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In this article there has been conducted analysis of Lyapunov matrix application in order to
form control inputs under different dynamic systems’ optimization methods oriented by quadratic
integral criterion. For this purpose, the methods of finding the Lyapunov matrix and optimization
based on the Bellman functional equation with subsequent application of the Riccati equation,
optimization taking into account the initial values of state variables, optimization based on the
Bellman equation using linear matrix inequalities and Lyapunov equation are considered. Despite
the complexity of solving the Riccati equation, the problem of finding the Lyapunov matrix is
unambiguous only in the case of application of optimization methods based on dynamic Bellman
programming and representation of the Bellman function by the Lyapunov function. Optimization
based on the application of the linear matrix inequality condition is not unambiguous, as it
requires the choice of the inequality solution. The optimization of the system by the integral
quadratic criterion and the initial values of the state variables is also ambiguous because there is a
problem of solving nonlinear interconnected optimization equations.

Keywords: system optimization, Lyapunov function, feedback loop matrix, control input.

Problem description
Most of the system around us can be considered as dynamical systems from some point of view [1].
Usually we are interested in control of these systems. There are many different approaches that allow
achieving a control system [2]. Some of them involve only structural synthesis (passivity based [3],
intelligent [4], adaptive control system [5], etc.) and some also parametric synthesis (feedback linearization
[6], modal [6], fuzzy regulation systems [4], etc.). Usually, parametric synthesis is a complex procedure
that involves much mathematics. One of the most fundamental cores of optimal system synthesis is an
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energetic Lyapunov function, based on which many methods built [2]. Thus, it's important to review the
issue of forming the control input based on the Lyapunov function and find the most efficient method.

Research relevance

Optimization of dynamic systems based on criteria derived from quadratic forms of state variables
and control inputs requires feedback loop matrix to be found, and by all the state variables present in the
system [7]. Including the control inputs in performance quality criterion of the systems limits the amplitude
of the latter, thus minimizing the amounts of energy needed for control implementation. Optimized control
law synthesis based upon the principle of linear quadratic regulator is impossible to conduct unless taking
into consideration a condition of integral criterion quadratic form being (either during optimization by the
starting conditions or by Bellman dynamic programming) a Lyapunov function with Lyapunov matrix
included as well. Sometimes this matrix forms the control inputs ambiguously, however otherwise it is
utilized as intermediate part of feedback loop gain matrix definition procedure.

The analysis of such optimization methods and the role of Lyapunov function during application of
the said methods are what this article is dedicated for. In this research there have been analysed methods of
finding the Lyapunov matrices based upon solutions of Riccati algebraic equation, upon solution of
Lyapunov equation and also upon linear matrix inequalities. There are made conclusions about efficacy of
the said methods from perspective of forming the control input task.

Definition of goals and tasks of article
The research described in this article aims to analyse the efficiency of control input formation for dynamic
system as a feedback loop gain by state variables, finding which is based upon solving the Lyapunov function.

Analysis of recent researches and publications

In order to define the conditions of dynamic systems optimization one has to include for consideration a
signed positive function with a signed negative derivative of one. This function passes the conditions to be
defined as a Lyapunov function and is a basis for system optimization. This is because of the optimized system
having to be stable while its overall positivity along with negativity of its derivative provides its diminishment
over time, thus having a phase portrait of system trajectory converging into a coordinate zero point. An
important component of a set Lyapunov function is the matrix P [7], through which the synthesized control
input is formed in case of system optimization by the principles of Bellman’s dynamic programming; in case of
finding feedback loop matrix during processes optimization based upon starting values of state variables; in case
of system optimization using both linear matrix inequality and the Lyapunov equation.

Main matter description
According to these three optimization methods let us analyse the ways of finding the matrix P and
basing upon it the control inputs as a solution of dynamic system optimization task.
Let us assume a given dynamic system being described as a following vector-matrix equation

X=AxX+BxU, ()]
where A and B — matrices of coefficients; U — could be a vector or a scalar; X — vector of state coordinates.
The quadratic integral optimization criterion for such system could be arranged into following view
¥
J=(‘)(XTXQXX+UTXRZXU)dt®min. (2)
0
It is necessary to find the optimal control with feedback loop that provides a transition from any
given starting point X(0) into end point X(¥) = 0 simultaneously providing minimum of defined quality
functional. This task is called the task of stationary linear state regulator synthesis and is typically solved
using method of dynamic programming i.e. through application of Bellman’s functional equation.
N 0 )
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and the minimization equation

1F(XU) 3 TS(x1,X2,-Xn) , THi(x,U) _ (4)
Tu > 1 Tu |

where X = fi (x,u) — equation of the object by the coordinate i, and there could be n of such equations;

S(X1,X2,..X . " . . . Tfi(xu ) L
15( 111 X2 n) — partial derivative of Bellman’s function by coordinate i; % — partial derivative
[

by the control input.

Integrated expression for optimization criteria (2), being an expression for F(x,u), is assumed to be
a positive defined expression in square form. Thus for systems with linear object we assumed F(x,u) to be
a Lyapunov function. That is why a part S(x) of Bellman’s equation (Bellman’s function) also has to be
considered being a Lyapunov function because S(xi) is exactly a minimal value from integral of F(x,u) by
starting value xi, while function S(x) is function of minimums of integral criterion dependent of what value
of X we do consider being a starting one. Thus, both first and a second part of Bellman equation should be
Lyapunov functions.

Taking into account (1,2,4) it is simple to show that

UTiR, =- 19, .
1 x
1o1 21S()0"
Uopt = -Rp BRI

Now setting the Bellman’s function, viewed as a Lyapunov function S(x) = X" xP X, we shall
find
_ _p-l
Uopt - _R2 XBT XPXX,
where matrix P is found as a solution from Riccati’s algebraic equation
ATXP+PXA—PXBXR'21XBTXP+Q=O.

The mathematic model of Riccati’s equation solution in most cases allows to choose definite
solution based upon Sylvester’s criterion [8], meaning a view and pattern of matrix P, as shown in our
previous research [9].

Another optimization method utilizing Lyapunov function along with matrix P is optimization
based on starting conditions for systems being described in models of state variables.

In this case let us assume control input U being a linear combination of state variables meaning
U=KxX. Substituting this expression for U inside of vector-matrix equation (1) we shall receive:

X=AxX+BxU=AxX+BxKxX=(A+BxK)xX=HX. (5)
Integral quadratic criterion in this case has to be expressed as a function from state vector.
¥
J=( (X" xX)dt ® min . (6)
0

Now let us consider the existence of certain function V = X" xPxX, derivative of which equals
V= -XTxX, thus
%(XTXPXX)=—XTXX, (7)

where function V is nothing else than Lyapunov function containing matrix P that has to be defined.
Once again to remind that the choice of function V in this case is dictated by a system stability
condition meaning a finite value of integral quadratic quality index.
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Simple mathematic transformations while considering (5-7) bring us to system of two equations
with following view

¥
J=) (X" xX)dt = X" (0)*P*X(0); (8)
0
H' *P+P:H=-1. 9)
Thus the procedure of optimization by aforementioned method could be summarized into two steps
to follow:
— considering matrix H known, the matrix P is found inside of function of feedback gain
coefficients by state variables that also satisfies equation (9);

— out of minimization equations ddTJ = 0 the feedback gain coefficients are to be found.
1
Here as we might notice matrix P to play intermediate role before forming a control input U=KxX.
Contrary to previous task where found matrix P form control input for optimization, in this case to find a
control input one has also to go through optimization equations’ solution conditions which, as our research
shoved [10], could be nonlinear, especially for cases where are different feedback channel sets being more
numerous than two, and then the task of aforementioned synthesis tasks shall require additional study. At
the same time finding the matrix P out of Riccati equation during synthesis of optimal system with the
method described in the first task requires complete quadratic criterion to be present (2). Inside of it Q
could be an identity matrix. System also could be with single input and single output (SISO), but energy
restrictions at control input are compulsory.
These restrictions aren’t considered through quality criterion expression
¥
J=( (X" xQxX)dt ® min. (10)
0
where matrix Q could be identity matrix leading to variation of functional (6). Lyapunov equation [11] at
quality functional (10) shall look the following way

ATxP+PrA=-Q.

If we formed the matrix H= A + BxK, then equation (9) during system optimization by starting
values of state variables is certain to be Lyapunov equation [8].

Now viewing an optimization method that use a condition entered as a linear matrix inequality. As
said before, let the control input of optimal dynamic system being found from functional Bellman’s
equation has the following view

Uopt == RFBT«PxX.
Now for optimal closed-loop system
X=AxX+BrUgy. (11)

Writing V(x) = X" «P xX and value of this function on trajectory X(t) equals
¥
V(x)= (X" xRy x X+ UT xRy xU)dt.
0
This value decreases monotonically because the larger t the lesser integration partition is. Thus
function V(x) = X" xPx X is a Lyapunov function for optimal system. Let us try form the conditions of

finding these matrices P>0 without bounding P with Riccati equation. That is to provide system with the
same feedback as previously written in equation of optimal control input with quadratic function

V(x) = X" xPxX also being a Lyapunov function.
Then substituting in equation (11) the mentioned control input Ugpt, let us write

X =AxX+BxUgy =(A-BIRF BT tP)xX = A 1X,
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and remember that
T

V(x) :%V[x(t)]: X (PxX+XTrPrX = X" rALPxX+ X" PrA X = X" (AL xP+PxA)X.

The condition V(x) <0 is met if
PxA.+A{*P<O0.
By expanding this equation we will get
PxA-PxBtR3 «B"xP+AT«P-PxBxR3 «B”
:PxA+ATxP—2xPxBxR'21xBT<0.

Afterwards let us multiply each element of expression at Q = P 1 and get
QYA+QrAT -2B:R3xBT<0 (12)

atQ >0.

So, to get any Lyapunov function for closed-loop system (11) it is necessary to find a matrix set that
meet inequality (12) and to assume P = Q 1 .Expression (12) is called a linear matrix inequality.

Now let’s evaluate which criterion value we will get by choosing a certain control input value. If we
assume any solution Q of inequality (12) and choose feedback of view

U=-RzB"xQ71xX,

then in order to find value of quadratic criterion J let us use a statement [2] according to which if matrix A

corresponds to a stable system; X(t) — system solution X = AxX; X(0) = Xo, then the value of functional
¥
J= 0 (X" *WxX)dt at W >0isequal X§ xPxX,, where P is a solution of Lyapunov equation
0
AT P+PrA=-W.

Analyzing three described optimization methods we can come to conclusion that the task of finding
Lyapunov matrix is unambiguous only in case of using the optimization methods that base on the
principles of Bellman’s dynamic programming, forming the feedback gain matrix

. T
K=-Ripr g2 S60
e Tx g
and i presentation of Bellman’s unction as Lyapunov function
S(x) = V(X) = X" xPxX,
where matrix P is found as the solution of aforementioned Riccati algebraic equation. Then optimal value of quality
functional J is written as J i = X(T) xPxXq and this expression is a quadratic function of starting state values.

Of course the task of solving Riccati equation is uneasy and requires application of dedicated computing
software. In the meantime the optimization task based upon application of linear matrix inequality isn’t

unambiguous. That is because at first we choose value of Q = P " that corresponds to condition (12) and then
seek P out of Lyapunov equation that defines criterion value. In this case unambiguity comes from the choice of
inequality solution (12). It is possible that originated from Lyapunov equation matrix P would not meet the
selected value of Q out of condition (12), and then it would be necessary to pick another value for Q.

It is also important to note that during optimization of system by integral quadratic criterion and
starting conditions values there is none of that unambiguity as well, the one that is native to optimization
task by Bellman: found the expression for control input U, found the Lyapunov matrix and substituted it
inside of expression for U, formed a structure and parameters of feedback gain matrix by state condition
values. In the latter case solving the Lyapunov equation

H"xP+PxH=-1,0or -Q forenergy restriction
find P as feedback coefficient function, meaning P(K). Afterwards substituting P(K) inside of expression for index
1J

i

J we get J(K) and by the equation set = 0 seek feedback gain matrix elements by the state variables. There is
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no Riccati equation solving procedure described here, however there is detailed the topic of solving the nonlinear
interconnected optimization equations, especially for systems of grade count beyond two.

Conclusions
The conducted research let us make a conclusion that the most efficient method of finding the
control input for system optimization is forming one based upon Lyapunov matrix which is found from
solution of Riccati equation. The next steps of these theoretical researches will be a practical comparison of
these approaches for systems of different complexity.
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AHAJII3 METOJIB 3ACTOCYBAHHS MATPULB JIAITYHOBA
JIUISI OITUMI3BAIIL CTAIIIOHAPHUX TUHAMIYHAX CUCTEM
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IIpoananizoBano 3acrocyBaHHs MarTpuui JIsmyHoBa 3 MeTo0 (pOpMYyBaHHSI KepylO4uHMX BXOIiB 3a
Pi3HMMH MeTOAAMM ONTHMI3alil JIUHAMIYHHUX CHCTeM, OPi€CHTOBAHMMH 32 KBaJAPATHYHUM IHTerpajbHUM
KpuTepieM. Iyl bOro po3risiHyTO MeTOAU 3HAXOMKeHHs MaTpuui JIamyHoBa Ta onTuMi3anii Ha OCHOBI
(yskuionanbHoro piBusinHg Bennmana i3 mogansmuM 3actocyBaHHsAM piBHsAHHA Pikkati, onrumizanii 3
YPaxyBaHHSIM NOYATKOBHUX 3HadYeHb 3MIHHMX CTaHy, ONTUMIi3auil0 Ha ocHOBi piBHsIHHA benamana 3
BHKOPHCTAHHSAM JIiHIiHUX MaTpUYHHUX HepiBHOcTeil Ta piBHsAHHA JIsnmyHnoBa. He3Baskarouu Ha ckJIagHicTh
po3B’sizyBaHHs piBHAHHA PikkaTi, 3agaya 3HaxomkeHHs1 MaTpuui JIANMyHoOBa € 0AHO3HAYHOIO JIMILE Yy pa3i
32CTOCYBAHHSI MeTOiB ONITHMI3alil HA 0CHOBI IMHAMIYHOrO nporpamyBanns beivana ta noganus QyHKuii
Beaamana ¢ynkuiero JlsimyHosa.

OnTuMizanisi Ha 0CHOBI 3acTOCYBaHHSI YMOBH JIiHiiiHOT MATPUYHOT HEPIBHOCTI He € 0IHO3HAYHOIO,
OCKiJIbKH ToTpedye BHOOPY po3B’si3Ky HepiBHOcTi. OnTHMi3amisa cucTeMHu 3a iHTerpajJLHUM KBaJapa-
THYHUM KPUTEPi€M Ta MOYATKOBMMU 3HAYEHHSIMH 3MiHHUX CTaHY TAKOK € HEOJHO3HAYHOIO, OCKITbKH
icHye mpo6JieMa po3B’si3yBaHHSA HeJiHiliHMX B3a€EMOMOB’ I3aHUX PiBHSAHb ONTHMI3aIii.

Knwuosi cnoea: onmumizayia cucmemu; ynkuyia Jlanynoea; mampuys KOHmypy 360p0omHo2o
36’ A3Ky; Kepywouuii 6xio.
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