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Image classification task is a very important problem of a computer vision area. The first
approaches to image classification tasks belong to a classic straightforward algorithm. Despite the
successful applications of such algorithms a lot of image classification tasks had not been solved until
machine learning approaches were involved in a computer vision area. An early successful result of
machine learning applications helps researchers with extracted features classification which was not
available without machine learning models. But handcrafter features were required which left the most
complicated classification task impossible to solve. Recent success in deep learning allows researchers to
implement automatic trainable feature extraction. This gave significant progress in the computer vision
area last but not least. Processing large-scale datasets bring researchers great progress in automatic
feature extraction thus combining such features with precious approaches led to groundbreaking in
computer vision. But a new limitation has come - dependency on large amounts of data. Deep learning
approaches to image classification task usually requires large-scale datasets. Moreover, modern models
lead to unexpected behavior in distribution datasets. A few-shot learning approach of deep learning
models allows us to dramatically reduce the amount of required data while keeping the same promising
results. Despite reduced datasets, there is still a tradeoff between the amount of available data and
trained model performance. In this paper, we implemented a siamese network based on triplet loss.
Then, we investigate a relationship between the amount of available data and few-shot model
performances. We compare the models obtained by metric-learning with baselines models trained using
large-scale datasets.

Key words: few-shot learning; zero-shot learning; metric learning; computer vision; deep lear-
ning; image classification.

Introduction

Image classification tasks have a lot of real-life applications. Real-life images have uncountable
factors of distortions, as well as an uncountable number of classes to be predicted. One more important
note is that most natural-scene images cannot be directly classified with a handy-crafted algorithm (like
edge detection [1], thresholding, morphology operations [2], etc). A basic machine learning approach
allows researchers to engineer features and apply machine learning models to those features. Moreover,
deep learning models automate a feature extraction process by incorporating it. Despite the great access
achieved by using deep learning models, this approach cannot be directly applied to some business cases
(especially when classes to be predicted changes time by time).

Few-shot learning approaches [3] dramatically decrease the amount of required training data to
perform image classification. In metric learning [4] (a subfield of few-shot learning) it is done by
rethinking the task of image classification: it is better to find the nearest image (in some metric space) from
the training dataset rather than performing image classification from scratch. The key idea of such a
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concept is that images of the same classes are samples from the same data distribution. The task of metric
learning — is to build such a metric space that leads to tight similar images into one cluster. Moreover,
following that approach, we can perform even zero-shot classification which means classifying previously
unseen classes.

Methodology

Metric learning is a well-known approach to few-shot learning, especially for face recognition tasks.
Suppose, you are working with a dataset A. So, your dataset A consists of pairs:

A={X.1) X2, Y2), . ...(Xn. 1) },

where X; € RY >3 stands from the input image (in RGB colorspace) and ¥; € N represent class index
of image X;.

The task of metric learning is to construct such an operator M(:,-) which satisfies the following
condition:

M(A,B) = oo if A, B belong to different class
and

M(A,B) = 0if A, B belong to the same class

In case of metric learning we are able to build such an operator with a deep neural network. It is a
good choice to use a convolutional neural network for computer vision to build distance functions. The
main challenge is to design a loss function. The Triplet loss [4] function gives us a good differentiable
formulation of operator M.

It is worth mentioning that triplet loss provides us a way to train an embedding extraction model, not
a distance operator itself. But such embeddings are presented by a vector that is separable by a distance
used in a triplet loss function.

The whole pipeline of image classification is presented in Fig. 1.
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Fig. 1. Diagram of the model pipeline

Dataset

In this paper, we set up our experiments with an open-source FSS-1000 [5] dataset. This dataset
consists of 1000 various classes and is specially designed for few-shot learning purposes. Presented classes
in this dataset in unbiased which means that there are no bunches of similar classes (like more than 200
dog breeds in the ImageNet [6] dataset). The original dataset was collected and prepared for an instance
segmentation task, but exactly one class is presented per image, so this dataset is suitable for the image
classification task as well.

Fig. 2. FSS-1000 dataset samples
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All images have exactly the same resolution — 224x224. Our exploration data analysis shows that a
significant part of objects does not cover the whole image, so a lot of background data is presented which
makes the classification task harder in terms of overfitting prevention.
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Fig. 3. Object sizes on images

In the FSS-1000 dataset each class are represented by exactly 10 images. It allows us to prepare
perfectly class-balanced dataset splits.

Triplet loss-driven model

1. Model

We build a tiny deep learning model which consists of three blocks:

e Feature extractor (EfficientNet B2 feature vector, pretrained on ImageNet);
e Emdeding learner (fully-connected layer, 256 neurons);

e Scale normalization layer (L2 normalization).

The overall model structure is presented in Fig. 4.
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Fig. 4. Embedding model structure

Detailed model structure is shown in the table:

Table 1
Model’s layers description
Layer Input shape Output shape #Params
Feature extractor [224, 224, 3] [1408] 8769374
Dense [1408] [256] 360704
L2 Norm [256] [256] 0

Note, that the last layer contains no trainable parameters.

2. Training process
Since we use a pretrained feature extractor we freeze in order to train the embedding learner first.

The training schedule is provided in the following table.
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Table 2
Training stages description
Stage Trainable layers Epochs
#1 Dense 20
#2 The whole model 10

3. Experiments setup

Given an FSS-1000 dataset we prepare various training splits while keeping the testing split the
same for all experiments. All available data was splitted onto three parts — training, validation, test.

We take 200 classes from the dataset as a test set. The rest data was used for training and validation
purposes. The test part remains the same for all experiments. By doing this, we are able to compare the
influence of the training dataset to the final performance of the model. Note, that classes that were
incorporated for test purposes were never presented in a training/validation part. In other words, we set up
a zero-shot experiment.

The rest 800 classes were distributed between training and validation sets as shown in the following
table:

Table 3
Experiments details overview
#Experiment #Training images #Validation images
1 7 3
2 6 4
3 5 5
4 4 6
5 3 7

Training images were used in backpropagation steps during embedding model training. Validation
samples were only used in validation loss calculation and never were utilized for backpropagation. Test
images were not utilized before the final score evaluation.
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Fig. 5. Comparison of experiment losses

In Fig. 5 we show a training and validation loss per experiment. We may observe that there are
almost no differences between training losses. Such noisy losses are caused by randomness in triplets
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mining [7]. But for experiments where more training examples were utilized loss is much lower. It means
that using more data makes our embedding model better in terms of embedding separability.

We also evaluate a baseline model (bare EfficentNet B2 feature vector). In order to compare the
non-trained model with our experiments, we evaluate training and validation losses 30 times, so we can
estimate a validation loss as well as training loss along with its deviation. Baseline losses are visualized in
bold gray color in Fig. 5.

4. Estimate model accuracy

In order to be able to classify images we have to compare embeddings extracted from our model. In
our work, we find KNN the best candidate to work with extracted embeddings.

For each experiment, we extract training, validation, and test set embeddings. Train embeddings
were used to find KNN hyperparameters (numbers of neighbors, distance weights, and others) using grid
search and cross-validation (5 folds were used). Once we find the best hyperparameters final model is built
according to those parameters. Now, we can use our model to predict novel classes from the test set.

We fit KNN to the test embeddings and evaluate the final score using a stratified cross-validation
strategy. The following metrics were calculated — top 1, top 3, top 5, and top 10 accuracies. We observe a
logarithmic dependency between Top N accuracy and score. There is no reason to use more than Top 10
predictions since it brings almost no improvements. So, we don’t take into account KPIs more than the top
10 accuracies.

We expose achieved scores in the following table 4.

Table 4
Accuracy scores per experiments
#Experiment Top 1 accuracy Top 3 accuracy Top 5 accuracy Top 10 accuracy
#1 0.932 0.980 0.983 0.983
#2 0.928 0.976 0.980 0.980
#3 0.928 0.980 0.984 0.985
#4 0.924 0.979 0.980 0.985
#5 0.933 0.981 0.985 0.988

The visualization of top-K scores is provided on Fig. 6.
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Fig. 6. Top K accuracies
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Conclusions

In this paper we take a close look at the few-shot image classification problem using triplet loss.
We utilize an FSS-1000 dataset for a classification purpose in order to investigate the influence of the
amount of training data on the obtained model. In this work, we run a bunch of experiments with the
same test data but different training data in order to be able to compare the results. Namely, we train the
EfficientNet B2 based model using 7, 6, 5, 4, and 3 images per class (1 image was not possible as triplet
loss requires two images of the same class; at the same time 2 images is very unliked to be sampled so
often during training).

We found that lower images in the training outperform all other experiments. This result may be
counterintuitive, but we found it consistent due to an unbalanced dataset (in terms of 1 class versus the
rest). At the same time, we carefully examined validation losses obtained from the experiments. The most
valuable result is that lower loss corresponds to a bigger training set. We found that gap between validation
losses and scores is very interesting in set it up for further work and investigation.
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3apava kaacudikanii 300paskeHb € ayKe BajKIHBOI0 CyYacHOI0 MP00JeMOI0 B 00JacTi KOMII 10-
TepHoro 3opy. Ilepmi minxoam n0 po3B’si3aHHA Wi€i 3a7a4i MOJSAIrajdd y BHKOPHCTAHHI KJIACHYHHX
anropurmiB. He3Baxkaiouu Ha NeBHUH Nporpec, OTPUMAaHUI KJIACMYHMMM migxoaamu, OinbuicTb
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CKJIATHIIMNUX 3a1a4 Kiacudikamii 300pakeHs 3aJHIIAJINCH, HEPO3B' I3aHMMH 10 MOYATKY BHKOPHCTAHHS
aNropuTMiB MAamIMHHOrO HaB4yaHHsA. Ilepuwi cnpo0u 3acTocyBaHHSI MAIIMHHOIO HABYAHHA 10 3ajavi
po3niZHaBaHHs 300pakeHb JONOMOIJIM KJacudikyBaTH HA00pU O3HAK, SIKI ONpaunOBaTH NPSIMUMH
aJIropuTMaMu He BIaBajoch. IIpore BHAOOYBaHHA MHOKMHHM O3HAK 3a/IHIIAJOCS 32 NMPAMHMH aJIro-
puTMamu TpuBaauii yac. HemoaaBuuii nporpec y cdepi riiméoxkoro HaB4aHHs BiIKPUB MOKJIMBICTH
nody10BH CHCTeM AaBTOMATHYHOI0 BHI00YBaHHSI MHOKHHM o3Hak. Lle 3ymMoBWJI0 3HauyHMii mporpec y
00J1acTi KoMIT'I0TepHOro 6ayeHHs i He Tinbku. O0po0ka BeJMKOMACIITAOHUX Ha0OpiB JaHNX NMpU3BeJa
J10 MPOPUBY Y 3aja4yax po3miZHaBaHHA 300paskeHb. [IpoTe 3’AIBUJIOCA HOBe 00MeKEHHSI— 3aJIEKHICTD Bi
KUTbKOCTI HASIBHUX NMPOAHOTOBAHUX JaHMX. MeToau IJIMOMHHOTO HABYAHHS AJs 3ajayi kiaacudikamii
300pakeHHs 3a3BUYaii NOTPeOYIOTH BeJMKOI KiTbKOCTI MPOAHOTOBAHUX 300paskeHb. I Oinbuie, cyyacHi
MoOJedi CXWIbHI 10 HeO4iKyBaHOI MOBeJiHKH HAa HaGopax JaHuX 3 iHIIOro JoMeHa (HOBHUX KJaciB y
BHUIA/KY PO3Mi3HABAHHS 300paeHnn). MeTou HABYAHHS HA MAJIOMY HAGOPi TaHUX 103BOJISIIOTH Iij] Yac
TPeHYBAHHS IVINOOKMX HeliPOHHUX Mepesk BUKOPUCTOBYBATH 3HAYHO MEHIIe JaHMX, 30epirai4um Ttaky
caMy TO4YHicTh po3nizHaBaHHs1. He3Ba:karouu Ha ue, 32JIMIIAECTHCS KOMIIPOMiC MisK KIIbKICTIO HAsSIBHUX
JaHUX Ta To4HicTi0 Mojeai. B wiii podotri Mu moOyayBajam ciaMCbKy HEHPOHHY Mepexy HAa OCHOBI
¢yukuii BTpar TpiiikM i 10caiAWIN, SIK HasiBHA KUIBKICTh JaHUX BIUIMBA€ HA TOYHICTH PO3Ni3HABAHHSA
ciamcbkoi HeiipoHHOT Mepeski. MM nopiBHSUIM MojeJi, OTPUMaHI HAaBYAHHAM Ha OCHOBi MeTPHK, Ta
0a30By Mo/ie/1b, HATPEHOBAHY HA BeJIUKOMACIITA0OHUX Ha0OpaxX JaHHUX.

Ki1ro4oBi cjioBa: MeToM HABYAHHA HA MaJIOMy Ha0opi JaHUX, HABYAHHA HA OAHOMY NMPHUKJIAAi;
HABYaHHS Ha OCHOBI MeTPUK;, KOMII I0TepHUii 3ip; K1acudikanis 300pakeHb.



