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In this work, we propose a new estimate algorithm for the parameters of a GARCH(p, q)
model. This algorithm turns out to be very reliable in estimating the true parameter’s
values of a given model. It combines maximum likelihood method, Kalman filter algorithm
and the simulated annealing (SA) method, without any assumptions about initial values.
Simulation results demonstrate that the algorithm is liable and promising.
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1. Introduction

State-space models and Kalman filtering have become important and powerful tools for the statistician
and the econometrician. Together they provide researcher with a modeling framework and a compu-
tationally efficient way to compute parameter estimates over a wide range of situations. Problems
involving stationary and non-stationary stochastic processes, systematically or stochastically varying
parameters, and unobserved or latent variables (as signal extraction problems) all have been fruitfully
approached with these tools. In addition, smoothing problems and time series with missing observa-
tions have been studied with methodologies based on this combination. The state-space model and
Kalman filter recursions were first introduced in linear time series models, especially for estimation
and prediction of autoregressive moving average (ARMA) processes (see Jones(1980) [1–3]). In each of
these instances, the state-space formulation and Kalman filter have yielded a modeling and estimation
methodology that is much less cumbersome than more traditional regression-based approach.

In this paper, we, in turn, mobilize the state-space representation and the Kalman filter to handle
parameters estimation problem in GARCH(p, q) models case. The GARCH models, which stand
for “generalized autoregressive conditionally heteroscedastic”, were proposed by Bollerslev [4], as an
extension of the ARCH models introduced by Engle [5]. Several authors have discussed estimation
issues in ARCH and GARCH models, assuming that the fourth moment exists Weiss [6] established
the asymptotic properties of the QMLE for ARCH models. Lumsdaine [7] treated the special case of the
strictly stationary GARCH(1, 1) model and established the asymptotic properties for the local QMLE
(see also [8]). In [7], the conditions on the coefficients α1 and β1 allow to handle the IGARCH(1, 1)
model (see Definition 2.1 with p = q = 1 and α1 + β1 = 1). They are, however, very restrictive with
regard to the independent and identically distributed (i.i.d) process: it is assumed that E|ηt|

32 < ∞
and that the density of ηt has a unique mode and is bounded in a neighborhood of 0. In [8], the
consistency of the global estimator is obtained under the assumption of second-order stationarity.

Berkes, Horváth, and Kokoszka were the first to give a rigorous proof of the asymptotic properties
of the QMLE in the GARCH(p, q) case under very weak assumptions; see [9–13]. The assumptions
given in [9] were weakened slightly in [14]. The proofs presented here come from that paper. An
extension to non-iid errors was proposed by Escanciano (2009).
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Through this work, we aim to contribute to parameter estimation matters in GARCH(p, q) models
by means of a new approach. The developed method relies on the fact that the log-likelihood function
can be calculated across the Kalman filter algorithm (see [15,16]), providing an appropriate state-space
representation of the concerned model. The optimization of log-likelihood function is carried out by
SA method (see [17]), which is a global optimization algorithm for functions of continuous variables.

Note that the same idea has been used for parameters estimation in some non-linear time series.
(see [18–22] and [23]).

The content of the rest of the document is organized as follows. Section 2 presents the GARCH(p, q)
model and its main properties. In Section 3, we announce the central result of this study. First, we
state the representation of the state space for GARCH(p, q); then we express the log-likelihood function
via the Kalman filter; then we apply the SA method to obtain its minimum. In the next section, we
drive some empirical experiments to illustrate the algorithm performances. And finally, we end the
discussion with a conclusion in Section 5.

2. Preliminary notes

Definition 1 (Strong GARCH(p, q) process). Let (ηt) be sequence of independent and identically
distributed (i.i.d.) random variables (E(ηt) = 0, E(η2t ) = 1). The process (εt) is called a strong
GARCH(p, q) (with respect to the sequence (ηt)) if











εt = σtηt,

σ2
t = ω +

q
∑

i=1

αiε
2
t−i +

p
∑

j=1

βjσ
2
t−j ,

(1)

where the αi and βj are nonnegative constants and ω is a (strictly) positive constant.

The issue of stationarity for the GARCH(p, q) models was discussed by Bougerol and Picard [24].
The special case of GARCH(1, 1) model was studied by Nelson [25] under the assumption E log+ η2t <

∞ and extended by Klüppelberg and al. [26] to the case of E log+ η2t = +∞. Bollerslev contributed as
well in this matter by deriving conditions for GARCH(p, q) second-order stationarity, [4].

It is sometimes useful to consider the ARCH(∞) representation introduced by Robinson for
GARCH(p, q) process, [27]; for more details see [28]. The strictly stationary of ARCH(∞) process
was established by Robinson and Zaffaroni and Douc, Roueff and Soulier (2008) [29]. The second-
order stationarity, as well as the positivity of the autocovariance of the squares, were obtained, on
other hand, by Giraitis, Kokoszka and Leipus [28].

Milhoj, Karanasos and He and Teräsvirta were interested in the examination of the fourth-order
moment structure and the autocovariance of the squares of GARCH processes [30–32], while Ling and
McAleer [33] stated the necessary and sufficient condition for the existence of even-order moments, in
addition they derived an existence condition for the moment of order s, with s > 0; see [34]. Chen and
An [35] also established a sufficient condition for the existence of even order moments.

Theorem 1 (Second-order stationarity). If there exists a GARCH(p, q) process, in the sense of
Definition 2.1, which is the second-order stationary and non-anticipative, and if ω > 0, then

q
∑

i=1

αi +

p
∑

j=1

βj < 1. (2)

Conversely, if condition (2) holds, the unique strictly stationary solution of model (1) is a weak white
noise (and thus is second-order stationary). In addition, there exists no other second-order stationary
solution.
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3. Estimating algorithm of parameters of the GARCH(p, q) model

Let (εt) be a GARCH(p, q) model defined by (1). We suppose that
∑q

i=1
αi +

∑p
j=1

βj < 1 and (ηt) is
an i.i.d N(0, 1).

Remark 1. Denote by θ = (ω,α1, . . . , αq, β1, . . . , βp)
′ the GARCH(p, q) parameter and define the

QMLE by minimizing:

ℓ̃n(θ) = n−1

n
∑

t=1

{

ε2t
σ̃2
t (θ)

+ log σ̃2
t (θ)

}

. (3)

Where

σ̃t
2(θ) = ω +

q
∑

i=1

αiε
2
t−i +

p
∑

j=1

βj σ̃
2
t−j for t = 1, . . . , n. (4)

With initial values for ε20, ε
2
1, . . . , ε21−q and σ̃2

0(θ), σ̃
2
1(θ), . . . , σ̃2

1−p(θ) (in practice the choice of the
initial values is important in QMLE method).

Without any assumptions about the initial values (ε20, ε
2
1, . . . , ε21−q) and σ̃2

0(θ), σ̃
2
1(θ), . . . , σ̃2

1−p(θ)

which are not known in practice, we intend to produce (σ̃t
2(θ)).

Let θ = (θ1, θ2, . . . , θp+q+1), where θ1 = ω, θ2 = α1, . . . , θq+1 = αq, θq+2 = β1 . . . , θq+p+1 = βp
denote the vector of unknown parameters, (ε1, ε2, . . . , εn) the observed data, and Ft = (ε1, . . . , εt) is
the set of observations available at time t = 1, . . . , n. In this study, we propose estimating θ by using
quasi-maximum likelihood, given by minimizing:

ℓn(ε1, . . . , εn; θ) =
1

n

n
∑

t=1

{

ε2t
σ̂2

t|t−1
(θ)

+ log σ̂2

t|t−1
(θ)

}

, (5)

where the σ̂2

t|t−1
(θ) is generated recursively, for t > 1, by the Kalman Filter, without any assumptions

about pre-sample values which is essential in other methods of estimating the likelihood function. Our
algorithm relies essentially on the state-space representation of our model, here we give the convenient
one.

We pose m = max(p, q), Xt = ε2t and νt = ε2t − σ2
t .

Then

σ2
t = ω +

m
∑

i=1

(αi + βi)σ
2
t−i +

m
∑

i=1

αiνt−i = ω +

m
∑

i=1

(αi + βi)Xt−i +

m
∑

i=1

−βiνt−i.

Or

Xt = ω +

m
∑

i=1

(αi + βi)Xt−i + νt +

m
∑

i=1

−βiνt−i.

This representation is given by:
{

Zt+1 = AZt +Gνt +Ω: state equation,

Xt = HZt + νt : observation equation.

Where

H = (1, 0, . . . , 0), Ω = (ω, ω, . . . , ω), G =

















α1

α2

...

...
αm

















, A =



















α1 + β1 1 0 . . . 0

α2 + β2 0 1
. . .

...
...

...
. . .

. . . 0
... 0 . . . 0 1

αm + βm 0 . . . . . . 0



















∈ M(m,m)(R).
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The jith component of the state vector Zt is given by:

Zj,t+1 = ω +
m
∑

i=j

(αi + βi)Xt+j−i +
m
∑

i=j

−βiνt+j−i j = 1, . . . ,m.

Kalman filter recursively generates an optimal forecast Ẑt+1|t = E[Zt+1|Ft] of the state vector Zt+1,

and σ̂2

t+1|t = HẐt+1|t, with associated mean square error Pt+1|t = V [Zt+1 − Ẑt+1|t], t = 1, . . . , n.
The log-likelihood function was constructed via the Kalman filter and optimized using the SA

method. We chose this method because it doesn’t involve likelihood derivatives besides SA algorithm
is not limited to the local minima encountered in the first place but adopts an iterative random
search procedure with adaptive moves along with the coordinate directions until a probabilistic control
criterion is satisfied. Next, we provide an algorithms series that together will help to constitute our
global estimating algorithm QMLKF (quasi-maximum likelihood and Kalman filter estimation).

Algorithm 1 Test(θ)

1: if
∑p+q+1

i=2 θi < 1 then

Then go to next;
2: else

3: return to the previous step and take the previous point as starting point.

Algorithm 2 KF(θ)

1: Initialization of the state vector Ẑ1|0 which denotes a forcast of Z1. The forcast of σ2
1 is given by σ̂2

1|0 =

HẐ1|0;

2: Iterate on Ẑt+1|t for t = 2, . . . , n;

3: The forcast of σ2
t+1 is given by σ̂2

t+1|t = HẐt+1|t;

4: Compute ℓn(ε1, . . . , εn; θ).

Algorithm 3 QMLKF)

1: Initialize: the vector parameters θ the step vector ν and the temperature T .
2: Starting from the point θi, generate a random point θ along the direction h: θ = θi + rνmh

eh,
where r is a random number generated in the range [−1, 1] by a pseudorandom generator;
eh is the vector of the hth coordinate direction; and νmh

is the component of the step vector ν;
along the same direction.

3: Call sub algorithm Test(θ).
4: Call sub algorithm KF(θ)

Compute KF(θi) and KF(θ)
If KF(θ) 6 KF(θi) accept the new point
Else accept or reject the new point with acceptance probability p:

p = exp
(

KF(θi)−KF(θ)
T

)

generate a uniformly distributed random number p′ in the range [0, 1]
If p′ < p, the point is accepted otherwise it is rejected.

5: Steps 1 to 3 are repeated for each coordinate direction i, i = 1, . . . ,m
(m is the dimension of the vector parameter).

6: Steps 1 to 4 are repeated Ns times (Ns is the number of step variation)
and the step vector ν is adjusted.

7: Steps 1 to 5 are repeated NT times (NT is the number of temperature reduction)
the temperature is reduced following the rule: T ′ = rTT with rT ∈ [0, 1].

8: Steps 1 to 6 are repeated until a termination criterion is satisfied.
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4. Simulation study

To evaluate the performance of our estimation algorithm, we run a comparative study that involves
estimates obtained by the quasi-maximum likelihood method (QMLE) considered in the literature, to
achieve this we consider two examples of model GARCH(1, 2) and GARCH(2, 1):

1.

{

εt = σtηt, (ηt) iid N(0, 1),

σ2
t = 1 + 0.3ε2t−1 + 0.2ε2t−2 + 0.4σ2

t−1.

2.

{

εt = σtηt, (ηt) iid N(0, 1),

σ2
t = 1 + 0.4ε2t−1 + 0.2σ2

t−1 + 0.3σ2
t−2

In order to achieve a Monte Carlo simulation for the models above, we generated 1000 replications
of sample sizes n = 50, 100 and 150, and applied the QMLKF algorithm for each sample.

We summarize the results of this experiment in Table 1 and Table 2. We use notation QMLE for
the quasi-maximum likelihood estimators, QMLKF for the estimation by our algorithm. The mean
and MSE are calculated for each estimator.

Recall that the quasi-maximum likelihood estimator (QMLE) is obtained by the SA method.

Table 1. Mean and MSE of estimated parameters.

QMLKF QMLE
true mean MSE mean MSE

n=50 ω 1 1.0871 0.0512 1.1347 0.0596
α1 0.3 0.2468 0.0372 0.2207 0.0587
α2 0.2 0.2241 0.0563 0.2272 0.0651
β1 0.4 0.3175 0.0502 0.2880 0.0969

n=100 ω 1 1.0425 0.0143 1.0618 0.0297
α1 0.3 0.2569 0.0247 0.2315 0.0324
α2 0.2 0.2124 0.0291 0.2195 0.0307
β1 0.4 0.3347 0.0382 0.3292 0.0674

n=150 ω 1 1.0378 0.0113 1.0583 0.0213
α1 0.3 0.2847 0.0114 0.2715 0.0200
α2 0.2 0.2110 0.0213 0.2182 0.0261
β1 0.4 0.3605 0.0326 0.3431 0.0446

Table 2. Mean and MSE of estimated parameters.

QMLKF QMLE
true mean MSE mean MSE

n=50 ω 1 1.0953 0.0816 1.1490 0.1142
α1 0.4 0.4482 0.0614 0.4670 0.0791
β1 0.2 0.1574 0.0318 0.1543 0.0359
β2 0.3 0.3412 0.0627 0.3525 0.1078

n=100 ω 1 1.0472 0.0652 1.0664 0.1053
α1 0.4 0.4302 0.0527 0.4411 0.0431
β1 0.2 0.1803 0.0268 0.2418 0.0301
β2 0.3 0.3254 0.0439 0.3341 0.0834

n=150 ω 1 1.0347 0.0395 1.0590 0.0851
α1 0.4 0.4215 0.0197 0.3704 0.0289
β1 0.2 0.2102 0.0138 0.1832 0.0286
β2 0.3 0.3104 0.0268 0.3237 0.0736

The results of the empirical study presented in the table above showed that our algorithm is
efficient, indeed, the samples mean square errors are generally smaller than those generated by the
quasi-maximum likelihood estimators (QMLE), on the other hand, the bias of the QMLKF estimator
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is each time lower than the bias of the QMLE. We also find that by increasing the sample size, the
bias and the MSE decrease considerably without any conditions on the initial values. We can therefore
conclude that the performance of our estimation procedure is promising.

5. Conclusion

In this article, we designed a new algorithm to generate the quasi-maximum likelihood estimates of
GRCH(p, q) model parameters. The construction of the log-likelihood function was based on the
Kalman filter while the optimization part was realized by SA method. The simulations show that our
estimation approach performed successfully and that it is more efficient in terms of bias and standard
error than the competition, without assumptions on the initial values.

Data availability

Only computer-generated data have been used so all researchers can find our results from the applica-
tion of our algorithms and computer-simulated data.
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[26] Klüppelberg C., Lindner A., Maller R. A continuous time GARCH process driven by a Lévy process: sta-
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Чисельна оптимiзацiя функцiї правдоподiбностi на основi фiльтра
Калмана в моделях GARCH

Бенмумен М.

LaMSD, кафедра математики, факультет природничих наук,

Унiверситет Мохаммеда Першого, Уджда, Марокко

У цiй роботi пропонується новий алгоритм оцiнки параметрiв моделi GARCH(p, q).
Цей алгоритм виявляється дуже надiйним в оцiнцi справжнiх значень параметрiв да-
ної моделi. Вiн поєднує в собi метод максимальної правдоподiбностi, алгоритм фiль-
тра Калмана та метод симуляцiї “вiдпалу” (СА) без будь-яких припущень щодо по-
чаткових значень. Результати моделювання демонструють, що алгоритм придатний
i перспективний.

Ключовi слова: моделi GARCH, максимальна ймовiрнiсть, фiльтр Калмана, мо-

делювання “вiдпалу”.
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