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1. Introduction

In this work, we consider the inverse problem of identifying a Robin coefficient of a 2D elliptic equation
for anisotropic inhomogeneous media using some partial boundary measurements. This type of ill-posed
problem has received much attention over the last three decades, both from theoretical and numerical
aspects. The inverse Robin problem arises naturally in many physical situations, a rather incomplete
list of such applications may be found in terms of estimation of parameters in thermal models [1, 2],
corrosion detection of an electrostatic conductor [3,4], the metal-silicon contact in MOSFET devices [5],
quenching processes [6], we refer to [7] and the references therein for more engineering applications.

All these applications usually lead to estimating the Robin coefficient on an inaccessible boundary
from additional data, which are supposed to be either internal or on the accessible part of the boundary.
Such measurements are usually contaminated with noise, which complicates the recovery process; in
other words, the compatibility condition is not guaranteed to ensure the existence of a solution, and
any small error in the data may lead to an erroneous solution; therefore, one needs to solve the problem
in a different way equivalent to the original problem.

Generally speaking, during the reconstruction process of the Robin coefficient, one has to investigate
three major issues: uniqueness, stability, and identification. Regarding the uniqueness of the Robin
parameter, in [3] the author proved that the Robin parameter can be uniquely determined via some
boundary measurements assuming a specific regularity on the yet unknown coefficient (C3(∂Ω) with ∂Ω
is the boundary of the domain problem), the result was then extended in [8] to the case of continuous
Robin coefficient with some restriction on the boundedness of the parameter, whereas Choulli [9]
has proved some results for the non-linear heat equation. In numerical applications, the stability is
very important criterion, one has to ensure the continuous dependence of the unknown parameter
on the additional data, in this context we may cite the work of [8] who has established a local and
directional Lipschitz stability estimate, Choulli [9] has proved a local Lipschitz stability estimate for an
arbitrary smooth domain and a log-log stability estimate for rectangular domains, whereas Sincich [10]
developed a global Lipschitz stability estimate of sparse Robin coefficient, however, the Lipschitz
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constant explodes exponentially as the Robin coefficient tends to infinity. In particular, the logarithmic
global stability of the Robin inverse problem has been well established by many authors, the reader may
consult the references [9, 11–14] and the references therein. Regarding the identification issue, many
numerical methods were proposed, among them, we may cite the work of [15] who used an iterative
gradient process by minimizing a trace error, in [16] the authors proposed to minimize the difference
between the outside and inside temperature on the accessible part of the boundary, a thin plate
approximation of the Robin coefficient was adopted in [3], whereas in [17] a minimization procedure
based on a trigonometric polynomial approximation is studied.

In the present work, we are concerned with a nonlinear inverse Robin problem associated with
a general elliptic equation for inhomogeneous anisotropic materials from additional boundary data.
The problem is transformed into an optimization one and the forward problem is approximated using
the discontinuous dual reciprocity boundary element method, whereas two automated regularizing
algorithms are presented and used to stably recover the unknown Robin coefficient. The discontinuous
dual reciprocity method in conjuncture with regularized quasi-Newton algorithm was established by
the authors for the case of inverse source problem, see [18–20].

The rest of the work is organized as follows, in the second section, the forward and inverse models are
outlined, and an equivalent formulation of the initial inverse problem is also established. In section 3,
the inverse Robin problem is analyzed, the numerical approximation of the forward model as well as the
proposed algorithms are described in the section 4, numerical validations are investigated in section 5.
Our conclusions are drawn in the final section.

2. Model problems

The purpose of this section is to introduce and state the direct and inverse problems. The first part is
concerned with the presentation of the direct problem then a well-posedness result is stated, next we
describe the mathematical formulation of the Robin inverse problem.

2.1. Forward model problem

We consider here the following mixed boundary value problem for anisotropic inhomogeneous materials,
let Ω be a bounded connected domain in R

2, its boundary Γ = ∂Ω is a simple closed curve such that
Γ = ΓN ∪ ΓR with ΓN ∩ ΓR = ∅:



















−∇ · (ξ(x)∇u) + b(x)u = f(x) in Ω,

ξ(x)
∂u

∂n
= h(x) on ΓN ,

ξ(x)
∂u

∂n
+ γ(x)u(x) = k(x) on ΓR.

(1)

The coefficients ξ(x) and b(x) can be viewed, respectively, as the heat conductivity and radiation,
which satisfy the conditions: 0 < ξ0 6 ξ(x) 6 ξ1, 0 6 b0 6 b(x) 6 b1, whereas the function f(x) may
model the source strength and k(x) is the ambient temperature.

The following lemma states that the forward problem (1) is well posed.

Lemma 1 (see Lions and Magenes [21]). Let Ω be an open bounded and connected domain with
C1 boundary, ξ(x) ∈ H1(Ω), b(x) ∈ L∞(Ω), and γ(x) ∈ L∞(ΓR) with positive lower and upper bounds
ξ0, ξ1, b0, b1 and γ1, γ2, respectively, then there exists a unique solution u ∈ H1(Ω) of the system (1).

2.2. Inverse model problem formulation and uniqueness result

As stated previously, our main interest is to recover the Robin parameter γ(x) lying in the inaccessible
part ΓR. Therefore, we need some extra measurements of the solution of the forward model (1), in
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this work, the measurements are supposed to be available on the accessible boundary ΓN . Roughly
speaking, the inverse Robin problem is given as follows.

Inverse Robin problem : Recover the coefficient γ on ΓR through the measurement data ũ of u
on ΓN .

In the following, we establish an identifiability result, and we prove that the inverse Robin problem
is uniquely determined by the additional data of u on ΓN . We have the following theorem.

Theorem 1 (Uniqueness). Let η1 and η2 be two solutions of the inverse problem (5), we assume
that the boundary ∂Ω is smooth enough, meas{x ∈ ΓR : u(η1) = 0} = 0 and u(η1) = u(η2) on ΓN ,
then η1 = η2 a.e. on ΓR.

Proof. Let us denote ω = u(η1)− u(η2), with η1, η2 ∈ γad such that u(η1) = u(η2) on ΓN .
We can easily verify that ω solves the following problem:

−∇ · (ξ(x)∇ω) + b(x)ω = 0 in Ω,

ξ(x)
∂ω

∂n
= 0 on ΓN ,

ω = 0 on ΓN .

By applying the unique continuation principle [22], we have ω = 0 in Ω, hence, by the trace theorem,
we have ω = 0 on ∂Ω.

On the other hand, we have on ΓR

ξ(x)
∂ω

∂n
+ η1u (η1)− η2u (η2) = 0,

thus we have
u(η1)(η1 − η2) = 0 a.e. on ΓR.

Since meas{x ∈ ΓR : u(η1) = 0} = 0 we obtain η1 = η2 a.e. on ΓR. �

3. Analysis of the inverse Robin problem

We note that in real-life applications, the measurement data are always contaminated with noise. We
assume that the noise level of the observation data ũδ of the true solution ũ is of the order δ, such that

‖ũδ − ũ‖L2(ΓN ) 6 δ.

Since the inverse problem is known to be ill-posed, a stabilization technique is needed. In this paper, we
formulate the inverse Robin problem as a stabilized nonlinear minimization problem with the standard
Tikhonov regularization:

min
γ∈γad

J(u, γ) :=
1

2

∫

ΓN

(u(γ) − ũδ)
2ds + α

∫

ΓR

γ2ds, (2)

with
γad = {γ(x) ∈ L∞(ΓR) : 0 < γ1 6 γ 6 γ2 a.e. on ΓR} ,

and u(γ) ∈ H1(Ω) is the solution of the forward problem which satisfying:

∫

Ω
ξ∇u · ∇φdx+

∫

Ω
buφ dx+

∫

ΓR

γuφ ds =

∫

Ω
fφ dx+

∫

ΓR

kφ ds+

∫

ΓN

hφds ∀φ ∈ H1(Ω). (3)
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We introduce the coefficient to solution map named F given as follows:

F : γad 7−→ L2(ΓN ),

γ 7−→ F(γ) := u(γ).

The optimization problem (2) can now be reduced as:

min
γ∈γad

J(γ) :=
1

2

∫

ΓN

(F(γ)− ũδ)
2ds+ α

∫

ΓR

γ2ds. (4)

The inverse Robin problem is now formulated as follows:

Find γ∗ ∈ γad s.t: J(γ∗) 6 J(γ) ∀γ ∈ γad and u(γ) solves (3). (5)

In order to take into account the instabilities of the inverse Robin problem caused by the noise in
the additional data, the problem is formulated by a constrained optimization problem given in (5), the
aim now is to prove that the minimization problem has at least one solution.

Theorem 2. The optimization problem (5) admits at least one solution.

Proof. It is straightforward to see that inf J(γ) is finite over the admissible set γad, hence there exists
a minimizing sequence denoted γn ∈ γad such that

lim
n→∞

J(γn) = inf
γ∈γad

J(γ).

The boundedness of γn in γad ensures the existence of a subsequence still denoted γn such that γn
converges weakly ∗ to some γ∗ in L∞(ΓR) where in particular we have used Banach–Alaoglu theorem.
Next we prove that γ∗ is a minimizer of (5).

We let un = u(γn), hence it satisfies the variational form (3):

∫

Ω
ξ∇un · ∇φdx+

∫

Ω
bunφdx+

∫

ΓR

γunφds =

∫

Ω
fφ dx+

∫

ΓR

kφ ds +

∫

ΓN

hφds ∀φ ∈ H1(Ω).

We can easily derive the following inequality

min{ξ0, b0}‖un‖2H1(Ω) + γ1‖un‖2L2(ΓR)

6 ‖f‖L2(Ω)‖un‖L2(Ω) + ‖k‖L2(ΓR)‖un‖L2(ΓR) + ‖h‖L2(ΓN )‖un‖L2(ΓN )

6 C
(

‖f‖L2(Ω) + ‖k‖L2(ΓR) + ‖h‖L2(ΓN )

)

‖un‖H1(Ω) 6 C‖un‖H1(Ω),

where we take φ = un and we use the fact that ‖un‖L2(∂Ω) 6 C‖un‖H1(Ω) (the trace theorem) and the
boundedness of ξ, b and γn. Consequently, there exists a constant C > 0 independent of n such that:
‖un‖H1(Ω) 6 C, hence there exists a subsequence still denoted un and some u∗ ∈ H1(Ω) such that

un ⇀ u∗, by using the continuous embedding of H1(Ω) in H1/2(∂Ω) (trace theorem) and the compact
embedding of H1/2(∂Ω) in L2(Ω) we deduce the strong convergence of un → u∗ in L2(∂Ω).

Next we prove that u∗ = u(γ∗), we have for every φ ∈ H1(Ω):

∫

ΓR

γnunφds =

∫

ΓR

γn(un − u∗)φds +

∫

ΓR

γnu
∗φds

using the boundedness of γn, the strong convergence of un in L2(∂Ω) and the weak convergence of γn,
we conclude that:

lim
n→∞

∫

ΓR

γnunφds =

∫

ΓR

γ∗u∗φds.
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Since un verifies for every φ ∈ H1(Ω)

∫

Ω
ξ∇un · ∇φdx+

∫

Ω
bunφdx+

∫

ΓR

γnunφds =

∫

Ω
fφ dx+

∫

ΓR

kφ ds+

∫

ΓN

hφds ∀φ ∈ H1(Ω).

We thus have by letting n → ∞:

∫

Ω
ξ∇u∗ · ∇φdx+

∫

Ω
bu∗φdx+

∫

ΓR

γ∗u∗φds =

∫

Ω
fφ dx+

∫

ΓR

kφ ds +

∫

ΓN

hφds ∀φ ∈ H1(Ω).

From which we conclude that u∗ = u(γ∗).
By using the fact that:

lim
n→∞

∫

ΓN

(F(γn)− ũδ)
2ds =

∫

ΓN

(F(γ∗)− ũδ)
2ds

and the lower semi-continuity of a norm we get:

J(γ∗) = ‖F(γ∗)− ũδ‖2ΓN
+ α‖γ∗‖2ΓR

= lim
n→∞

‖F(γn)− ũδ‖2ΓN
+ α‖γ∗‖2ΓR

6 lim
n→∞

‖F(γn)− ũδ‖2ΓN
+ α lim inf

n→∞
‖γn‖2ΓR

6 lim inf
n→∞

J(γn) = inf
γ∈γad

J(γ).

Hence γ∗ is a minimizer of (5). �

We shall now prove that the formulation (5) is stable with respect to the noise in the measurement
data.

Theorem 3. Let ũnδ be a sequence such that ũnδ → ũδ in L2(ΓN ), we let also γn ∈ γad such that
J(γn) = inf

γ∈γad
J(γ) is the solution to the optimization problem with ũδ replaced by ũnδ . Thus, we have

the existence of a subsequence of γn that converges weakly ∗ in L∞(ΓR) to the minimizer of (5).

Proof. By definition, the sequence γn admits a subsequence still denoted γn and there exists γ∗ ∈ γad
such that

γn → γ∗ in L∞ (ΓR) weakly ∗ .
Similarly as was done in theorem (2), we can deduce the following convergences:

u(γn) → u(γ∗) weakly in H1(Ω),

F(γn) → F(γ∗) strongly in L2(ΓN ).

By using the strong convergence ũnδ → ũδ in L2(ΓN ) and F(γn) → F(γ∗) in L2(ΓN ), we can then derive
the following:

J (γ∗) =
1

2

∫

ΓN

(F(γ∗)− ũδ)
2 ds+ α

∫

ΓR

(γ∗)2ds

6 lim
n→∞

1

2

∫

ΓN

F(γn − ũnδ )
2ds+ lim

n→∞
inf α

∫

ΓR

(γn)2ds

6 lim
n 7→∞

inf

(

1

2

∫

ΓN

(F(γn)− ũnδ )
2 ds+ α

∫

ΓR

(γn)2ds

)

=
1

2

∫

ΓN

(F(γ)− ũδ)
2ds+ α

∫

ΓR

γ2ds = J(γ).

Which completes the proof. �
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4. Numerical formulation

In this part, we focus on the approximation of the forward model using a discontinuous dual reciprocity
boundary element method, this is a fundamental step in the resolution of the inverse model, where the
optimization problem (5) involves the resolution of the forward problem for a given Robin parameter
γ. We propose a gradient-type algorithm for the nonlinear optimization problem, which takes into
account the measurement errors.

4.1. Approximation of the forward model

The boundary element method is an important technique in engineering analysis, it reduces the di-
mensionality of the investigated problem by one; thus, it reduces the amount of data needed to solve
a problem, however, it loses its advantage of boundary discretization only. When it is applied to non-
linear, non-homogeneous and transient problems, the domain integral appears in the resulting integral
equations, the dual reciprocity method [23] can overcome this drawback by taking the domain integral
to the boundary [24, 25]. In this paper, a discontinuous dual reciprocity boundary element method is
adopted to solve the direct problem.

We shall begin by the following substitution

u(x, y) =
1

√

ξ(x, y)
w(x, y). (6)

We find that (16) can be re-written as

−∆w +

(

γ(x, y)
√

ξ(x, y)
+ p(x, y)

)

w =
1

√

ξ(x, y)
f(x, y),

where

p(x, y) =
1

√

ξ(x, y)
∆(
√

ξ(x, y)).

The partial differential equation may be used to derive the integral equation, from classical analysis,
the solution w can be represented by boundary potentials as follows:

λ(ξ, η)w(ξ, η) =

∫

Ω
w∗(x, y; ξ, η)

[[

b(x, y)
√

ξ(x, y)
+ p(x, y)

]

w(x, y)− 1
√

ξ(x, y)
f(x, y)

]

dx dy

+

∫

∂Ω

[

w(x, y)
∂w∗

∂n
(x, y; ξ, η) − u∗(x, y; ξ, η)

∂w(x, y)

∂n

]

ds. (7)

Where

λ(ξ, η) =







1, if (ξ, η) ∈ Ω;
1/2, if (ξ, η) ∈ ∂Ω;
0, if not;

and

w∗(x, y; ξ, η) =
1

2π
ln
√

(x− ξ)2 + (y − η)2,
∂w∗

∂n
(x, y; ξ, η) =

1

2π

(x− ξ)n1(x, y) + (y − η)n2(x, y)

(x− ξ)2 + (y − η)2
.

For the dual reciprocity boundary element method, the boundary ∂Ω is discretized into N straight line

elements E(m), the starting and ending points of the boundary element E(m) are given by (a
(m)
1 , a

(m)
2 )

and (b
(m)
1 , b

(m)
2 ) respectively. For an accurate approximation, w and ∂w

∂n are approximated using dis-
continuous linear boundary elements.
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Two points (x
(m)
1 , x

(m)
2 ) and (x

(N+m)
1 , x

(N+m)
2 ) on E(m) are chosen as follows:







x
(m)
i = a

(m)
i + r(b

(m)
i − a

(m)
i ),

x
(N+m)
i = b

(m)
i − r(b

(m)
i − a

(m)
i ),

for r ∈
(

0, 12
)

If w has values w(m) and w(N+m) at (x
(m)
1 , x

(m)
2 ) and (x

(N+m)
1 , x

(N+m)
2 ), respectively, then one makes

the approximation:

w(x, y) ≃
[

1− r(m)(x, y)
]

w(m) + r(m)(x, y)w(N+m), (8)

where

r(m)(x, y) =

√

(x− a
(m)
1 )2 + (y − a

(m)
2 )2 − rl(m)

(1− 2r)l(m)
.

Similarly for the flux.
From (8), (7) approximately becomes

λ(ξ, η)w(ξ, η) =

∫

Ω
w∗(x, y; ξ, η)

[

[
b(x, y)
√

ξ(x, y)
+ p(x, y)]w(x, y) − f(x, y)

]

dx dy

+

N
∑

m=1

w(m)I
(m)
1 (ξ, η) + w(N+m)I

(m)
3 (ξ, η)

− ∂w(m)

∂n
I
(m)
2 (ξ, η) − ∂w(x, y)

∂n
I
(m)
4 (ξ, η), (9)

where

I
(m)
1 (ξ, η) =

∫

E(m)
(1− r(m))

∂u∗

∂n
(x, y; ξ, η) ds(x, y),

I
(m)
2 (ξ, η) =

∫

E(m)

(1− r(m))u∗(x, y; ξ, η) ds(x, y),

I
(m)
3 (ξ, η) =

∫

E(m)

r(m) ∂u
∗

∂n
(x, y; ξ, η) ds(x, y),

I
(m)
4 (ξ, η) =

∫

E(m)

r(m)u∗(x, y; ξ, η) ds(x, y).

To deal with the domain integral in (9), L well spaced out points in the interior of Ω are selected.

These points are denoted by (x
(2N+1)
1 , x

(2N+1)
2 ), (x

(2N+2)
1 , x

(2N+2)
2 ), . . . , (x

(2N+L)
1 , x

(2N+L)
2 ).

One then approximates the expression
[[

b(x,y)√
ξ(x,y)

+ p(x, y)
]

w(x, y) − 1√
ξ(x,y)

f(x, y)
]

in (9) using

radial basis functions as follows:
[[

b(x, y)
√

ξ(x, y)
+ p(x, y)

]

w(x, y) − 1
√

ξ(x, y)
f(x, y)

]

≃
2N+L
∑

j=1

α(j)ρ(j)(x, y), (10)

where α(j) are unknown parameters to be determined and the radial basis functions ρ(j)(x, y) are given
by (for more details see [26]):

ρ(j)(x, y) = 1 +
(

(x− x
(j)
1 )2 + (y − x

(j)
2 )2

)

+
(

(x− x
(j)
1 )2 + (y − x

(j)
2 )2

)3/2

for j = 1, 2, . . . , 2N + L.
Using (10), the double integral in (9) can now be approximated as

∫

Ω
w∗(x, y; ξ, η)

[[

γ(x, y)
√

ξ(x, y)
+ p(x, y)

]

w(x, y) − 1
√

ξ(x, y)
f(x, y)

]

dx dy ≃
2N+L
∑

j=1

µ(kj)Ψ(j)(ξ, η), (11)
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where

Ψ(j)(ξ, η) = λ(ξ, η)χ(j)(ξ, η) +

∫

∂Ω

(

w∗(x, y; ξ, η)
∂χ(j)

∂n
(x, y)− χ(j)∂w

∗

∂n
(x, y; ξ, η)

)

ds(x, y)

and

χ(j)
(

x, y;x
(j)
1 , x

(j)
2

)

=
1

4

(

(x− x
(j)
1 )2 + (y − x

(j)
2 )2

)

+
1

16

(

(x− x
(j)
1 )2 + (y − x

(j)
2 )2

)2

+
1

25

(

(x− x
(j)
1 )2 + (y − x

(j)
2 )2

)
5
2 .

The function Ψ(j)(ξ, η) can be computed approximately using

Ψ(j)(ξ, η) = λ(ξ, η)χ(j)(ξ, η) +

N
∑

m=1

χ(j)
(

x
(m)
1 , x

(m)
2

)

I
(m)
1 (ξ, η) + χ(j)

(

x
(N+m)
1 , x

(N+m)
2

)

I
(m)
2 (ξ, η)

− ∂χ(j)

∂n

(

x
(m)
1 , x

(m)
2

)

I
(m)
3 (ξ, η) − ∂χ(j)

∂n

(

x
(N+m)
1 , x

(N+m)
2

)

I
(m)
4 (ξ, η).

Then letting (ξ, η) in (9) and (11) be given by (ξ, η) = (x
(n)
1 , x

(n)
2 ) for n = 1, 2, . . . , 2N + L, one finds

that

λ
(

x
(n)
1 , x

(n)
2

)

w(n) =
2N+L
∑

k=1









b
(

x
(k)
1 , x

(k)
2

)

√

ξ(x
(k)
1 , x

(k)
2 )

+ p
(

x
(k)
1 , x

(k)
2

)



w(k) − 1
√

ξ(x
(k)
1 , x

(k)
2 )

f
(

x
(k)
1 , x

(k)
2

)





×
2N+L
∑

j=1

µ(kj)Ψ(j)
(

x
(n)
1 , x

(n)
2

)

+

N
∑

m=1

(

w(m)I
(m)
1

(

x
(n)
1 , x

(n)
2

)

+ w(N+m)I
(m)
3

(

x
(n)
1 , x

(n)
2

)

)

−
N
∑

m=1

(

∂w(m)

∂n
I
(m)
2

(

x
(n)
1 , x

(n)
2

)

+
∂w(N+m)

∂n
I
(m)
4

(

x
(n)
1 , x

(n)
2

)

)

.

We may use the substitution (6) in order to derive the following:

λ
(

x
(n)
1 , x

(n)
2

)

√

ξ(n)u(n) =

2N+L
∑

k=1









b
(

x
(k)
1 , x

(k)
2

)

√

ξ(x
(k)
1 , x

(k)
2 )

+ p
(

x
(k)
1 , x

(k)
2

)



w(k) − 1
√

ξ(x
(k)
1 , x

(k)
2 )

f(x
(k)
1 , x

(k)
2 )





×
2N+L
∑

j=1

µ(kj)Ψ(j)(x
(n)
1 , x

(n)
2 )

+

N
∑

m=1

(

√

ξ(m)u(m)I
(m)
1

(

x
(n)
1 , x

(n)
2

)

+

√

ξ(N+m)u(N+m)I
(m)
3

(

x
(n)
1 , x

(n)
2

)

)

−
N
∑

m=1

(

ξ(m) ∂u
(m)

∂n
+ u(m) ∂ξ

(m)

∂n

)

I
(m)
2

(

x
(n)
1 , x

(n)
2

)

+

(

ξ(N+m) ∂u
(N+m)

∂n
+ u(N+m) ∂ξ

(N+m)

∂n

)

I
(m)
4

(

x
(n)
1 , x

(n)
2

)

,

where u(m) = u
(

x
(m)
1 , x

(m)
2

)

with m = 1, 2, . . . , 2N + L. By applying the boundary conditions either

u(m) or ∂u(N+m)

∂n (not both) is known for m = 1, 2, . . . , 2N . In addition of the L unknown in the interior
of the domain, roughly speaking we get the following matrix system:

AX = B. (12)

Which can be solved for 2N + L unknowns given by u(m) or ∂u(m)

∂n for m = 1, 2, . . . , 2N and u(2N+k)

for k = 1, . . . , L.
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4.2. Regularized reconstruction algorithm

Since we are concerned with a gradient-type approach, we have to derive the sensitivity problem. As
noted above, the optimization problem (5) is nonlinear with respect to the still unknown γ, this yields
to the non-convexity of the optimization problem which makes the resolution more difficult. First, we
try to linearize the optimization problem (5), we let a direction d ∈ L∞(ΓR) and we assume that the
following lemma holds.

Lemma 2. The u(γ) is differentiable with respect to γ ∈ γad where we have:

‖u(γ + d)− u(γ)− u′(γ)d‖H1(Ω)

‖d‖L∞(ΓR)
→ 0 as ‖d‖L∞(ΓR) → 0.

Using lemma (2) we can write:

u(γ + d) = u(γ) + u′(γ)d +O
(

‖d‖2L∞(ΓR)

)

.

It is standard to see that ζd = u′(γ)d verifies the following system:


















−∇ · (ξ(x)∇ζd) + b(x)ζd = 0 in Ω,

ξ(x)
∂ζd
∂n

= 0 on ΓN ,

ξ(x)
∂ζd
∂n

+ γ(x)ζd(x) = −du(γ)(x) on ΓR.

(13)

Where we neglect the second order term O
(

‖d‖2L∞(ΓR)

)

, obviously the solution of the sensitivity prob-

lem (13) is linear with respect to d. For an efficient evaluation of the gradient we need also to derive
the adjoint problem of (13), which can be stated as follows:



















−∇ · (ξ(x)∇ζ∗p ) + b(x)ζ∗p = 0 in Ω,

ξ(x)
∂ζ∗p
∂n

= p(x) on ΓN ,

ξ(x)
∂ζ∗p
∂n

+ γ(x)ζ∗p (x) = 0 on ΓR,

(14)

Where we have ζ∗p = u′(γ)∗p and the direction p = F(γ)− ũδ.
We have the following result.

Theorem 4. For any γ ∈ γad the objective function J(γ) defined in (5) is Frechet differentiable, its
Frechet derivative in the direction d is given as follows:

J ′(γ)d =

∫

ΓR

d
(

u(γ)ζ∗p + αγ
)

ds.

Proof. As a first step we derive the Frechet derivative of the objective function J with α = 0 noted
J ′
0(γ)d with d is a direction, therefore we can easily find the following result:

J ′
0(γ)d =

∫

ΓN

(F(γ)− ũδ) ζd ds.

Indeed, it is straightforward to derive:

J0(γ + d)− J0(γ) =
1

2

∫

ΓN

(F(γ + d)− ũδ)
2 ds− 1

2

∫

ΓN

(F(γ)− ũδ)
2 ds

=

∫

ΓN

(

F(γ) + ζd +O
(

‖d‖2L∞(ΓR)

)

− ũδ

)2
ds−

∫

ΓN

(F(γ)− ũδ)
2 ds

=

∫

ΓN

(F(γ)− ũδ) ζd ds+O
(

‖d‖2L∞(ΓR)

)

,

thus we have the result.
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On the other hand, using Green’s second identity after multiplying the problem (13) by ζ∗p and the
problem (14) by ζd, we get by substituting the boundary condition:

∫

ΓN

(F(γ)− ũδ) ζd ds =

∫

ΓR

du(γ)ζ∗p ds,

which completes the proof. �

In the next two paragraphs, we propose two automatic regularizing algorithms for the reconstruction
of the Robin coefficient.

4.3. Regularized BFGS quasi-Newton algorithm for Robin coefficient recovery

In the present study, we first present a well-known Newton-type method to retrieve the unknown Robin
parameter, since this method requires the evaluation of the Hessian matrix which is computationally
expensive, we prefer to use a Secant method. It involves the use of a cheaper approximation of the
Hessian matrix, practically the best update choice is the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
quasi-Newton algorithm [27–30] formula.

The quasi-Newton process iteratively produces a sequence of solutions γk by the line search formula

γk+1 = γk + βkd
k,

with βk is the step length parameter, whereas the line search direction is obtained using the formula:

dk = MkEk,

Ek denotes the gradient, and Mk is the approximate inverse of the Hessian matrix, it must be noted
that the given initial M0 should be positive definite and that the update Mk verifies the following
condition:

Mk+1(Ek+1 −Ek) = γk+1 − γk.

We can now describe the quasi-Newton automatic regularization BFGS.

Algorithm 1 The regularized BFGS-DDM for Robin coefficient reconstruction.

Require: Set k = 0 and specify the initial guess γ0 and the initial reduced hessian matrix M0 = I.
1. Compute F(γk) and Calculate rk = F(γk)− ũδ on ΓN .
2. Find ζ∗p by solving (14) with p = rk.

3. Determine the gradient Ek = J ′(γk) using Theorem (4).
4. Find βk = argmin(J(γk + βdk)) from a line search, with d0 = −E0.
5. Update Robin coefficient:

γk+1 = γk + βkdk.

6. The discrepancy stopping criterion:

rk+1 = ‖F(γk+1)− ũδ‖L2(ΓN ) 6 cδ

does not hold then Stop; Output γk.
7. Evaluate W k = Ek+1 − Ek.
8. Update reduced Hessian matrix using

Mk+1 =

(

I − dkW kT

dkTW k

)

Mk

(

I − W kdkT

dkTW k

)

+
dkdkT

dkTW k
.

9. Evaluate dk+1 = Mk+1W k and return to 2 with k := k + 1.
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We noticed that the algorithm 1 consists of a combination of an inner and outer iterations, where
the BFGS quasi-Newton algorithm is the inner iteration that tries to find a regularized approximation
to the linearized problem, whereas the outer iteration terminates the iteration procedure at the right
index.

4.4. Automated Levenberg-Marquardt algorithm for Robin coefficient recovery

In addition to the previous algorithm, we propose to minimize the cost functional through an iterative
regularized Levenberg–Marquardt algorithm [32], which is given as follows:

γn+1 = argmin
γ∈γad

∥

∥u′(γn)(γ − γn)− y − u(γn)
∥

∥

2

L2(ΓN )
+ αn‖γ − γn‖2L2(ΓR).

This equivalently leads to the following:

γn+1 = γn +
(

αnI + u′(γn)
∗u′(γn)

)−1
u′(γn)

∗ (u(γn)− ũδ) . (15)

Instead of a fixed regularizing parameter, the iterative Levenberg–Marquardt algorithm tries to stabilize
the reconstruction procedure in each iteration, one has to note that in case of noisy measurements,
which is the case in this study, a stopping criterion has to be carried out, in other words, the iteration
process has to be stopped in the right index to obtain a stable solution. In this paper the parameters
αn are chosen according to Morozov discrepancy principle.

The regularizing property of the iterated Levenberg–Marquardt method was well established in [31],
the author claimed that if we assume the local boundedness of F′ and that the parameters αn are chosen
via Morozov discrepancy principle and a well-chosen initial guess, we have γKδ

→ γ∗ as δ → 0 with
Kδ = K(δ, ũδ) is the stopping index. For a complete study of the convergence of the Levenberg-
Marquardt algorithm please see [31].

At this stage, we may outline the automatic regularizing Levenberg–Marqwardt algorithm with
the discontinuous dual reciprocity approximation (LM-DDM) for retrieving the yet unknown Robin
coefficient:

Algorithm 2 The automated regularizing LM-DDM for Robin coefficient reconstruction.

Require: Set k = 0 and specify α0 > 0, the initial guess γ0 and a constant c > 1.
1. Compute the matrix A(γk) issued from the DDM in (12).
2. Compute the second member B(γk).
3. Solve AF(γk) = B(γk) using LU decomposition.
4. Solve LUF(γk) = B(γk).
5. Compute F

′(γk) and F
′ ∗ (γk) using (13) and (14) respectively.

6. Compute the next iteration γk+1 using (15)
7. The stopping criterion Resk+1 = ‖F(γk+1)− ũδ‖L2(ΓN ) 6 cδ doesn’t hold

then Stop; Output γk.
8. Update αk

if (Resk+1 > Resk) then update αk+1 = 0.1αk;
else αk+1 = 10αk.

9. Return to 1 with k := k + 1.

It must be noted that in the algorithm 2, the Frechet derivative is applied only to a single argument,
which makes the computation cost much cheaper than constructing then reversing the whole derivative
matrix which is usually dense. Contrary to the previous algorithm, the inner iteration here is applying
the Levenberg–Marquardt algorithm to the linearized problem with some automatic choice of the
damping parameter, which theoretically guarantees the stability of the algorithm together with the
stopping criteria based on the Discrepancy principle.
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5. Numerical experiments

In order to test the proposed numerical approaches for some numerical examples, we examine the
case of exact and noisy data for different types of geometries, namely, regular and piecewise regular
geometries. We consider the following elliptic problem for anisotropic nonhomogeneous materials:































−∇ · (ξ(x)∇u) + b(x)u = f(x) in Ω,

u = g(x) on ΓD,

ξ(x)
∂u

∂n
= h(x) on ΓN ,

ξ(x)
∂u

∂n
+ γ(x)u(x) = k(x) on ΓR.

(16)

As outlined above, we try to retrieve the Robin coefficient γ using some additional measurements on
the accessible part ΓN , supposed to be exact and perturbed in two essential cases of domains. The
perturbation of the measurements data are simulated using the following formula:

ũδ = ũ+ δ × randn× ‖ũ‖∞, (17)

where randn is a random scalar drawn from the standard normal distribution and δ represents the
level of noise added to the input data.

5.1. Case 1: Regular

In this part, we aim to evaluate the LM-DDM 2 and BFGS-DDM 1 algorithms for reconstructing
Robin coefficient in regular domains (the unit circle), we investigate the use of exact and noisy data.
The analytical quantities used in implementation are given as follows:

uan = exp (x+ y), ξan = 1, b = 1, γan = 1 + cos(π/4x) sin(π/4y).

5.1.1. Exact measurements
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Fig. 1. LM-DDM for Robin coefficient identification
with exact data case 1.

When exact data on the accessible part of
the boundary are provided, we notice easily
that the LM-DDM algorithm recovers much
better the Robin coefficient than the BFGS-
DDM, as illustrated in Figure 1. The start-
ing guess if given as γ0 = 1, some other tests,
not presented in this study, confirm that the
proposed approach has the ability to recover
the Robin coefficient even with a far initial
guess, the only difference is the augmenta-
tion of the number of iterations, we note that
in the free data case the stopping criteria is
chosen as the residual reaches a certain tol-
erance given by 1e-6.

5.1.2. Perturbed measurements

The stability issue can only be investigated in case of perturbed data. Using formula (17), we simulate
the noisy effect, the noise level is chosen between {1%, . . . , 5%}. The performance of the algorithms is
clearly influenced by the augmentation of the noise level, especially when δ = 5%, but the results, in
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general, are very promising: when the noise is lower than 1%, the results show that the algorithms are
stable enough with slight superiority of the LM-DDM algorithm, this is mainly due to the damping
parameter involved in the Levenberg–Marquardt formula that has a stabilizing effect.
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Fig. 2. LM-DDM and BFGS-DDM for Robin coefficient identification with noisy data, case 1.

5.2. Case 2: Piecewise regular

In this part, we investigate another class of domain problem, namely, the piecewise regular domain (a
traditional choice is the unit square). Similarly, we try to see how the proposed algorithms 1 and 2
perform in this case. We try a different example where the analytical quantities used in implementation
are given as follows:

uan = cos(x+ y), ξan = exp (−x− y), b = 2xy, γan = 2 + sin(3π/y).

5.2.1. Exact measurements
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Fig. 3. LM-DDM for Robin coefficient
identification with exact data case 2.

Figure 3 presents the obtained results using exact mea-
surements, the optimal solution coincides perfectly with
the analytical solution and we note that this can only
validate the reconstruction process of the proposed ap-
proach.

5.2.2. Perturbed measurements

The stability performance is again studied in this case,
crucially Figure 4 attests that the LM-DDM algorithm
performs well in case of the piecewise regular domain,
but, for a bigger δ the algorithm performs below ex-
pectations. It must be noted that the results are very
promising for a lower percentage of δ, and the fact that the discontinuous reciprocity approximation
is effective for this kind of domains.
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Fig. 4. LM-DDM and BFGS-DDM for Robin coefficient identification with noisy data, case 2
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6. Conclusions

In this study, two stable strategies are presented to recover an unknown Robin coefficient in a 2D elliptic
equation for anisotropic nonhomogeneous domains, a standard mathematical analysis of the present
inverse problem is carried out, and many numerical tests are given to confirm the theoretical finds.
The LM-DDM algorithm has proved slight superiority in comparison with the BFGS-DDM algorithm
in terms of accurateness and speed, in general, the two approaches have revealed their effectiveness
in accurately recovering the Robin coefficient for different geometries, the stability is also tested by
simulating the noisy effect in provided data. The most striking point in the present work is when a
higher noise level is considered, future work will be more interested in this unexpected drawback.
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Отримання коефiцiєнта Робiна з окремих даних Кошi в
елiптичних системах

Ель Мадкурi А., Еллабiб А.

Факультет наук i технiки,

Кафедра математики та iнформатики LAMAI,

Унiверситет Кадi Айяда, Марракеш, Марокко

Метою цiєї роботи є визначення коефiцiєнта Робiна за наявними вимiрюваннями на
доступнiй частинi границi. Пiсля перетворення оберненої задачi на задачу оптимiзацiї
дослiджуються питання визначеностi, стiйкостi та iдентифiкацiї. Для процесу рекон-
струкцiї розроблено два регуляризованих алгоритми, а пряма задача апроксимуєть-
ся за допомогою розривного методу подвiйної взаємностi. Точнiсть запропонованих
пiдходiв перевiрена для випадку зашумлених даних та даних без шуму, отриманi ре-
зультати є дуже перспективними та обнадiйливими.

Ключовi слова: метод граничних елементiв, розривна апроксимацiя взаємностi,

алгоритм Левенберга–Марквардта, квазi-алгоритми Ньютона, реконструкцiя пара-

метрiв Робiна.
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