuss certain examples later.

Proof. We consider a general polynomial in the variables x and y of the form
arz™y"™ 4+ agx™ Y™ + .+ aga"ry™r

We need to obtain the conditions under which this polynomial is a solution this partial differential
equation (2). Substituting this in equation (2) and after a proper regrouping we get

ni—2, mp

ni— 2ym1+a1,7n1l,n1 -2 ml +ap (nl—l) nix Yy )

(ozalzn

k
+Z aa;zV 2 Y™+ yan; ™ —2 Y™+ pa; (ng — 1) nx™ “2y™Mi 4 Ba;_q i ty™i172
'l

m;_1—2 i1 mi71—2)

+nai—1 (mi—1 —1)m_1x

mk—2

+ dai—ymi_1x" "ty Y

+ (Barz™y + nay, (my, — 1) mpz™y"™ ) = 0. (7)

In this equation there are k + 1 different groups in parenthesis. Here we have done the grouping in
such a way that the recurrence relation for the powers of variables and the recurrence relation for the
coefficients can be obtained (There is a second possible grouping that can be performed so that we are
able to obtain polynomial solutions, which will be discussed in the next section. It can be easily verified
that there exist only these two types of grouping leading to polynomial or polynomial-like solutions).
The above equation is satisfied if the objects in the parentheses vanish. We have to determine the
recurrence relations so that balancing of the terms in the parentheses are possible. When this is made
possible we get the following relations among the powers and coefficients. To balance the powers of x

and y in each group of the summation, the powers should be such that, m; = m;_1—2 and n; = n;_1+2.
(B+mi—1(d—n+nmi_1))
a+n; (y—ptpn;)

/ 2
or my, (0=n) 46 U 6+n At last we need to consider the first
RVAC u2 4au+~r 7 VvV (—p)2—dap—y+p S0 we

group. This group will vanish only when n; = or n] = o
need to consider the following four different cases accordmg to the values of my and n;.

me=2 4 Sapmpz ™y

Then the terms will vanish if we choose q; = —

RV
2n

a;—1. Now the last term vanishes

only when my =

m 5— \/ﬁ
— Case 1: mp = — (Cli/) 5 Bn+6—n andn _ (y—w) ap+y— !/«
m_(g_i_ \/ﬁ-l-
— Case 2: my, = ( 77)277677 ”andnl_ (v=w) apty =i
=2 —aBn+o— \/ﬁ
— Case 3: mp = — (0—m) 2n577+ T and ny = (y—n) 2Mocu 'y+u.
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V(66— n2 4677 5+n V(—p)?—dap—y+p

2p

— Case 4: my, = and ny =

Case 1: In this case the recurrence relation for the power of x is n;, = n;_1 + 2, for 2 <i < k,

. - 2_ - . . . - 2_ - 3
with n; = —~ Or—n) o fopty—p Solving this recurrence relation we get n; = —~ =) 435+7+(3 el
J(v—u)2—
for1 <i<k. Song= O —dap

” B4k Considering the power of the variable y, we have the

. - 2_ - . .
recurrence relation m; = m;_1—2,1 <1 < k—1, withmy = — -~ (0=m) 5 AP+ Uy Solving this recurrence

/ 2
(0=m) 4Bn+5+n (k1) , for 1 <4 < k. Hence the required solutions will be

u\/(tS n)2— 4Bn+w+5u+n( (v=p)?—dap+(2—4k)p )
homogeneous functions of degree —

polynomial then this degree will be positive integer and 1f the solution is polynomial-like then this
value is not a positive integer. From the recurrence relation of the coefficients we get

, =

(—1t [T=1(B 4+ mg(d —n 4 nmy))
a; = - a, (8)

[T ol +ng(y — p + ung))
where 2 < ¢ < k. Hence the corresponding solution can be written as a homogeneous function of above
given degree and is given as

k k z—l—l

+my(6 —n+nm
> " aa"iy™ =a1< Myt E H 1B mg@ q))"”niymi)’ (9)
i=1 =2

q 2(04 +ng(y — w1+ png))

where n; and m; are given above for 1 < ¢ < k. Once again we will expand the products in the
expression given by equation (8) using the values of n; and m; given above and simplify in terms of
Pochhammer symbols to obtain

(—1) =11 — k);_y (—k‘ 4+ V (6—n)2—4pn 4 1>
i—1

relation we get m; =

. If the solution is a

n

2n
a; = B ai.
1T (4) (1 _ \/('y—gl —4au>
i-1
This equation is valid for 1 < i < k. Then the equation (9) can be written as

b (—l)i"'lni_l(l —k)ic1 (mk+ Y +1), | p_atG—du g_stn@i-ak-1)
ai ey T 20 y 2n
) (1= @)

i=1
where & = 7”(7_55_@“ and O = ¥Y— - 71 (5_2272_45 " This can be written as
_ 1 _ 5 3 1 +1,,1—1 1—k i —k—|—\:[/ + 1 . I’z(l_l)
A T R Z( ) igl | Ji—1( )io1 i
i=1 () (1 = @) y

Since k and ¢ are positive integers this equation becomes an infinite summation of the form

i—1
a1$—21+<1>+—y——+2k+\1/ 3 Z (1-— k‘)i_.l(—k‘ + U +1)1 (_77_3:2> '
rE)(1—®),—4 2

i=1
Putting n = ¢ — 1 this becomes

I AR TR R Z (A =kn(=k+¥+ 1), ( nz®\"
nl(l—®)y) 1y?

n=0
This infinite sum is nothing but the hypergeometric function given by [18]
- _Odn(B-4k) 2
az'm T R (1—k,—k+@+1;1—q>;—ﬂ>. (10)

Y2
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So, in this case, the homogeneous polynomial or polynomial-like solution of degree

V(6=n)2=4Bn+yn+ptn( /(y—p)2 —dapu+(2—4k
B At A 77( Oopfdan )“) to the partial differential equation (2) becomes (10).

2np
Hence it follows that (3) is a solution of equation (2), since it is a linear partial differential equation.
We have, the function 9Fj(a,b;c; z) is not defined for ¢ = 0,—1,—2, - etc. [18]. So, it follows that the

. . e vV (y—p)2—da
above solution is not defined for positive integer values of ® = W
Case 2: Here, the recurrence relation for the power of & and its initial value n; are same as in the
previous case. Hence the value of n;, for 1 <i < k is as given in the previous section. The recurrence

v (5—77)22—4677—5-%77' Solving

relation for the power of y is given by m; = m;—1—2,1 < ¢ < k—1, withmy =

V(0= 4677 5+17(1 di+ak) , for 1 < i < k. Hence the required
solution will be a homogeneous function of degree A W—M—;SM (W_u)2_4a“+(2_4k)”) . Here
also the recurrence relation for the coefficients is same as in the first case. So the coefficients a; are
given by the equation (8), for 2 < i < k. Hence the corresponding solution can be written as a
homogeneous function of above given degree. This solution is given by equation (9). Once again we
will expand the products in the expression given by equation (8) using the same values of n; and m;
given in the first case, and simplify using Pochhammer symbols to obtain

(_1)i+1nz’—1lul—i(1 — k)i <—k7 . (5—2272—4577 + 1>
i—1

this recurrence relation we get m; =

a; = al.
' P(Z) (1 Y ('Y_/J')2_4C“/J'>
2p
i—1
This equation is valid for 1 < i < k. Then the equation (9) can be written as
o Z H'lnl l,ul Z(.1 — k)i (—k— ¥+ 1)i—1) $(4i7§k)bu*’y _cby 76+7l(12;4i+4k)+\117
F(Z)(l — q))i_l

\/(v—u —dop d U — \/ (6—n)2—4pn
2u - 2n

where & = . This can be written as

B g 6+71(23n—4k) Ek: (_1)1’—%—1771'—1(1 _ k‘)z‘—l(—k‘ 4+ U+ 1)2._1 22(-1)

2
e i=1 P () (1 = @)iy 2=

Since k and i are positive integers this equation becomes an infinite summation of the form

i—1
a1 Q’L—l—cb—l—iy—%—l&k-}-\l/ 3 Z (1 — k‘)i_l(l — k- \I’)i—l < nx )Z '

— L)1 —®)—; uy?

Putting n = ¢ — 1 this becomes
Lo+l — S 4oktw-3 Z (1=Kl —k—¥), (_77_332>n

T 2u
mE nl(l— ®),) 1y

n=0
This infinite sum is nothing but the hypergeometric function given by [18]
— 2%+ U3 2
T 2Py (1—k,—k—w+1;1—q>;—ﬂ>. (11)

v

So, in this case, the homogeneous polynomial or polynomial-like solution of degree

—m)2—4Bn—~n—bpu—n( /(v—p)? — Ao+ (2—4k
A ot 77( Oz ok )M) to the partial differential equation (2) becomes (11).

2np
Hence it follows that (4) is a solution to equation (2), since this equation is a linear partial differ-
ential equation. As in the previous case, it is to be noted that the above solution is not defined for

P _ V(y=p)2—dap
positive integer values of ¢ = Y—5 ——.

Case 3: Here, the recurrence relation for the power of y and its last value my, are same as in the
case 1. Hence the value of m;, for 1 < ¢ < k is as given in the first case. The recurrence relation for
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S~ — )2 — _
the power of x is given by n; =n;_1 + 2, for 1 <i < k—1, with ny = Sl 2M4W by Solving this
S (v—u)2 ;
=) 4a“ ) , for 1 < i < k. Hence the required solution will

(\/('y )% —dap+(4k—2) ) \/(5—n)2—4ﬁn—'yn—5u

2np

recurrence relation we get n; =

be a homogeneous function of degree
case 1 and 2, the equation (9) can be written as

. Proceeding as in

arx Q“H@ylp 6+71(23n—4k) Ek: ( 1)1—1—1772 1:“1 Z(l _ k’)i—l(—k? LU+ 1)i_1 xz(i—l)
= F(Z)(q) + 1)i—1 y2(i—1) ’

where & = Y.—p"—dan u V(O=n)==48n 77 2 —46n

finally expressed usmg hypergeometmc functlon [18] as

. This can be further extended to an infinite sum and is

h— g U d+n(3—4k)

Gz Ty T F1< kU141 Z‘Zz> (12)

So, in this case, the homogeneous polynomial or polynomial-like solution of degree
V(=2 —dapt(4k—2)p) —un/(0—n)2 — 4B —n—6
77( Ok )M) A ot to the partial differential equation (2) becomes (12).

2np
Hence it follows that (5) is a solution to equation (2), since this equation is a linear partial differ-
ential equation. As in the previous case, it is to be noted that the above solution is not defined for the

. . A (v—wn)2—
negative integer values of ® = M.

Case 4: Here, the recurrence relation for the power of x and its initial value n; are same as in
the case 3. Hence the value of n;, for 1 <1 < k is as given in third case given above. The recurrence
relation for the power of y and its final value my are same as in case 2. Hence the value of m;, for
1 < i < k is as given in second case given above. Hence the required solution will be a homogeneous
function of degree

(0 —n)? —4pn —yn —ou+n <\/(7—M)2 —dap + (4k—2)u>
2np '
Proceeding as in case 1 and 2, the equation (9) can be written as
b (=D)L=t — k) (—k + W+ 1), @i=du=y | g g Stnldi-ak=1)

ay E x " Y n 9

3 o (1+ 9,
where & = Y.—p"—dan u V(0= =4fn 77 2 —45n

finally expressed usmg hypergeometmc functlon [18] as

(13)

. This can be further extended to an infinite sum and is

n(4k—3)—4

U 2
az =y, R <1—k,1—k—\11;<1>+1;—%>. (14)

So, in this case, the homogeneous polynomial or polynomial-like solution of degree (13) to the partial
differential equation (2) becomes (14). Hence it follows that (6) is a solution to equation (2), since
this equation is a linear partial differential equation. As in the previous case, it is to be noted that the

above solution is not defined for the negative integer values of ® = 7W.

We have derived all the above polynomial or polynomial-like solutions given by (3), (4), (5) and
(6) in terms of hypergeometric functions where k is a positive integer. Now the much interesting
and significant conclusion is that all these functions are solutions of the second order linear partial
differential equation (2) even when k is not a positive integer. That is, k can be any real numbers or
a complex number and the summation is taken over arbitrary set of real number or complex numbers.
Such exact solutions need not be polynomial solutions when k is not a positive integer. So we can
extend the above family of polynomial or polynomial-like solutions to more general exact solutions.
These extended exact solutions are given in the following theorem. ]
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Theorem 2. Four different families of exact solutions to the second order linear partial differential
equation (2) are given by

_ _Stn(B—ak) 2
)= cam Ty, T F <1—k:, —k:+\I'+1;1—<I>;—%>, (15)
PP YUV 2
:ny)ZZCkxMQJ Ty, Fy <1—k,—k—‘1’+1;1—¢;—%>,
k
6+n(23 1K) $277
chx% g Fr(l—k-k+¥+1LP+1——
y

and ,
n(4k—3)—6 ne

A=Y g otV 2
:L"y):ch:L"% Yo F(1-k-k-V+1Ld+1——3 ),
A Hy
where the summation is running over any arbitrary finite set of numbers and ¢ are arbitrary param-

eters. Also
—u)2—4 6—n)2—4
VO —p?—dap o VO —n)? -4
2u 2n

o =

Proof. Since the proof for all the four solutions are similar, we give the proof of the first solution and
the remaining solutions can be derived in the same manner. A general term in the sum (15) is given

by

_ _ o4n(3—4k) _ 2
g(z,y) = ckx%_cbyz 2 Fy <1 —k,—k+¥+1;1-9; _77_$2> (16)
Hy
for any real or complex number k. Since the equation (2) is a linear partial differential equation it is
enough to show that g(z,y) satisfies this partial differential equation. Using the formula

02Fi(a,bjc;2)  abaFi(a+ 1,04 1;¢+1;2)

0z c

we get, on simplification

5 ’7+2£L<§+,u o 6+27;\I'+3n 2

g T Ly " 2 rn

-2 = d—-1 —y —=2ud Pll1—k—-k+¥+1;1—0;,——

5 2@ — 1) {( )Y~ (=7 — 2p® + )2 1< =k + VAL yzﬂ>
2 a*n

+an(k — Dz (k;—\I/—l)gF1<2—k —k+V+2;2— ,——>},
y
g x—%—61>+2y2k 2o

33‘2’1’]
= = —5—2nW F(1—k—k+0+1;1—d;——~
dy 2n {( e+ ) 1( R ’ y2u>

1’2?’]
tan(k — 1) (2—k,—k+\l/+1;1—61>;—ﬁ>}.

Similarly, on simplification

629 o F(1—¢) __—q)—%yz(k 1) W
or2 L2
2 9 ) . x2,’7
O+ 2u@) o (k= 0)y%) 2y N ARSIl

_ 2
+8n(k — 1)z (k — ¥ — 1)(y 4+ p(—2k + 20 + 3)) o Fy (2 —k,—k+ ¥ +22 - —%)

_ 2
—8(k — 1)p2y? o <2 —k—k+ T+ 11— P; —@)
Yy

Mathematical Modeling and Computing, Vol. 10, No. 1, pp. 37-52 (2023)



44 Joseph S. P.

~ 2
F16n(k — 2)(k — Dpa(k — U — 1) 2 F <3 k4 U422 P; —””2—">}

Y2
and
1 5+2nV+T7n
629 x—%—@-ﬁ-g 2k‘—T { < :L'277
Z2 = oFy 1—k:,—k:+\If+1;1—<I>;——>
y? 4n? (nx? + py?) v

x (py? ((6 4 200)? + 0> (16k(—k + @ +2) — 16® — 17)) + nz? (5 + 29T — n)(§ + 20T + 7))

2
—8n(k —1)2F <2 —k,—k+V+1;1 - @ —%) (ny? (0 +2n(—2k + ® + U + 2)) + 577:'32)} :

Substituting these values in the equation (2) and on straight forward simplification we see that the
expression vanishes. So, (16) is a solution to the equation (2) and hence it follows that (15) is a
solution to the linear second order partial differential equation (2), where the summation is taken over
any finite set of real or complex numbers. ]

3. Second set of exact solutions

In this section, we will find another set of exact solutions of the equation (2). We have used first
possible grouping of terms in equation (7) for deriving four sets of families of solutions in the previous
section. Here, the required exact solutions of the equation (2) is derived from the second possible
grouping of the the terms in equation (7), which facilitate the balancing procedure. The grouping is
given below,

(a1By™ 2™ + a;6myy™ 2™ + ain(my — 1)may™ 2z™)
k
+ Z (Oéai_lymi*lﬂfm*l_z + ’Yai—lni—lymiilxmil_z + pai_q (ni—l —1) ni_lymi,lxni,1—2
=2

+ Bagy™ 2™ 4 Sa;may™ 2™ 4 nag(m; — 1)miym"'_2a:"i)

=2 T2y agp(ng — 1)nkymk:p"k_2) = 0.

+ (ozakymkzn + yarnpy "t x

In this equation there are k + 1 different groups in parenthesis. Here also we have done the grouping
in such a way that the recurrence relation of powers of the variables and the recurrence relation of
coefficients can be easily derived. The above equation is satisfied if the objects in the parentheses
vanish. Now we have to determine the recurrence relations so that balancing of the terms in the
parentheses are possible. When this is made possible we get the following relations among the powers
and coefficients. To balance the powers of z and y in each group of the summation, the powers
should be such that, m; = m;_1 + 2 and n; = n;_1 — 2. Then the terms will vanish if we choose

_ V=P —dopty—p
2p

_ai—1(atni_1(y—ptpni—1))
B+mi (6—n+nm;)

V(= H)Q 4au Y+u

ng = . Finally consider the first group. This group will vanish only when m; =
/(6= n2 4Bn+5 7 or my VA G n2 4677 5+n
cases accordlng to the Values of ny and mi.

VA u2 4ocu+v w

a; = . Now the last term vanishes only when mj = or

So, we need to consider the following four different

w/6 772 46774—6 77

Case 1: nj = and m; =
Case 2: n, = \/WJW M and my = \/m 6+77
Case 3: ny = W I and my = \/WM s
Case 4: ny = W‘Vﬂ‘ and mq = \/m otn
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We consider the first case and find the corresponding solution. In this case the recurrence relation
for the power of x is n; = n;_1 — 2, for 2 < i < k, with

V= w)? —dop+y—p

ne = — 2,u

Solving this recurrence relation we get

—/ o+ Y2 = 2yp A p® —y — dip + Ay 4 p

for 1 <4 < k. We have the recurrence relation m; = m;_1 +2, 1 <7 < k — 1, with

\/(5—77)2—4577+5—77‘

2n

myp = —

SOIVng this recurrence relation we get

2n
for 1 < i < k. Hence the required exact solution will be a homogeneous function of degree

_/uc\/(é—n)2 —4Bn+’m+5u+n(\/(v—u)2—4au+(2—4k)u)

2np
If the solution is polynomial then this degree will be positive integer and if the solution is polynomial-
like then this value is not a positive integer. From the recurrence relation of the coefficients we get

a (— 1)Z+1H (a—l—nq('y #“‘lmq))a (20)
T = ; 1,

[Ty=2(B +mqg(d —n +nmyg))
where 2 < i < k. Hence the corresponding solution can be written as a homogeneous function of degree

given by equatlon (19) as
k 1)+l a—+ng(y—pu+ un
Zail'mymi = ay 2 ym1 + Z ) H ( q(’Y 2 Y q))lﬂn‘ym‘ : (21)
i=1 11— 2(5+mq(5 1+ nmg))

where n; and m; are given by equations (17) and (18) for 1 < i < k. Once again we will expand the
products in the expression given by equation (20) using the values of n; and m; given by equations (17)
and (18), and simplify in terms of Pochhammer symbols to obtain

(D) = = (1= k)i (—k T 1>
i—1

ING) <1_ (5—2372—4677)4 1

This equation is valid for 1 < ¢ < k. Then the equation (21) can be written as

m; = —

(19)

a; = ai.

o Ek: (1) z+1n1 zluz 1(1 — k)i—l(_k + o+ 1)i_1$_%;‘“€*1)_¢y_%?;4”_@
L)1 —v);—4 ’

vV (y—p)2—dap and U — \/(6—n)2—4pn
2u - 2n

where ® = . This can be written as

k i—1
ayy” B 2 Mﬁﬁ”z(l—k)i—l(—kJr@Jrl)H( #y> '

@)1 — )1 nx?
Since k and i are positive integers this equation becomes an infinite summation of the form

—w) op-rt2ubiin oS (1 k)i (k4 @+ 1)i P o
Z (=11 =) a2 '

i=1

ary ~n
=1
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Putting n = ¢ — 1 this becomes

R Bas T Z L= K)u(—k+@+1)n [y
R vt n!(1—V), na?

This infinite sum is nothing but the hypergeometric function given by [18]

+2ud+3
ary — Ut 2k SRR 1 <1_k,_]<;+c1>+1;1 v ':ig) (22)

So, in this case, the homogeneous polynomial or polynomial-like solution of degree (19) to the partial
differential equation (2) becomes (22). Hence it follows that

N 2
5 +2y 043
E cigy_%_q“réx% TR oY <1—/<;,—/<:+(I>+1;1—\I/;—M—y2>
na

is a solution to equation (2) for any positive integer IV, since this equation is a linear partial differential
equation. We have, the function o F} (a, b; ¢; z) is not defined for ¢ = 0, —1, -2, ... etc. [18]. So, it follows

_ /oo
_ Vo,

In a similar way, for the remaining three cases also we can derive the requqred three family exact
polynomial solutions. It is also possible to extend all these four families of polynomial solutions to exact
solutions in terms of hypergeometric functions which include non-polynomial solutions, as derived in
the first case in the previous section. These results are summarized in the following theorem.

that the above solution is not defined for positive integer values of ¥

Theorem 3. The second set of families of exact solutions for the second order linear partial differ-
ential equation (2) are given by

1 +2uP+3
chy e F T ) <1—k,—k+<1>+1;1—\1f m@)
nx

- +(3—4k)
Z’y):chy%—i_a} B 2p - CI>2F1<1—]€ k+(I)+1 \I/+1 /7;32)7
k

_S—n_y (Uk=3u—ry
xy)zzcky VS w+<I>2F1 <1—k‘,—k¢—<1>—|—1;1—\11 ':ig)

and
n—3 (4k—3)u—
P <1 k- LT 1, 2‘52) :

where, for each summation, cj, are constants and the summation is taken over any finite set of real or
complex numbers.

Here if we restrict each of the above sums over a finite set of positive integers k, we are getting four
families of polynomial or polynomial-like solutions of the equation (2).

4. Generalized second order equation

In this section we consider the generalized second order linear partial differential equation (1). We can
find all polynomial solutions or polynomial-like solutions and other exact solutions of this equation
using the method of balancing powers of variables as described in the previous section. The derivation
is very similar to the procedure given in the previous two sections with slight modifications in the
steps. The final results are summarized in the following theorem.
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Theorem 4. The eight different classes of families of exact solutions of the generalized second order
linear partial differential equation (1) are given by

et _ _%_ 2\1{ 2¢ 2 D2
y):ZCkxﬂz‘ﬂ @y Qnﬂpzﬂ ‘1’2F1<1—]€ k___|_1__|_1_77p2y )7

D2 p1 ’up%xpl
BT —6—2(k=1)npy+n 20U 2@ P2
r,y) = chl’“z,ﬁ <I>y 2 P2 Ly o Fy <1 —k,—k+ =41, = +1;— NP2 ym>
D2 pl pp3x
Ll _S42(k—Dnpa—n Ny Do
X y): Ck.Z'MZJ—HI)y anpz 1 \I/2F1 1—/€, k——-|-1 1__ _77p2y
k D2 p1’ upiap
By —6-2(k—L)npa+n ] D
xy)zzckaj“zm#I’y T +\I/2F1 <1—I<:,—k:_|_p_2+1 1_p_1 _Z]; im>
1
_6-n_g _¥—k+2u(k—1)p; 2P 2 -
xy):chy 27,’7 <I>x el ZM 1 <1>2F1 11—k —k— 22 41,22 +1;_,up1w
k Y24 P2 np%ym
n—9 _azpd2p(k—l)py 2P oW 2, p1
cky5n+qz$ T ¢2F1<1—k:, k__+11___,up%3:p2>
P pr NP3y

n=8_g —vtu—2u(k—1)py 2P 20 2 P2
)= S (1 2 20T
P1 D2 np5yP?

and

=4 —ytu=2u(k=1)py 20 20 2P
zy)=> oy e a0 TR (1ok k= 1 AT
p1 p2’ np3yPe

where, for each summation, c are constants and the summation is taken over any finite set of real or
complex numbers. Also

— )2 4 —1)2 -4
o VOo—p?—dap o V(E—n)’ -4
2u 2n

Here if we restrict each of the above sums over a finite set of positive integers k, we are getting
families of polynomial or polynomial-like solutions of the equation (1). Otherwise we are getting
exact solutions which are expressible in terms of hypergeometric functions. The exact solutions of the
equation (2) derived in the previous sections are obtained by putting p; = p2 = —2 in the above exact
solutions.

5. Discussion and applications

Equation (2) is the second order linear partial differential equation with variable coefficients and
equation (1) is its generalization. By assigning particular vales for the parameters in these equations
we get different well known partial differential equations in applied mathematics and mechanics. In
this section we discuss some special cases of the equations (1) and (2). The first important special case
that we discuss is the Beltrami equation.

5.1. Heat and mass transfer equation
The heat and mass transfer equation in two dimensional inhomogeneous anisotropic medium is given
by
0, 0,
0 (awm ai) 0 (by" f)

Oz * dy =0 (23)
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where az™ and by™ are the principal thermal diffusivities [19]. This equation is a special case of the
equation (1). It can be obtained from equation (1) by putting o = =0, vy = ma, § = nb, p = a
and n = b, py = =2+ m and ps = —2 4+ n. So, we get eight new different families of exact solutions
of the corresponding heat and mass transfer equation (23) in terms of hypergeometric functions from
Theorem 5. These solutions include all polynomial solutions or polynomial-like solutions of the heat
and mass transfer equation (23). As an illustration, the first solution is given by

1 b(TL _ 2)2$2—myn—2>

1
— E 1-m, —k(n—2)—1 F, 1—k — k-2 .
jﬁ(x7y) - CLT Yy 241 < 72 “n 3 + nz——27 a(n@——2)2

5.2. Generalized Beltrami equation

The partial differential equation satisfied by the stream function of a steady state axisymmetric Navier—
Stokes fluid flows under conservative body forces, which satisfies the generalized Beltrami condition [13,
14] is given by

The corresponding homogeneous Beltrami equation is given by

10 9?2 9?2
(5%‘@‘@)"”0'

This can be obtained from equation (2) by putting a = 8 =§ =0, vy =1 and n = p = —1. So the
exact polynomial solutions of this equation are obtained from solutions (3) and (4) given in Theorem 1.
These are given by

Ny 2
1 T
2, 2k—1
-3 O = Y
fl(x7y) k_lckx Yy 2 1<2 P 3 4y y2>

and
N1 3 :1;.2
_ 2 2k—2 .
folzy) = a2y 20 (1—1@,5_;@,27_?).
k=1
The other two solutions are not defined in this case as ® = —1. In a similar way we can find the

different exact solutions of generalized beltrami equation in terms of hypergeometric functions from
Theorems 2 and 3. Here it is to be noted that the solutions f; and fg are equivalent to the solutions
f5 and fg respectively and the solutions f3 and f4 does not exist in this case. The above solutions
include all the polynomial solutions of the generalized Beltrami equation. These solutions are same as
the solutions given in [13] while discussing the exact solutions of generalized Beltrami flows which are
special cases of Navier—Stokes fluid flows.

5.3. Elliptic Euler—Poisson—Darboux equation

This equation is also a special case of the equation (2), which is given by
A0 0? 0?
—— 4+ =+ = =0.
(x oz 02 8y2> /
This can be obtained from equation (2) by putting « = =6 =0, vy = Aand n = p = 1. The

exact polynomial or polynomial-like solutions of these equation are obtained from the solutions given
in Theorem 1. A representative solution is given by

2

Ny 1 1
filey) =3 et 2t (VO) (1 — k, 2 — kil =gV _3:_2> .
k=1

Y
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But, here we are getting polynomial solutions only for particular values of the parameter A\. When
% (—)\ —vVA=1)22+ 1) is zero or a positive integer we are getting polynomial solutions from f1 and fo

and when % (—)\ +v/(A=1)2+ 1) is zero or a positive integer we are getting polynomial solutions from
fs and f4. In all other cases we are getting only polynomial-like solutions. The eight different families
of exact solutions of elliptic Euler—Poisson—Darboux equation in terms of hypergeometric functions
can also be obtained from Theorems 2 and 3 in a similar way. These solutions include all polynomial
solutions of the elliptic Euler—Poisson-Darboux equation. Some other solutions and applications of
this equation can be found in [19,20].

5.4. Hyperbolic Euler—Poisson—Darboux equation
This equation is also a special case of the equation (2) which is given by
A0 0? 0?
—_—t == - = = 0.
<3: 0z 022 8y2> /
This can be obtained from equation (2) by putting « = 8 =0 =0,v= X\, n=1and p = —1. The

exact polynomial solutions of these equation are obtained from the solutions given in Theorem 1. The
first solution is given by

Ny 1 2
1 1
filey) = 3 a2 VR g (1 —Fk, % — ki VD 4 %) '
k=1

But here we are getting polynomial solutions only for particular values of the parameter A\. When

% <)\ +vA+1)2+ 1) or % </\ — A+ 1)2 4 1) is zero or a positive integer we are getting polynomial
solutions corresponding to first two equations or last two equations in Theorem 1 respectively. In
all other cases we are getting only polynomial-like solutions. Putting the above parametric values
in Theorems 2 and 3, we get all the eight different families of exact solutions of hyperbolic Euler—
Poisson—Darboux equation in terms of hypergeometric functions. These solutions include all polynomial
solutions of the hyperbolic Euler—Poisson—Darboux equation. Some other solutions and applications
of this equation can be found in [15-17].

5.5. Schrédinger equation
The steady state Schrodinger equation with zero energy [19] given by

*f  O*f a B

T — 4+ = 24

22 T = <x2 * y2> (24
is also a special case of the equation (2). This can be obtained from equation (2) by putting v =6 = 0,
n = pu = —1. Applying these parametric values we can easily derive all the eight different families of

new exact solutions of the Schrodinger equation (24) in terms of hypergeometric functions. The first

solution is given by
2

1 2
filz,y) =3 cpa’s ys @),y (1 —k =k = SVAB+1+1; 1"%; —%) :
Yy
k

where ¢ = v/4a+ 1 and ¥ = /48 + 1. The corresponding solutions include all polynomial solutions

or polynomial-like solutions of the Schrédinger equation.

5.6. Keldysh equation

The Keldysh equation is the second order partial differential equation of mixed elliptic-hyperbolic type
which is given by
0?f 0°f
— 4+ == =0. 25
oy Oy? (25)

Mathematical Modeling and Computing, Vol. 10, No. 1, pp. 37-52 (2023)



50 Joseph S. P.

This equation also has many applications in the fields such as in non-geometrical optics and in modeling
of zero temperature plasma to which a magnetic field has been applied [21-24]. It is a special case of
the equation (1). This can be obtained from equation (1) by putting a = =v=96=0,n=p =1,
p1 = —1 and py = —2. Applying these parametric values in Theorem 5, we get the different families of
new exact solutions of the Keldysh equation (25) in terms of hypergeometric functions and one such

solution is given by 5 B
o) = Y 2o (1203 k22,
k

These solutions include all polynomial solutions or polynomial-like solutions of Keldysh equation.
These solutions are in full agreement with the solutions of these equations obtained in [25].

5.7. Euler-Tricomi equation

The Euler—Tricomi equation is also the second order partial differential equation of mixed elliptic-
hyperbolic type which is given by , ,
o7 + wa—f =0. (26)
Ox? Oy?
This equation mainly appears in the study of aerodynamics and the isometric embedding of Rieman-
nian manifolds. It is useful in the analysis of transonic flows and this equation has application in
vanishing viscosity method which is formulated for studying two-dimensional transonic steady irrota-
tional compressible fluid flows [8,22,24,26,27|. It is a special case of the equation (1). This can be
obtained from equation (1) by putting a = =vy=0=0,n=p =1, py = —3 and py = —2. Using
these parametric values we can derive the eight different families of exact solutions of the Euler—Tricomi
equation (26) in terms of hypergeometric functions from Theorem 5 and one such solution is given by

3 2 4z3

2k—2

:E F(l1-Fk-—k-;——|.

fl(:Evy) - CkY 2 1< 9 '3 9y2>

These solutions include all polynomial solutions or polynomial-like solutions of the Euler—Tricomi
equation. These solutions are in full agreement with the solutions of these equations obtained in [25]

6. Conclusion

We have derived all polynomial and polynomial-like solutions solutions of the variable coefficient linear
partial differential equation (1) in this paper. There exist exactly two sets of such family of solutions.
All these exact solutions are derived by applying a new method of balancing powers of the variables
x and y simultaneously. Clearly there are only two possible ways to group the resulting terms so
that this method is applicable. In both these cases we have derived the corresponding polynomial or
polynomial-like solutions. These polynomial solutions are having compact form expressed in terms
of hypergeometric functions. These solutions are then extended to more general solutions, which
include all the polynomial or polynomial-like solutions. Several linear partial differential equations
with various applications appearing in mathematical physics are particular cases of the general second
order equation (1) considered in this paper. These special cases include the heat and mass transfer
equation in two dimensional inhomogeneous anisotropic medium, generalized Beltrami equation, steady
state Schrédinger equation in two dimensions, Keldysh equation, Euler—Tricomi equation, hyperbolic
Euler—Poisson—Darboux equation, elliptic Euler—Poisson—Darboux equation, two dimensional heat and
wave equation etc. The exact solutions of such equations are also explicitly discussed in this paper.
The method employed in this paper can be modified to find exact solutions of the higher order linear
partial differential equations.
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[Jekinbka ciMmeiicTB HOBMX TOYHUX PO3B'A3KIB PiBHSIHb I3 HYaCTKOBMMU

noxXiAHMMU ApPYroro nopsigky 3i 3miHHUMU KoedpilieEHTaMu

Ixozed C. II.

Kagpedpa mamemamuxu, deporcashut inorcenepruti xoredac, Baanao,
Tasranyoica 11.0., Basanad, Kepana, Indis

V it crarTi BUBEIEHO JIeKiJIbKa CiMefICTB HOBUX TOYHHUX PO3B’SI3KiB 3araJibHOTO JIiHIHOTO
PIBHSIHHSI B YaCTUHHUX IOXIIHUX JIPYroro HOpsiaKy 3i sminauMu Koedimienramu. OTpuma-
HO BCi MOXKJIUBI MOJTIHOMiaJ JIbHI Ta MOJIIHOMIONO/I0HI PO3B’sI3KM 11bOT0 piBHsAHH. [loKa3ano,
IO iCHY€ TOYHO JIBI MHOXKHHU TAKUX CIMEHACTB TOUYHHX PO3B’s3KiB. Lli po3p’s3km posriu-
pPEeHO it TOOYIOBU PI3HMX CIMEHCTB TOYHUX PO3B’S3KIB y TE€PMiHAX Ti€PreOMEeTPUIHUX
byHKIIH, sKi BKIIOYAIOTH MOJIHOMiaJIbHI PO3B’I3KN K OKpeMi Bumajaku. Behoro BiciMm ci-
MEHCTB TOYHUX PO3B’A3KIB OTPUMAHO 3a JIOIIOMOI'0I0 HOBOI'O METOJY OJHOYACHOIO DaJiaHC-
yBaHHs cTerenei 3minanx. /lekinbka 106pe BigoMux JiHIHHUX JudepeHIiaabHuX PIBHIHD
i3 YACTKOBUMH IOXiTHUMU B IIPUKJIAIHINT MATEeMATHIl Ta MEXaHII € OKPEMUMH BUITAIKAMHI
3arajIbHOTO PIBHSIHHSI, PO3IVISHYTOTO B IIiif CTATTI, i BCl OJIHOMIaJIBHI Ta TOJIIHOMIONOTi0-
Hi PO3B’SI3KM IUX PIBHSHD 13 YACTKOBUMH ITOXITHAMU TAaKOXK SIBHO BHUBEIEHI sIK JaCTKOBI
BHUIAQJIKU.

Knto4oBi c€noBa: noAinomiasbhi Po3e’asku; Mmouwni po3e’aswu; 3minnull xoediuichm
JPYII; pisHANHA MENAOMACONEPEHOCY; Y3a2aAAbHEHT Nomoru Dbeavmpami; piBHAHHA
IIpedinzepa.
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