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In this paper we devise a microscopic (agent-based) mathematical model for reproducing
crowd behavior in a specific scenario: a number of pedestrians, consisting of numerous
social groups, flow along a corridor until a gate located at the end of the corridor closes.
People are not informed about the closure of the gate and perceive the blockage observing
dynamically the local crowd conditions. Once people become aware of the new conditions,
they stop and then decide either to stay, waiting for reopening, or to go back and leave the
corridor forever. People going back hit against newly incoming people creating a dangerous
counter-flow. We run several numerical simulations varying parameters which control the
crowd behavior, in order to understand the factors which have the greatest impact on the
system dynamics. We also study the optimal way to inform people about the blockage in
order to prevent the counter-flow. We conclude with some useful suggestions directed to
the organizers of mass events.

Keywords: crowd modeling, crowd control, social force model, counter-flow, social
groups.
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1. Introduction

This paper proposes a microscopic (agent-based) model for describing the dynamics of pedestrians in
a special situation characterized by a moving crowd whose members gradually reverse their direction
of motion, thus colliding with the newly incoming people still moving in the original direction. This
situation creates a nonstandard self-regulating counter-flow with a rather complex dynamics, which
can be studied by suitably tuning the parameters of the model. The final goal is to predict and prevent
the formation of dangerous congestion in real mass events.

Relevant literature. Modeling the behavior of people in a crowd is a difficult task, since it requires
to identify the most important behavioral rules which greatly vary from person to person. For that
reason, the study of crowds can be regarded as a multidisciplinary area, which have attracted since
many years the interest of mathematicians, physicists, engineers, and psychologists.

Crowd modeling has a long-standing tradition, starting from the pioneering papers [1-3| in the
"70s. Since then, all types of models were proposed, spanning from microscale to macroscale, including
multiscale ones, both differential and nondifferential (e.g., cellular automata). Models can be first-order
(i.e. velocity based) or second-order (i.e. acceleration based), with local or nonlocal interactions, with
metric or topological interactions, with or without contact-avoidance features. The presence of social
groups can also be taken into account. A number of review papers [4-13], meta-review papers [14-16]
and books [17-20] are now available, we refer the interested reader to them for an introduction to the
field. It is also useful to mention that models for pedestrians often stem from those developed in the
context of vehicular traffic [18,21]. Moreover, there is a strict connection between pedestrian modeling
and control theory, including mean-field games, see, e.g., [17,22, 23| and reference therein.
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In this paper we deal specifically with the counter-flow dynamics: such a dynamics occur when
two groups of pedestrians move in opposite directions, therefore each group has to find a way to pass
through the other. The importance of accurate modeling and simulation of counter-flow dynamics is
supported by evidence from crowds disaster analysis [24]. Over the last years, the major accidents often
occurred for overcrowding and counter-flow phenomena taking place inside the area of the events, or
in the proximity of the entrances and exit points. For all these reasons, the literature on counter-flow
is quite reach; see, among others, [25-27| in the context of microscopic differential models, [28] for a
multiscale differential models, and [29,30] in the context of cellular automata. Moreover, it is now well
established that counter-flow dynamics lead to the so-called lane formation: in order to avoid collision,
pedestrians arrange in alternate lanes (5) having the same walking direction. The behavior displayed
by numerical simulations is in good agreement with observations of real people in both artificial and
natural environments [31-34].

Finally, let us discuss the impact of the social groups on the dynamics of crowds: despite most of the
models assume that each pedestrian moves in a crowd on its own, real crowds are typically formed by
small subgroups, such as friends or families. The impact of social groups on crowd dynamics has been
explored since the '70s in a number of papers [35-38|, resulting in the fact that the presence of groups
is not negligible at all. In particular, in the context of bi-directional counter-flow dynamics, theoretical
and experimental observations suggest that the presence of groups slows down the formation of lanes,
which are more fragmented [39,40].

Paper contribution. In this paper, we consider a specific scenario related to the counter-flow dy-
namics: a crowd (with social groups) in a corridor, initially moving in one direction towards an open
gate, at some moment is no longer able to proceed because of the closure of the gate. After that,
people have to decide whether to stop & wait for a possible re-opening, or to move back. This is the
case, e.g., of a inflow of people towards an area dedicated to a mass event, which is interrupted by the
organizers when the area capacity has been reached.

From the modeling point of view, the main novelty is that the decision to stay or to move back
is taken dynamically by each group, on the basis of the behavior of the surrounding groups. More
precisely, we assume that the decision is taken whenever the group leader is no longer able to mowve
forward for a certain time. This can happen either because it has reached the gate or it has reached
the other people queuing in front of the gate, or it is hit by the people going back and blocking the
way. The overall dynamics is also complicated by the fact that people who decide to stay do not want
to be overtaken by the other people approaching the gate, since they do not want to lose their priority
in the queue. On the other hand, staying people want to facilitate the passage of reversing people,
because the latest are leaving free space for the former.

From the mathematical point of view, we propose a microscopic differential model inspired by the
well-known Social Force Model [25], based on a large system of ODEs. We introduce several variants
with respect to the original model: two most important of them are that a) we consider the first-
order (velocity-based) model and b) we consider topological interactions, taking into account the first
neighbor only. The last choice greatly speed up the numerical code.

The final goal of this research, which is especially dedicated to practitioners who are involved
in the organization of real mass events, is the prevention of critical situations which could arise in
the reversing-flow scenario under consideration. Moreover, since digital twins are commonly used to
support the safety plan development, highlighting critical aspects that need to be solved before and
during the event (cf. [41]), we also propose a crowd control strategy based on the optimal placing of
signals/stewards, aiming at informing people in due time about the gate status (open or close).

Paper organization. The paper is organized as follows. In Section 2 we present the model for the
crowd dynamics. In Section 3 we present our case study: we describe the geometry and the mechanism
undergoing the behavioral choices of pedestrians. In Section 4 we discuss the results obtained from
numerical simulations and we propose a control strategy to prevent high pedestrian density. We end
the paper with some conclusions and future perspectives.
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2. The model

2.1. General principles

All force models share the same structure of the Newtonian dynamics, namely

X (t) =V (t)7 -
{ VZ(t) :F:(t,X,V), k=1,...,N, (1)

where N is the total number of agents, Xy(t), Vi (t) € R?, denote the position and velocity of agent
k at time ¢, respectively, and X = (Xy,...,Xxy), V = (V1,...,Vy). The function Fy, the so-called
social force, models the total force exerted on agent k, and gathers all the physical, psychological and
behavioral aspects of pedestrian dynamics. The social force is not a real force, but rather an empirical
mathematical tool which translates in formulas all these aspects. In its minimal form, it takes into

account the following three contributions:
— An individual desired velocity term: the velocity that a single pedestrian would keep if it was alone

in the domain.

— A repulsion term: pedestrians tend to maintain a certain distance with respect to other members
of the crowd, obstacles and walls present in the environment, in order to avoid collisions.

— An attraction term: pedestrians who are not moving on their own tends to stay close to the members
of their social group (friends, family members).

Social force models can be enhanced adding random fluctuations due to unpredictable behavioral
variations or further small-scale interactions. In this regards, it can be useful to note that the (generally
undesired) numerical instabilities often play the same role.

First-order models. In pedestrian dynamics accelerations are almost instantaneous (at least if
compared with a reference typical time scale) and then inertia-based effects are negligible. Therefore,
first-order models of the form

Xi(t) =Vi(t,X), k=1,...,N (2)
are also suitable, see, e.g., [28]. We think that such models are easier to calibrate and they are
computationally less expensive, hence in this paper we will adopt a model of this kind. This means
that all the aspects of the dynamics which were encapsulated in the force F are now inserted directly
in the velocity vector V.

Social groups. In order to account for the presence of social groups in the crowd, such as families
or friends, we assume that each pedestrian is part of a group. Each group has at least two members,
meaning that we do not consider the presence of lonely people. Moreover, each group has a leader,
which never changes in the time frame of the simulation. The leader of the group takes decisions about
the common target of the whole group. Groups tend to stay together, but they can temporarily break
up and then reunite. The leader does not necessarily walk in front of the group because all group
members know the destination (decided by the leader) and are able to reach it independently.

Groups status. We assume that at any given time, each group (identified with its leader) has a
unique status which corresponds to its target and, more in general, to its behavior. Four possible
statutes will be detailed later on in Section 3.2.

Topological interactions. We consider topological, rather than metric, interactions, meaning that
each agent k interacts with a fixed number of agents at the same time, regardless of their distance from
the agent k. More precisely, we assume that each leader interacts with the first neighbor outside its
social group only, while followers (i.e. not leaders) interact with the first neighbor inside their social
group, the first neighbor outside, and their leader. As it happens in molecular dynamics, the fact
that a particle interacts with a few other particles at a time does not mean that the interactions are
limited to them. The first neighbor changes continuously and after few time iterations all the agents
reasonably close to each agent have interacted with it. While standard social force model assumes
contemporary interactions with neighbors within a certain threshold distance, we prefer to consider
fewer interactions at a time, recovering the same results, in average, over a longer, but still short, time
period. This choice stabilizes the dynamics and it is convenient from the computational point of view.

Mathematical Modeling and Computing, Vol.9, No. 3, pp. 555-566 (2022)



558 Amaro G. G., Cristiani E., Menci M.

2.2. Mathematical details

As we have already said, we consider a first-order social force model with social groups and topological
interactions. Agents have no dimension and we do not consider contact-avoidance features.
Let us start with the dynamics of group leaders. We set

Vi(X;8) = V4US,) + VE(Xy, Xjer; Siy S ) + VO(X), (3)

where V¢ is the desired velocity, which only depends on the status Sy, of the group the agent k belongs

to; VI accounts for the repulsion from strangers, and depends on the positions X, of the agent k itself,

the position Xy« of the agent k**, defined as the nearest neighbor of k outside its social group, and

the statuses of the two agents; V is the repulsion from obstacles. Clearly we have S := (S1,...,Sn).
The dynamics of followers is instead

Vi(X;8) = VAUS,) + V" ( Xy, Xpp) + V(X Xppor; Sk, S ) + VX, Xz ) + VO(Xi),  (4)

where V" accounts for the repulsion from group members, and depends on the positions X of the
agent k itself, the position Xy« of the agent k*, defined as the nearest neighbor of k inside its social
group; V@ accounts for the attraction towards the group’s leader, whose index is denoted by k.

Note that group leaders are not attracted by group mates, the cohesion of the group being totally
left to followers. Moreover, leaders are not repulsed by group mates. This avoids artifacts in the
dynamics and self-propulsion of the group.

The reason why we distinguish internal and external repulsion is that pedestrians tend to stay close
to group mates, while keeping a larger distance from the strangers.

The repulsion is defined in order to be inversely proportional to the distance between the agents,

V' — _C?“X”‘f*—_x"f27 VvE — —CR(Sk,Sk**)XkM—_sz, (5)
[ Xpor — X [ X jorr — Xe|
where the parameter C” > 0 is constant, whereas C*(Sy, Sp++) > 0 depends on the behavioral statuses
of the two interacting agents, see Section 3.2. To avoid numerical issues in the case two agents get
temporarily too close to each other, a threshold is imposed to the value 1/| - ||2.
The attraction follower-leader, instead, is proportional to the distance between the two agents

V¢ =C%X, — Xp), (6)

where the parameter C* > ( is constant.

3. Description of the case study
3.1. Geometry

We model the access road to the area of a mass event as a two-dimensional corridor of length L and
height H. People initially move along the corridor from left to right and enter the area of the event
through a gate, placed at the end of the corridor, see Figure 1. At a certain time (¢ = 0 in the simulation)
o Region 1 Region 2 Region 3 Region 4 the gate closes for
10 safety reasons so that
people are forced to
0 change target (stay-
0 20 10 5 m 100 2 o ing or going back).
Fig.1. Geometry of the simulated domain. The gate is placed on the far right. In the following nu-
Pedestrian density evolution is monitored within the four square regions placed along  merical simulations

the corridor. we focus on the be-
havior of the crowd after the gate closure, which involves a risk of high densities. In particular, we
measure the pedestrian density along the corridor by means of four square regions of side R, equally
spaced along the corridor. Regions are numbered from left to right, see Figure 1.

5
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3.2. Behavior

In order to complete the description of the model we need to specify how the groups take decisions.
In particular, how and when they decide to move towards the gate, stop or go back.

We select 4 statuses S € {1,2,3,4} at the group level (i.e. all components of a group share the
same status, decided by the group leader), defined as follows:

— & = 1: move rightward towards the gate;

— S = 2: doubt phase, decision in progress;

— & = 3: decision taken, go back moving leftward;
— S = 4: decision taken, queuing in the corridor.

The group status affects the desired velocity and the interactions with the others.

Status’ changes happen necessarily in this order: 1 — 2 — {3,4}, and once the group is in status
3 or 4 it will not change further.

The change 1 — 2 occurs if

t>d6t and Xl(t) — XL(t—6t) <O, (7)

where t, 6¢ > 0 are two additional parameters and X ,1 is the horizontal component of the position of
the agent k. This means that the group leader was not able to move forward for more than §¢ in a
period of time of length dt. In practice, &t represents a degree of willingness to get to the gate.

The status 2 has a fixed duration, set to D. After D time units, the change 2 — {3,4} occurs
randomly in such a way that, in average, p% of groups fall in status 3 and (1 — p)% in status 4.

4. Numerical tests

4.1. Parameters

Let us begin with setting the values of the parameters. Parameters are primarily chosen in order to
get realistic (observed) behavior in situations of equilibrium. In particular we match observed crowds
in the initial phase, where all people are in status 1 and are normally walking rightward, and in the
final phase, when only people with status 4 are present and waiting. In these two phases the forces
which rule the interpersonal distances are in equilibrium, and the relative positions of persons do not
vary (apart for small negligible oscillations).

In the numerical tests we discuss the effect of five parameters, namely N, §t, p, D, H. We also
investigate the effect of the desired velocity of pedestrians with status 4.

Equation (2) is numerically solved by means of the explicit Euler scheme, with time step At.

Fized parameters. At = 0.01s, 6f = 1.5m, L = 130m, R = 10m, V(1) = (1,0)m/s, V4(2) =
(0,0)m/s, V4(3) = (—1.2,0)m/s. The 16 possible values of C* are summarized in the following
matrix, where the entry ¢j is the force exerted by and agent in status j over an agent in status i,

20 25 1.0 25
20 2.0 20 20
0.75 0.75 0.75 0.75
20 2.0 0.7 45

Some comments on the repulsion forces are in order:

1. People in status 3 (coming back) are repelled from all the others with little intensity. In fact, they
accept to be close to other people, even to strangers, because the contact is supposed to be of short
duration.

2. People in status 4 (staying) are strongly repelled by people of the same status because they want
to reach a large comfort distance.

3. People in status 4 (staying) are also repelled by people in status 1 (moving rightward) because they
want to keep their priority in the queue and keep the newly coming people behind them. In other
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words, they do not leave room for others to move rightward. Conversely, they are little repelled

by people in status 3 (coming back) because waiting people take advantage from the departure of

them. People going back leave free space and allow waiting people to get even closer to the gate.

All these features have an important consequence: staying people are compressed towards the gate

and the closer they are to the gate, the more compressed they are.

Variable parameters. N = 400 or 800 or 1200, 0t = 7 or 20s, p = 25 or 75, D = 10 or 40s,
Vi(4) = (0.5,0) or (0,0)m/s, H =17 or 10 or 13m.

In all simulations the initial density of pedestrians is 0.8 p/m? (the larger N the larger the area
occupied). The initial positions are randomly chosen. The number of members of the groups is
uniformly random in the set {2,3,4,5,6}.

4.2. Numerical results

Figure 2 shows some screen shots of a reference simulation with 1200 agents.

e
Fig. 2. Five screenshots of a simulation with N = 1200 pedestrians, with dt = 7s, p=25, D = 10s, V¢(4) =
(0.5,0)m/s, H = 10m. Status 1 is blue, status 2 is magenta, status 3 is red, and status 4 is black. Circled

agents are the leaders of their groups.

Figure2a: at the beginning all agents are walking rightward. As we said before, initial density,
repulsion forces and desired velocity are compatible with each other, in the sense that people can
move forward at constant velocity, nobody slows down due to excessive proximity to the neighbor
and no queue is formed. As soon as the first pedestrians reach the closed gate the situation changes:
people in proximity of the gate stop and people behind start slowing down. Figure2b: a queue begins
to form and gradually still people take decision about the new status to get. At this point all four
statuses are present at the same time and the dynamics becomes quite complex. Some people in
status 1 (moving rightward, blue) are able to overcome people in status 4 (staying, black) before
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changing status themselves. Figure2c¢: lanes are formed as in more standard counter-flow dynamics
(cf. Section 1), although they are quite perturbed by the presence of the social groups. Social groups
sometimes disperse for a while but then reunite. Figure2d: gradually people in status 3 (coming
back, red) succeed in passing through the staying crowd and leave the corridor. While they move
leftward, people in status 4 (staying, black) can move a bit backward to let them free space. Figure 2e:
finally, only people in status 4 (staying, black) are present in the corridor. They reach an equilibrium
characterized by a nonconstant density, due to the natural tendency to stay close to the gate.
Figure 3 shows instead the evolution of the density in the four regions of interests, varying V.

density (p/m?)
density (p/m?)

05 05 F /’V\ - 05 \
J NPT , \\\,_/ VAN , \\M

200 40 60 80 100 120 140 160 180 200 220 20 40 60 8 10 120 180 160 180 200 220 200 40 60 6 100 1 10 160 180 200 220
time (s) time (s) time (s)

a (N =400) b (N = 800) ¢ (N =1200)
Fig. 3. Evolution in the four regions of interest, for N = 400, 800, 1200 and other parameters as in Figure 2.

The comparison of the plots brings to light some facts:

1. The most crowded region is the fourth one, the region closest to the gate.

2. In all cases it is well visible a peak of the density in regions 3 — 2 — 1 which decreases and shifts
forward in time as the region moves away from the gate (see, e.g., Figure3c). This moving peak is
due to the reversing people encountering the newly arriving people.

3. As N increases, average densities increase in all regions but less than one could expect. We think
that the reason for this stability is that the crowd is able to self-requlate: the more people in the
corridor, the earlier (i.e. before in both space and time) people get to make a decision about what
to do, and, if they decide to leave, they do so before remaining trapped by the others. We observe
a sort of a compensation phenomenon that consists in the fact that the more people there are, the
sooner they leave, overall leading to small differences in the density evolution.

Now we consider the numerical setting of Figure 3¢ as reference case for investigating the role of
the variable parameters of the model. The results are shown in Figure4.

Figures4a and 4b show the result obtained modifying the height H of the corridor. In both cases
we maintain the initial density of people as 0.8 p/m?. As expected, we observe the largest average
densities in the case of the smallest corridor. The difference is remarkable in the regions farthest from
the gate.

Figure4c shows the results obtained for an increased value of the doubt phase, namely D = 40s.
We do not observe a relevant increase of the maximum values of the densities, but the peaks are more
delayed.

Figure 4d shows the results obtained for an increased value of the time needed to decide either to
enter the doubt phase or to keep going to the gate, namely 6t = 20s. People are now more resistant
to the idea of renouncing going to the gate and therefore necessarily spend more time in the corridor.
Here the peak of density in region 4 is much greater than before and reaches the dangerous level of
5p/m? [24]. This is mainly due to the longer time spent there by people in statuses 1 — 4 all together.
Overall, the parameter 4t is the most effective in increasing the density.

Figure 4e shows the effect of increasing p from 25 to 75. In this case 75% people decide to leave the
corridor and only 25% to stay. We see that at the beginning the densities in all regions are larger than
those in the reference case, because more people are trying to go back and form a big group which
move very slowly. Conversely, at final time all regions are almost empty and have similar density.
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Fig.4. Same simulation as in Figure3c¢ with (@) H decreased from 10 to 7 m, (b) H increased from 10 to

13 m, (¢) D increased from 10 to 40 s, (d) 0t increased from 7 to 20 s, (e) p increased from 25 to 75, (f) V¢(4)
decreased from (0.5,0) to (0,0) m/s.

Figure 4f shows the effect of vanishing the desired velocity of people with status 4. Although those
people are just waiting in the corridor, a rightward constant desired velocity is needed to reproduce
the will to stay close to the gate and not to be overcome by newly incoming people in status 1. If
V<(4) = (0,0) the dynamics change completely: people in status 1 continuously take the place of

waiting people, and waiting people move back. At final time, the result is an almost constant density
all along the corridor.

4.3. Congestion control via control & information points

As final tests, we try to lower the congestion in the four regions adding some Control & Information
Points (CIPs) along the corridor. The idea is that people walking in the corridor are informed about
o - the closure of the gate by some
|l | signals or stewards. In this
way, people can enter the doubt
phase much before (both in
space and time) than they do
without any knowledge of the
status of gate. More precisely,
v we assume that anyone in status

e \’“W 1 moves immediately to status 2

20 40 60 80 100 120 140 160 180 200 220 20 40 60 80 100 120 140 160 180 200 220

time (5 time (s) as soon as it crosses a CIP. The
a (Single CIP in region 3) b (Two CIPs in regions 3 and 1) question arises when and where
Fig.5. Density evolution in the four regions of interest. 20 s after the it is most convenient to locate
gate closed, pedestrians are informed by (a) one CIP located in region 3, CIPs. Starting from the setting
(b) two CIPs, simultaneously activated, located in regions 3 and 1.

density (p/m?)
density (p/m?)

shown in Figure4d, which is the
most critical among the investigated ones, we have run a brute-force optimization procedure to test
the effect of the presence of a single CIP; we have found that the best option is positioning the CIP in
region 3, 20s after the gate closed. The result is shown in Figure 5a.
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The effect of the CIP is clear since the maximal density decreases from ~ 5 to ~ 3p/m?, and the
density evolution of region 3 becomes very similar to that of region 4.

Figure 5b shows the result after adding a second CIP in region 1, again 20s after the gate closed.
Maximal densities are not further decreased but densities are less fluctuating in all regions. This can
be an advantage in terms of pedestrian safety.

5. Conclusions and future perspectives

We have conducted a numerical investigation in a particular situation characterized by a complex self-
interaction of a crowd in a corridor. Although the model has a large number of parameters, we have
seen that it is quite sensitive only to some of them. In particular, the parameter N does not affect
very much the maximal densities, as if the crowd was able to self-regulate. This ability comes from the
dynamical way people change status, the decision being depending on the crowd itself. The parameter
0t, instead, affects the maximal density near the gate more than the size N of the crowd itself. This
conveys the idea that large crowds are not an issue per se, but high densities actually arise whenever
people keep moving towards a blocked crowd. This creates a compression which is then very hard to
resolve.

Finally, numerical simulations suggest that it is possible to prevent the formation of congestion by
informing people along the corridor about the status of the gate. Even one information point is able
to drastically reduce the maximal density since it prevents the encounter between the first people who
have reached the closed gate and those who are arriving.

In the next future we will further investigate the role of the geometry of the domain in crowd
dynamics, in particular testing different shapes of the corridor. We will also evaluate the impact of the
visibility of the signals which inform people about the status of the gate.

Even more important, we will validate the results of the simulations comparing them with the real
dynamics of people observed during mass events by means of video cameras.

Overall, we are strongly convinced that the adoption of predictive tools for congestion formation
and technologies/automatisms for informing the crowd should be a further subject of study in event
planning and crowd safety management.
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3anobiraHHs 3aTopam y AnHaMmiui HaTOBNY, CNPUYUHEHOMY
peBEPCUBHUM MNOTOKOM

Amapo I'. 'Y, Kpimrriani E.2, Menri M.2

LGAe Engineering S.r.l., dopoeza Acciemma 17, 10128 Typun, Imanis
2 [ncmumym 3aCmocysaHHA 06UUCAIOEAALHOT METHIKU,
Hauionanrvrna docaionuyvka pada, opoza 60za Typuna 19, 00185 Pum, Imanis

V it po6oti po3pobIIsieMO MIKPOCKOIIIYHY (Ha OCHOBI AreHTiB) MATEMATHIHY MOJIEJNb JIJIs]
BIiJITBOPEHHS ITOBEJIIHKN HATOBITY 34 IIEBHUM CIIEHAPIEM: HU3KA IIIIOXO/IiB, IO CKJIA IAI0ThCS
3 YHCJIEHHUX COIIAJbHUX I'PYI, PYyXalOThCs IO KOPUJIOPY, TOKU He 3aKPHUIOTHCS BOPOTA, K1
po3TaItoBaHi B KiHii Kopuaopy. JIoan He iHHOPMYIOThCS PO 3aKPUTTS BOPIT 1 cripuitma-
FOTh 3aBaJI, JUHAMIYHO CIIOCTEPITal0vn 3a MiCIIEBUM HATOBIIOM. YK TLIBKU JIIOJIM JTi3HAIOTH-
Cs IIPO HOBI YMOBU, BOHU 3yIUHSIOTHCH, & IOTIM BHUPINIYIOTH 400 3a/IMINMATHUCH, Y€KAI0UN
Ha [IOBTOPHE BiAKPUTTH, a0 IOBEPHYTHUCS HA3a1 1 3aJUINUTU KOPHUIOP Ha3aBkKau. JIonu,
sIKi TIOBEPTAIOTHCS, CTUKAIOTHCS 3 HOBUMU JIIOJBMU, CTBOPIOIOYN HEOE3IMEeIHMIT 3yCTPITHMIA
noTik. IIpoBoammo feKiTbKa YuCeTbHIX CUMYJIAIIHN i3 pI3HIMU MapaMeTpaMu, SKi KOHTPO-
JIFOIOTH TIOBEJIIHKY HATOBILY, 00 3po3yMiTu (hakTopH, siki MAalOTh HAWOIIBIINN BILIMB Ha
JUHAMIKY cucTeMu. TaKoXK JOCTIIKyEMO ONTUMAJILHIN crioci6 indopMmyBaHHs JTIOAei Tpo
6J10KyBaHHs, 100 3a100irTH 3yCTPITHOMY MOTOKY. 3aBEPIIYEMO JEKIIHBKOMa KOPUCHUMU
IIPOTIO3UITISAIMU, SIKi a/IpecOBaHi OpraHizaTopaM MaCOBUX 3aXOJIiB.

KntouoBi cnoBa: modeatogarns namosny, Kepyearts HaAMoGNom, Modesdb COuiaivHol
CUAU, BYCMPIYHUT NOMIK, COULANDHT 2PYNU.
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