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The unexploring problem of digital control systems analyzes in this article — the impact
on their behavior of the limited bit resolution of the hardware and, accordingly, the discrete
transfer functions coefficients. The research conducted by the zeros/poles and transient
characteristics methods using the mathematical application MATLAB with the package
Control System Toolbox and confirmed the relevance of this problem.

The research purpose is to determine the minimum sampling period in digital systems,
provided there stability and adequacy to the behavior of a continuous system (prototype),
given the limited binary resolution and the data accuracy. This will make it possible to offer
solutions to reduce the negative impact of the limited bit resolution in the developed digital
systems and expand the range of rational sampling rate.

Boundary dependences for the minimum sampling period and inertial time of
elementary first- and second-order transfer functions formulated. It is shown that in the case
of limited precision arithmetic the order’s growing of the transfer function polynomial
increases its sensitivity to the its coefficients accuracy.

The study of the limited arithmetic precision impact carried out on the example of
transfer functions corresponding to the fifth and seventh orders binomial forms. The influence
of the accuracy of the transfer functions polynomials coefficients and the placement of zeros
and poles of discrete transfer functions on the complex plane shown on depending on the
sampling step. The transient characteristics of discrete systems with limited bit resolution
compared to their continuous analogue.

Studies confirm that the method of a continuous transfer function decomposition for
decomposition into elementary components of the first and second orders and their following
sampling, allows expanding the bounds of allowable sampling steps in digital systems with
limited precision arithmetic. The influence of errors shown on the example of polynomials
from the second to the seventh order, where in particular with growing order the polynomial
increases its sensitivity to the accuracy of its coefficients setting.

Key words: bit precision; decomposition; digital control systems; polynomial; sampling;
transfer function; transient; zeros and poles of the transfer function.
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The influence of limited bit on the implementation of the transfer in digital system

1. Introduction

Nowadays, with the fast development of technology and the implementation of computer equipment,
most technical solutions are made using digital control and data processing systems. Among the main
reasons for this there are the wider capabilities of digital systems (microprocessors, controllers) compared
to old and weighty analog technology in the case of complex control rules [1, 2, 3]. Digital control systems
provide high accuracy and universality of the system and allow implementing complex algorithms and
flexible control systems, which with minimal changes in the hardware can be used in various purposes
systems.

As a result, it becomes appropriate to use digital systems to control electric drives in modern means
of technological processes automation.

2. Problem definition

The use of analysis and synthesis methods of digital devices is necessary to study all the impacts that
can cause them to work incorrectly. One of the little-studied and often ignored problems in digital control
systems is the influence of the sampling time of the control algorithm implementation. Usually, it is
believed that the decreasing of the sampling step in digital control system theoretically and according to
traditional ideas came from applied mathematics, causes its behavior similar to a continuous prototype due
to the reduction of errors from the sampling process by the zero-order hold [4, 5]. However, in this case the
fact is not taken into account that all calculations in digital systems are performed with limited arithmetic
precision (accuracy), while the traditional mathematical basis for such systems synthesis does not consider
this fact, assuming the calculations accuracy unlimited.

This, quite unexpected, thesis can be confirmed by a simple example — consider the fifth order
continuous transfer function. By the way, such an order has a simple linear model of an asynchronous
motor in d-q coordinates, and in the description in phase coordinates the such model order increases to
the seventh [6, 7]. Therefore, the analysis of discrete transfer functions of this order is relevant, given
modern control systems based on the object model. To illustrate the effect of limited arithmetic
accuracy, standard binomial forms in the form of fifth- and seventh-order transfer functions were used
for testing:

1

S5 +55%+10s3+10s2+5s+ 1’
1

s7 +7s6 + 2185 + 35s5% + 3553 + 21s2 + 7s+ 1

which are discretized by standard means from Control System Toolbox of the MATLAB program [8] using
function c2d (the default method — with a zero order hold on an input is used). It is worth noting that all
calculations in the MATLAB application performed with double accuracy, i.e. with an accuracy of 15-16
decimal digits. The built-in step function use to get transient characteristics of continuous and
corresponding those discretized systems.

There are the transient characteristics of the above-mentioned continuous systems and their
corresponding discretized with a step h = 0.1 s on Fig. 1. Note the good convergence of the transient
characteristics between continuous and corresponding discrete systems for both test systems.

For completeness of the information the map of zeros and poles (Fig. 2) of the obtained fifth and
seventh orders discrete systems for the step h = 0.1 s by means of the built-in function pzmap is
constructed. Note again the practical convergence of the discrete poles of the both systems.

Next, we perform the following experiment: reduce ten times the sampling step, which will now be
h = 0.01 s. According to traditional expectations, the convergence of transient characteristics for
continuous and corresponding discrete systems should only increase. Let’s check this assertion — plots of
the step responses are shown in Fig. 3, and the first surprise appeared on them: if the convergence of both
transient characteristics for the fifth-order system still continues, then for the seventh-order system we can
see a significant difference in step responses between the continuous system and its discrete analogue.

Ws(s) =

W, (s) =

75



Amplitude

V. Moroz, T.-M. Yanchak

Step Response

1 T 1 —
0.8 [ I
0.6 I
04 I
+continuose 5th order
02k discrete 5th order, h=0.1
: continuose 7th order
discrete 7th order, h=0.1
O 1 1 1 1 1 1 1 1
Q 2 4 6 8 10 12 14 16 18 20

Time (seconds)

Fig. 1. Step response of the 5th and 7th orders analog systems
and their discrete equivalents for step h = 0.1
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Fig. 2. Zeros and poles map of the 5th and 7th orders discrete systems for step h = 0.1
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Fig. 3. Step response of the 5-th and 7-th orders analog systems
and their discrete analog for step h =0.01s
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The map of zeros and poles distribution on the complex plane for discrete systems helps to find out
the reason of such phenomenon. It is known [1-4] that the region of discrete systems stability is contained
within a unit circle. Let’s look at Fig. 4 — it is seen that all discrete poles of both test systems have moved
to the boundary of a unit circle, to a point with coordinates (1, 0). Consider this place in an enlarged form

(Fig. 5).
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Fig. 4. Zeros and poles map of the 5th and 7th orders discrete systems for step h = 0.01 s

003 -
- 0.03
002f SN 1 :
- N\ 002}
001}
® 001}
§ m
N z
b or . z o
o =
g 3
= E
001 001}
- -
002 - 002} ’
003 - 003 . )
095 096 1.01 095 096 097 098 099 1 101

Real Axis

Fig. 5. Zeros and poles map of the 5-th and 7-th orders discrete systems for step h = 0.01 s (enlarged)

Even a brief analysis shows that for a fifth order discrete system all the poles placed in the unit
circle, although slightly different from each other. However, for a seventh order discrete system everything
immediately becomes clear — first, the poles are quite different (a must be the equal for the binomial form
polynomial), and, secondly, one pole slightly beyond the unit circle.

Even more understandable is the traditional situation in engineering practice — setting the
coefficients of the discrete transfer function in four decimal places: usually, during the development and
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fixing of digital systems, the discrete transfer functions coefficients entered into the control system with 3—
4 decimal places. In this case, the difference in behavior between the continuous system and its discrete
analogue becomes even clearer: for the 5-th order system, it already becomes visible for the step h =0.2 s
(Fig. 6), and for the 7-th order system the step h = 0.4 s becomes catastrophic (Fig. 7).
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Fig. 6. Step response and zeros and poles map of the 5-th order discrete system for steph =0.2 s
in case of setting the coefficients of the discrete transfer function by four decimal digits
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Fig. 7. Step response and zeros and poles map of the 7-th order discrete system for steph =0.4 s
in case of setting the coefficients of the discrete transfer function by four decimal digits

That is, in digital systems, the effect of the calculations accuracy and setting the coefficients of the
discrete transfer function can significantly change the behavior of the synthesized discrete system
compared to the expected one. Therefore, the answer to the following question is relevant: what is the
reason for such effect?

Note that in the known literature, the effect of limited bit data on the digital control system is either
ignored (for example, [5, 9]), or analyzed for two cases of effect [10, 11]:

On the accuracy of maintaining controlled coordinates, which is determined by the bit resolution
of the ADC or digital sensors (data accuracy);

Location of zeros and poles of discrete transfer functions only in a limited number of discrete
points on the complex plane.

Rolf Isermann [11] also proposes to consider the effect of limited bit resolution on the accuracy of
calculations as a random variable (noise) with a uniform distribution. An extended formulation of the
problem of the effect of limited arithmetic precision, the causes of which go beyond the generally accepted
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background, described in [12]. Analysis of possible causes of the effect of limited bit resolution on the
functioning of digital systems initiated in [13, 14].

3. Goal of research
The purpose of the research is to determine the minimum sampling timed in digital systems,
provided their stability and correspondence with the behavior of a continuous system (prototype), provided
the limited bit count and the accuracy of data. This will offer solutions to reduce the impact of limited bit
accuracye in digital systems and expand the range of rational sampling time.

4. Presentation of the main material

Let’s return to the above-mentioned test transfer functions, which correspond to the binomial form
with single poles in our case (such a choice and the poles values are only for convenience). Accordingly,
in the sampling process we will have a mapping of the form P; = ePx" of discrete poles into a complex
plane, where h is the sampling time; P, — continuous k-th pole; Py is a discrete k-th pole. It is clear
that in the case of a stable discrete system all its poles must placed in a unit circle, i.e., the condition
|P;] = |ePx"| < 1 must be satisfied from the stability conditions, and taking into account that for the
considered above the test systems, all continuous roots are unit (P, = —1), this condition in our case will
look like: Py = e~ < 1.

From the given stability condition, it is possible to understand that in case of a sampling step
reduction all (it is very important!) discrete roots will move to a point with coordinates (1, 0) on
unit circle border, that is, will appear on border of stability area: ;llgg e™ =1. For systems with

limited arithmetic precision, this means that if the value of the sampling step h is outside the bit grid
(lowest bit) of the device (simply, equal to zero), the discrete pole will move to the boundary of the
stability region.
Let consider the generalized cases that are associated with two types of poles and their location on
the complex plane:
real pole;
a pair of complex conjugate poles.
To start, consider the real pole, which characterizes the first order circuit. Such a circuit has a

. 1
transfer function 7

ey where T — time constant, and one real pole P = —%, which after sampling

h
correspond to the discrete pole P* = e 7. In this case, in a discrete system with the binary resolution D,
the ratio of the sampling step h to the time constant T is a significant value. In the case of limited bit

h
resolution, this is necessary to ensure that the value of the exponent e 7 is less than 1 from the condition

of stability:
20 -1 _n h 2P -1
1> >e T, hence ?Z—In ,

2b 2b
2D_1
zD

where the expression for a given binary resolution D is a number that is less than one by the value of

the lower binary digit (i.e., from the condition of stability is less than one and, at the same time, for a given
binary bit is closest to it).

For a typical 32-bit system for unsigned numbers we get % >2.328-1071° and for unsigned

numbers (one binary digit is allocated for sign) we get %2 4.657 - 10719, For systems with other

binary bit rate generalization for the ratio of the sampling step h to the time constant T is summarized
in Table 1.
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Table 1
The ratio of the allowable sampling step h to the time constant T for first-order systems
Binary resolution of the system Boundary relations hT

y y Without sign With sign
8 3.9x1073 7.8x1078
10 9.8x10™ 1.95x1073
12 2.9x10™ 4.9x10™
16 1.53x10°° 3.05x107°
32 2.33x10710 4.66x1071°

The pair of complex-conjugate poles corresponds to the second-order circuit with the transfer

function 22; where T is a time constant, & is the damping coefficient, and the two complex-
T?s24+28Ts+1

conjugate poles have corresponding values and discrete mappings:

_&+ /¥2_1 Discretize _gh o L2k
Pl,Z:% =P1*,2=e ET'e_] ET.

Discrete poles have two elements:

h
the first element e ™57 corresponds to the modulus of the complex number (the length of the

vector of the complex number);
. h
the second element e™/’ T corresponds to the rotation angle of the complex number.

The analysis of the limiting ratio of the sampling step h to the time constant T for the second-order
circuit (a pair of complex-conjugate discrete poles) will be performed in the same way as for the first-order
circuit (real discrete pole)

D . D
2Y -1 S eij"/@? accordingly ﬁ S _E In <2 2; 1) ;

2D - T=
1 accordingly h 1 <2D — 1)

1-¢2

20 —1
>e T —= —>—-=-In[——).
2 T= ¢ 2D

For a typical 32-bit system and a damping factor & = 0.3 for unsigned numbers we get
% > 7.761- 10711, and for unsigned numbers we have % > 1.552-107°. The generalization of the ratio of

the sampling step h to the time constant T for systems with different bits and the damping coefficient
& = 0.3 is summarized in Table. 2.
Table 2

The ratio of the allowable sampling step h to the time constant T for
a pair of complex-conjugate poles with a damping factor & = 0.3

Binary resolution of the system . . Boundary relations h/T —
Without sign With sign
8 1.31x1072 2.61x1072
10 3.26x1072 6.51x1072
12 8.14x10™* 1.63x1078
16 5.1x10°° 1.02x107*
32 7.76x10710 1.55x10°

Another and, as it turned out, much more significant factor in the influence of limited arithmetic
accuracy on the discrete system behavior is the influence of the accuracy of setting the coefficients of the
numerator and denominator polynomials of the discrete transfer function. An illustration of this effect
given at the beginning of the article.
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To check the influence of the polynomial order on the error of finding the transfer function poles
(polynomial roots) and their placement on the complex plane, polynomials (binomial form) of the second,
third, fifth and seventh orders used for the test (see Table 3).

Table 3

Investigated polynomials

The polynomial order n Polynomial
2 s2+2s+1
3 s3+3s3+3s+1
5 s® +5s* +10s® +10s2 + 55+ 1
7 s7 +7s® +21s° + 355* + 3553 + 21s2 + 7s + 1

An experiment for introduction of a small error (0.1 %) in the polynomial coefficients is obvious for
studying the effect of such errors, in particular, errors in setting the polynomials coefficients. For the
experiment, we used the change only in the last coefficient of the above-mentioned polynomials (at the
power of s9) of the second, third, fifth, and seventh orders (see Table 4). In the case of errors in other
polynomials coefficients, no significant differences were observed. The results were quite clear: the graphs
of the roots location on the complex plane for both cases (precise setting of the coefficients and with small
error) shown in Fig. 8-11.

Table 4

Investigated polynomials with introduced error

The polynomial order n Polynomial
2 s2+2s+1.001
3 s3+3s% +3s + 1.001
5 s® +5s* + 1053 + 10s% + 55 + 1.001
7 s7 + 7s® + 21s5 + 35s* + 3553 + 2152 + 75 + 1.001
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Fig. 8. Distribution of polynomial roots of the second order in the case
of exact setting of coefficients (labeled by a circle) and error 0.1 %
in the last coefficient (labeled by a diamond)
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polynomial of the 3-rd order
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Fig. 9. Distribution of a polynomial roots of the third order in the case of exact setting
of coefficients (labeled by a circle) and error 0.1 % in the last coefficient (labeled by a rhombus)
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Fig. 10. Distribution of a polynomial roots of the fifth order in the case of exact setting
of coefficients (labeled by a circle) and error 0.1 % in the last coefficient (labeled by a rhombus)
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Fig. 11. Distribution of a polynomial roots of the seventh order in the case of exact setting
of coefficients (labeled by a circle) and error 0.1 % in the last coefficient (labeled by a rhombus)
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Let’s notes that in the case of high-order polynomials (for example, a seventh-order polynomial in
Fig. 11), even 15-16 exact digits to specify the coefficients can affect the placement of roots (this can be
seen in the center of the last graph).

Thus, the conclusion: increasing the order of the polynomial increases its sensitivity to the
coefficients accuracy, which confirmed by the experience of applied mathematics, especially in the
situation of multiple roots [15, 16]. The occasion of multiple roots occurs in the case of a decrease in the
sampling step — all discrete roots of the numerator and denominator polynomials of the discrete transfer
function go to unit (see above).

There is only one way to reduce the influence of the accuracy of setting the polynomial coefficients -
by reducing the order of the discrete transfer function. This can be realized by using the decomposition of a
continuous transfer function (prototype) into elementary components — simple dynamic blocks of minimal
order, which are then discretized by some method [17].

For electrical systems we will have a fractional-rational transfer function, i.e., the order of the
numerator polynomial does not exceed the denominator polynomial order, which allows us to apply to it
the Heaviside decomposition theorem (i.e., to decompose the system) [18]. As a result, instead of a
continuous high order transfer function, we obtain the sum of continuous transfer functions of the first and
second orders, which are much less sensitive to the accuracy of the coefficients setting. The next step is a
simple procedure for sampling the obtained simple continuous transfer functions. An additional positive
effect of these actions will be the presence of only one sampling point — the input for the sum of simple
functions, which, accordingly, reduces sampling process errors.

Conclusion

In this article shows that the limited bit rate (arithmetic precision) of calculations in digital control
systems significantly affects their implementation, and there are two main factors:

1) limited accuracy of the discrete pole reproduction of the transfer function;

2) bad conditionality of the denominator polynomial of the system’s discrete transfer function in
the case of reducing the sampling step.

Using decomposition of continuous transfer function for decomposition into elementary components
not higher than second order with following sampling makes it possible to expand the boundaries of
acceptable sampling frequency.

Direction of further research
Further studies planned: on the effect of decomposition and the used sampling method on the
behavior of the synthesized discrete system.
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PAKTEPUCTHK 3 BUKOPUCTAHHAM MaTeMaTH4HOro 3acrocyHky MATLAB 3 6iomiorexoro Control System
Toolbox i mixTBepAM/IN aAKTYAJILHICTH i€l MPOGJIeMH.

Merta pocaifzkeHb — BU3HaYeHHs MiHIMaJIbHOTO Nepioay JMcKpeTu3anii B iMQpoBHUX cucTeMAax 3a
yMoBH 3a0e3meuYeHHs iXHbOI CTiliKOCTi Ta BinmoBinHOCTi MoBeniHLi HemepepBHOI cucTeMu (MPOTOTHILY)
3a 00MeKeHOI PO3PSAJAHOCTI 004uc/eHb i TOYHOCTI 3agaBaHHA Aanux. Ile gacTh 3Mory 3anmponoHyBaTu
pilIeHHA A/ 3MeHIIEeHHs HeraTUBHOIO BIJIMBY 00Me:KeHOI PO3pSIAHOCTI B po3po0aoBaHuX HUGPOBHX
cucTeMax i pO3MIMPUTH iaNa30H palioHAJBHOI YACTOTH JIMCKpeTH3auil.

CdopmynboBaHi rpaHUYHI 3aJI€KHOCTI IS MiHIMAJIBHOT0 KPOKY JUCKpeTH3amii Ta crajoi yacy
eJleMeHTApHUX IepeAaBajdbHUX (pyHKUil mepmoro i Apyroro mopsiakis. Ilokazano, mo y Bunaaky
o0MeskeHOI pPO3PSIAHOCTI MiIBHIEHHS MOPAAKY NoJiHOMa mepeaaBajibHOi (yHKUIi 30inbmIye ¥oro
YYTJHUBICTH 10 TOYHOCTI 3aJaBaHHsl HOro KoediuieHTIB.

HocaigxeHHss BIUIMBY O00MeKeHOI PO3PSIIHOCTI 00YMCIeHb BUKOHAHO HA NPUKJaLi nmepeaa-
BaJIbHUX GYHKUIH, 10 BinnoBinawTs diHomiaabsHuM dopmaM n’siToro Ta chomoro nopsiakis. Iloxazano
BILUIMB TOYHOCTi 3aJaBaHHsl Koe(iumieHTiB mojiHomMiB Ha mepexigHi gyHkuii Ta po3mimeHHs HyxiB i
NMOJIIOCIB TMCKPEeTHUX NepelaBaJbHUX (GYHKLiH Ha KOMIUIEKCHIN NJIOMIMHI 32JIe’KHO Big KPOKY
auckperusanii. [lopiBHAHO nepexiaHi XapaKTepHCTUKH JUCKPETHUX CHCTeM 3 00MeKeHOI0 PO3PSAHICTIO
3 IXHIM HemepepBHUM aHAJOIOM.

HJocaimkeHHs1 MiATBEPIKYIOTH, 0 MeTOJ AeKOMIIO3ULIl HemepepBHOI NepelaBaJbHOI (PyHKUIT
IUIS PO3KJIAJy HA ejleMEeHTApHI CKJAJO0BI He BHIE HIXK JPYroro mOpsiiKy 3 MOJAJBLIOI iX AUCKpe-
TH3ALi€I0 Aa€ 3MOry PO3LIMPHUTH MeXi TOMYCTMMHX YacTOT AMCKperu3audii y uugpoBux cucreMax 3
o0MekeHOI0 po3psaHicTI0O JaHuX. [loka3aHo BnJMB MOXMOOK HA NPUKJIAAI MOJiHOMIB 3 Jpyroro mo
CbOMUIl MOPSAZIOK, 30KpeMa 3i 30iJIbIIEeHHsIM NOPSAKY MOJiHOMA 3POCTA€ HOro YyTJMBICTH 10 TOYHOCTI
3aaBaHHs iioro Koe@inieHTiB.

Kniouosi cnoesa: osiiikoea po3paonicms, OeKkomnozuuin, OUCKpemu3zauia;, HYIi ma noacu
nepeoasanvHoi Qyukuyii, nepedasanvna @yukyia, nepexionuil npouec; noaAiHom; uugppoea cucmema
KepyGaHHs.
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