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One of the fundamental issues in exponential smoothing is to determine the smoothing
constants. Researchers usually use the determination available in the statistical software.
However, the result may not able to minimize the forecast error. For this study, the
optimal values of smoothing constant are based on minimizing the forecast errors, mean
absolute percentage error (MAPE) and root mean squared error (RMSE). The double
exponential smoothing method or Holt’s method is chosen where two constant values
must identify specifically the level and trend estimate, respectively. The real data set of
tourism emphasize the number of international tourists visit Malacca from year 2003 to
2016 has been studied. The result shows that the values of level and trend obtained from
this analysis is small and close to zero. This indicates that the level and trend react slowly
towards the data. In addition, simulation also have been computed using the random walk
model. The result suggested, by using optimal result available by statistical software is
not recommended since the obtained smoothing constants do not minimize the forecast
error.

Keywords: smoothing constant, forecasting, trend, level, error minimizing.

2010 MSC: 62M10 DOI: 10.23939/mmc2022.01.050

1. Introduction

Forecasting using mathematical model is an alternative planning tool to develop assumptions about
the future uncertainty [1]. It is important in many types of organizations since the prediction of future
events incorporated into decision making process. Time series analysis is one of the forecast approach
that uses the information of data being taken sequentially in time. One of the methods is known as
exponential smoothing one. This method enables to find the forecast values by averaging past values
of a series with in a decreasing series of weight. The most recent observation receives the largest weight
while the older observations receive the lesser weight.

The exponential smoothing method arise when Robert G. Brown, an Operations Research (OR)
Analyst for the US Navy in 1944 used a tracking model for fire control information on the location of
submarines [2]. The simple exponential smoothing was used to estimate the velocity and the lead angle
for firing depth chargers from destroyers. After six years, he broaden this method from continuous to
discrete time series and developed methods for trend and seasonality. One of his first applications was
forecasting spare parts demand in the US Navy inventory system. In 1956, Brown presented his work
on exponential smoothing at a conference and then formed his first book on inventory control [3]. He
also developed the ideas in his second book emphasized on Smoothing, Forecasting and Prediction of
Discrete Time Series [4]. Then, Charles C. Holt with support from Office of Naval Research (ONR)
performed similar Brown method in additive trends and different method for seasonal data. Holt’s
ideas have been widely spread among the public after his original work went published in a known
journal, International Journal of Forecasting in 2004 [5].
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The exponential smoothing method widely used in many fields especially in statistics, management
science, marketing and business operation [6]. Three classifications of the exponential smoothing
method are: simple exponential smoothing (SES), double exponential smoothing (Holt’s method) and
triple exponential smoothing (Winter’s method). The SES method is used for forecasting a stationary
series, Holt’s method when the data consist of trend pattern and Winter’s method is an exponential
smoothing approach for handling seasonal data.

Smoothing constants in the exponential smoothing are the assign weight in each of the data pattern.
These constant usually denoted as «, 5 and «, represent the level, the trend and the seasonality of the
series respectively. These constants are between 0 and 1, where small constant is suitable for stable
variations while large smoothing constant value is required when a rapid response to a real change in
the pattern of observations exists. Thus, assigning an optimal constant value is crucial step in order to
minimize the forecast errors. However, these exponential smoothing constants do not have a general
rule and specification on how they should be selected to obtain the best forecast values.

A lot of study have been conducted to find the smoothing constant. Realistically, more constant
values for exponential smoothing should be experimented to determine the optimal smoothing con-
stant [7,8]. In addition, [9] mentioned that no research paper has found the optimal value of exponential
smoothing constant. [10] agreed that smoothing constants are the key to successful forecasting but there
are no consistent guidelines in the forecasting literature on how they should be selected. There are no
empirical studies in time series that the smoothing constant should be selected between 0.7 and 0.9
and also no theoretical reasons seem to be available for the discussion [11]. Because of these issues,
researcher usually uses the available software to find the optimal smoothing constant in exponential
smoothing method.

2. Material and method

2.1. Smoothing method

Smoothing method gives the largest weight to the most recent observation meanwhile the older observa-
tions receive the lesser weight. Double exponential smoothing method or Holt’s method use smoothing
constant in level and trend components to provide pattern information before generate the forecast.
The equations can be written as follows:

Ly=aY;+ (1 —a) (L1 + Ti-1), (1)
Ty = B(Ly — Li—1 + (1 — B)Ti—1), (2)
Yiip = L+ pTi, (3)

where

L; = New smoothes value or estimate of current level;

a = Smoothing constant for the level, [0,1];

Y; = New observation or actual value of series in period t;
B = Smoothing constant for the trend estimate, [0,1];

T; = Trend estimate;

p = Periods to be forecast in the future;

YH_p = Forecast p periods into the future.

The smoothing constant is a value between 0 and 1. For this study, the combination will vary from
0.1 to 0.9 and each of a will be pairing with the fixed § and vice versa. All the possible combinations
are examined in order to obtain the constant values that minimize MAPE and RMSE. However, there
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are restrictions for a and 8 due to state space models where the interval for the o remains the same
but for 3 lies between 0 and the value of «. The interval will be 0 < o < 1 and 0 < 8* < «, where
the restriction for 5 denoted as 5* instead of 5 on the condition of 8 = af* [12]. As in the study,
the term use is still parameter 5 even it is actually 8* in restricted condition. The restrictions are
usually stricter than necessary (although in a few cases they are not restrictive enough). As example,
the combination of « and restricted 8 such as a = 0.2, § = 0.1 still can be computed but for the
combination o = 0.1, 8 = 0.2 can not be computed as the parameter of 3 is out of the range.

2.2. Forecast accuracy

Forecasting accuracy plays an important role when deciding among several alternatives. This study
aim is to find the forecast error which is the deviation between the actual value and the forecast
value of a given period. Most of the textbooks recommend the use of the mean absolute percentage
error (MAPE) and it was the primary measure in M-competition [13]. In addition, MAPE is often
used in practice because of its very intuitive interpretation in terms of relative error [14]. In other
side, [13] also stated that MSE and RMSE have been popular, largely because of their theoretical
relevance in statistical modeling. Thus, this study uses MAPE and RMSE as the measures of forecast
accuracy. The formulae for both measurements are as follow:

n

) .
MAPE = - %" % 100%; i # O; (4)
=1 t
1 — X

t=1

where y; is the actual value while ¢, is the forecast value.

2.3. Simulation

A random walk is a time series model in which the value of an observation in the current time period
is equal to the value of the observation in the previous time period plus the value of an error term from
a fixed probability distribution. Random walk is a non-stationary series. It is the simplest and yet
important model in time series forecasting. This model assumes that in each period, the variable takes
a random step away from its previous value, and the steps are independently and identically distributed
(ii.d). Two common types of random walk model are random walk with no drift and random walk
with drift. For this study, the model with no drift will be used and the value of generated data is from
random normal distribution with mean zero and variance one. The random walk formula is given as:

Vi =Y +er, (6)

where &; is identically distributed with mean zero and variance one for t = 1,2,3,...,t. Note that the
parameter 1 on the Y;_; renders the series is non-stationary since the random walk does depend on ¢
as shown below,

Var(Y;) = Var(Yi—1 + &)
=Var(e; +ea+ ... +¢)
=0’ 4+’ +...+o?
= to?. (7)
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A simulation study is conducted to further identify the optimal value of smoothing constant o and
B for the minimum MAPE and RMSE. The steps used to generate data and obtain optimal smoothing
constant for the simulation experiment are as follows:

1. The random data is generated and replicate using random walk model where the observation data
and the error term is from normal distribution with mean zero and variance one.

2. The series of data is divided into two sets of data which are in-sample and out-sample data.

3. Ets( ) function is used in these loops to give the output of estimated parameter a and . For
forecast values, forecast( ) function is used.

4. Obtain the MAPE and RMSE.

5. Step (4) to () are repeated for the different values of o and § with the increament of 0.1. The
combination values of o and 3 also will be examined in addition to get the minimum forecast error.

3. Result and discussion

The tourism data has been used emphasizing the number of international visitors in Malacca from 2003
to 2016. The data is divided into two parts, in-sample data consists of 13 years (2003-2015) for data
training and 2016 as out-sample data used to validate and measure the performance of the combination
smoothing constant for Holt’s method. The analysis was performed by using the R software.

The in-sample data of 13 years or specifically 156 months was implemented in ets( ) function to find
the best smoothing constant based on the build function in the R software. The computed model gave
the output of o and 3, initial values and model criterion. The program used maximizing the likelihood
in which this is an alternative use besides minimizing the sum of squared errors [5]. To obtain the
point forecast from the ET'S model, the forecast( ) function was used to forecast the number of tourists
for the next year or 12 months ahead. This study used the same program but with the different
combination of o and 3, where the main objective was to find the optimal smoothing constants in
which can minimize the MAPE and RMSE.

The result of different combination of @ and § and the maximum likelihood in R was shown in
Table 1. From the result, the value of MAPE and RMSE had been calculated for every estimated
«a and 8 and also the combination of a and 8. For RMSE, the lowest value obtained among all the
combination was 65.8258 while for MAPE was 1.5719. The value of RMSE was quite large because
the values were influenced by the larger number of tourists data set which in million. Both RMSE
and MAPE gave the same value of optimal smoothing constant which were & = 0.1 and g = 0.0156.
The value of 8 was close to zero showing that the level reacts weakly to each of the new observation.
Meanwhile, the value of § was approximately close to zero indicating that the trend was changing
steady over time.

For the simulation experiment, the same procedure was conducted but with replication to obtain
the significant optimal values of smoothing constants for N times. The simulated data was obtained by
using the random walk model with no shift. Each set of the data scattered unevenly in the direction
of ups and downs indicating the random walk series can be either in positive and negative ways.
The simulation data was proceeded with the parameters estimation and forecasting. The smoothing
constants of a and 8 were estimated by maximizing the likelihood, the default setting in R software.
To achieve the aim of obtaining the optimal smoothing constants, the values of @ and 8 combination
were conducted until produced the smallest forecast errors, MAPE and RMSE. Table 2 and Table 3
showed the minimum MAPE and RMSE obtained after all combinations of o and 8 had been tested.

From Table 2 and Table 3, the result showed that o = 0.9 and S = 0.1, were the most suitable
smoothing constants for the random walk model that has random data pattern. Moreover, the values
of a and 8 also indicate the significant result with the simulation. The value of 0.9 represents the
higher level exists in most of the data while the value 0.1 represents the lower trend exists in the most
of the simulation data.
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Table 1. The value of RMSE and MAPE for forecasting tourism data in 2016.

Combination of « and 3 « I} RMSE MAPE
« and 8 — MLE 0.4291 | 0.0001 | 75.5693 | 17.4624
0.1 0.0156 | 65.8258 1.5719
0.2 0.0001 | 69.1678 | 15.7610
0.3 0.0001 | 72.0707 | 16.7427
0.4 0.0001 | 74.8997 | 17.3402
« — trial and error, 5 — MLE 0.5 0.0001 | 77.1911 | 17.7402

0.6 0.0001 | 79.4548 | 18.0934

0.7 0.0001 | 81.7895 | 18.4284

0.8 0.0001 | 84.1406 | 18.7440

0.9 0.0001 | 86.4717 | 19.0674
0.5447 0.1 79.2974 | 17.9452
0.694 0.2 86.9615 | 19.1683
0.7726 0.3 97.2834 | 21.3216
0.8045 0.4 108.9587 | 24.7715
0.8143 0.5 122.2269 | 28.7330
0.8116 0.6 136.7576 | 32.7673
0.7999 0.7 151.9220 | 36.7732

a — MLE, 8 — trial and error

0.8 0.8 163.1919 | 39.6684
0.9 0.9 143.7109 | 34.6329
0.3 0.3 73.2408 | 16.4621
0.4 0.3 73.9296 | 1.6874
0.5 0.3 79.2197 | 17.8355

« — trial and error, § — fixed 0.3 0.6 0.3 86.6489 | 19.1219
0.7 0.3 93.5534 | 20.5563
0.8 0.3 98.3378 | 21.5704
0.9 0.3 100.4639 | 22.0576
0.4 0.4 73.0408 | 16.8822

05 0.4 | 84.0014 | 18.5475

. 0.6 0.4 | 958234 | 21.0511

« — trial and error, § — fixed 0.4 —5= 04 | 104.4502 | 23.4388
0.8 0.4 | 108.8574 | 24.7430

0.9 0.4 | 109.3304 | 24.8302

0.5 05 | 99.9317 | 22.2716

0.6 0.5 113.7586 | 26.3788
a — trial and error, 8 — fixed 0.5 0.7 0.5 121.0287 | 28.4291
0.8 0.5 122.4290 | 28.7952
0.9 0.5 119.3565 | 27.8763
0.6 0.6 139.8725 | 33.5526
0.7 0.6 141.7919 | 34.0973
0.8 0.6 137.5508 | 32.9809
0.9 0.6 129.3045 | 30.7175
0.7 0.7 163.6101 | 39.7152

« — trial and error, § — fixed 0.6

« — trial and error, 8 — fixed 0.7 0.8 0.7 151.9071 | 36.7694
0.9 0.7 137.5748 | 32.9873
0.8 0.8 163.1921 | 39.6684

« — trial and error, § — fixed 0.8

0.9 0.8 142.7098 | 34.3656
« — trial and error, § — fixed 0.9 0.9 0.9 143.7109 | 34.6329
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Table 2. The frequency of @ and 8 based on mini- Table 3. The frequency of a and 8 based on mini-

mizing MAPE. mizing RMSE.

« Frequency 153 Frequency « Frequency I} Frequency
0.1 14 0.1 19 0.1 16 0.1 18
0.2 7 0.2 14 0.2 6 0.2 12
0.3 9 0.3 5 0.3 5 0.3 7
0.4 7 0.4 4 0.4 10 0.4 4
0.5 7 0.5 5 0.5 7 0.5 6
0.6 6 0.6 6 0.6 5 0.6 2
0.7 12 0.7 6 0.7 15 0.7 7
0.8 8 0.8 6 0.8 9 0.8 10
0.9 30 0.9 11 0.9 27 0.9 9
0.0001 12 0.0001 13
Others (< 0.1) 12 Others (< 0.1) 12

4. Conclusion

Exponential smoothing is one of the useful methods in forecasting and this method is affected by
several factors such as smoothing constants in order to produce better forecast. This study identifies
the optimal values of smoothing constants by minimizing the forecast errors which are mean absolute
percentage error (MAPE) and root mean squared error (RMSE). The research considered the double
exponential smoothing (Holt’s method) as the aim was to find the optimal value of « and 3 for trend
data.

Based on the result, the default setting in statistical software will not give the best result in
minimizing the forecast error. It was shown in both, real and simulation study. For tourism data,
the optimal values of smoothing constant, o and § were 0.1 and 0.0156 respectively. Both smoothing
constants were close to zero and this indicates the level and trend components were hardly changed
over time and respond slowly to a new observation. This shows that the smoothing constants are
mostly affected by the recently data pattern.

For simulation data, the random walk model produced the value of a = 0.9 while § = 0.1. The
value of o was close to one which indicates the level reacts strongly towards the new observation while
the value of  was close to zero which indicates the trend reacts weakly changing over time. Thus, the
random walk model produced high value in level and low value in trend as the model takes random
step away from the previous data and most of the data scattered constantly.

As the conclusion, the smoothing constants computed directly from the default setting cannot be
taken as the optimal values of smoothing constant. This is because, the optimal value may not support
the main objective in forecasting which is to minimize the forecast error. For future recommendation,
this study will extend to build algorithm and study the effect of the initial values used in the exponential
smoothing computation to produce high accuracy in forecasting.
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Bun3sHadyeHHsi KOHCTAHTK eKCI'IOHEHLI,iaJ'IbHOI'O 3rnag>kXyBaHHs Ons
MIHIMI3aAlll NoxXmokn NPpOrHo3y

Hyp H. A. M., Paxman H. X. A.

Kagedpa mamemamuru ma cmamucmuk,
Darysvmem npupooHUNUT HAYK,
Ynisepcumem Ilympa Manatizis,

48400 UPM Cepdane, Ceaanzop, Manratizis

Opniero 3 hyHmaMeHTaTIBHIX TPOHJIEM Y €KCIIOHEHIIAJILHOMY 3118/ [?KYBAHHI € BUZHAYUCHHS
KOHCTaHT 3TJIa KyBaHHdA. JloCHinHUKN 3a3BUYail BUKOPUCTOBYIOTh BU3HAUYEHHS, sKE JI0-
CTyIIHE B CTATUCTUYHOMY IIPOrpaMHOMY 3abesmnedenHi. OmqHak, pe3yabTaT HE MOXKE MiHi-
Mi3yBaTu MOXUOKY IPOTHO3Y. Jljist MO0 JOC/IKEHHS OINTHMAJIbHI 3HAYEHHS KOHCTaH-
TH 3IIaKyBaHHs 0a3yOThCS Ha MiHIMI3aIlil TPOrHO3HUX MTOMUJIOK, CEPEIHBOI abCOJIIOT-
Hol nporentroi noxubku (CATIIT) ta cepemaboksaaparmanol moxubku (CKII). O6pano
MIOABIfTHUI €KCIIOHEHIIAJILHUAM METO/I 3TJIa Ky BaHHS a00 MeTo1 X0/IbTa, Je JIBa MOCTIHIX
3HaYeHHs MOBUHHI OyTH BU3HAYEH] Ha PIiBHI Ta OIIHIN TpeHa, Biamosimguo. JlocrimKyBaBcs
peasbHUiT HAOIP TYPUCTUIHUX JTAHUX, B SKOMY BHJILJIEHO KUIBKICTh MI2KHAPOJIHUAX TYPHUC-
TiB, gki BinBimaan Mamakky 3 2003 poky ;10 2016 poky. Pe3ysbpraTr mokasye, mo 3Ha9eHHS
PiBHS Ta TPEHJIY, SKi OTPUMAaHi y Pe3yabTaTi IbOro aHaJIi3y, € HEBEJIUKUMH Ta OJU3bKUMU
Jo uyis. e Bka3ye Ha Te, 10 PiBeHD i TPEH/ I TOBLILHO pearymoTh Ha gani. KpiMm Toro, cumy-
JIALIA TAKOXK OyJ1a po3paxoBaHa 33 JIOIIOMOI'0I0 MOJIEJIi B IKOBOro OIyKaHHs. Pe3ysibrar
MMOKa3y€, MO BUKOPUCTAHHAM ONTUMAJBLHOIO PEe3yIbTaTy, SKUH JOCTYIHANU CTATHCTATHIM
nporpaMHuM 3a0e3MedeHHsIM, He PEKOMEH IYEThCsl, OCKIJIBKA OTPpUMAaHI KOHCTAHTH 3TJIal-
JKyBaHHs He MIHIMI3yIOTh ITOXHOKY IIPOTHO3Y.

Knto4oBi €noBa: 324a0/cy10na KOHRCManma, npo2Ho3yeatts, mpend, pieens, MiHiMI3a-
ULA NOMUAOK.
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