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INVESTIGATION OF THE ASYMMETRY OF THE EARTH'S GRAVITATIONAL 
FIELD USING THE REPRESENTATION OF POTENTIALS OF DISKS 

The paper considers representations of the Earth external gravitational field, supplementing its traditional 
approximation by series in spherical functions. The necessity for additional means of describing the external 
potential is dictated by the need to study and use it at points in space close to the Earth's surface. It is in such 
areas that the need arises to investigate the convergence of series with respect to spherical functions and to 
adequately determine the value of the potential. The apparatus for approximating a piecewise continuous 
function in the middle of the ellipse is used for the representation of the Earth external gravitational field by the 
simple and double layer integrals. This makes it possible to expand the convergence region for the series 
supplying the potential to the entire space outside the integration ellipse. Therefore, as a result, the value of the 
gravitational potential coincides with the values of these series outside the body containing the interior masses 
(except for the integration ellipse). It becomes possible to evaluate the gravitational field behavior in surface 
areas and to carry out studies of geodynamic processes with greater reliability. Approximation of the 
gravitational field with the help of surface integrals also determines the geophysical aspect of the problem. 
Indeed, in the process of solving the problem we constructed two-dimensional integrands, which are uniquely 
determined by a set of Stokes constants. In this case, their expansion coefficients into series are defined by linear 
combinations of their function power moments. The resulting function schedules can be used to study the 
external gravitational field features, e.g., to study its asymmetry with respect to the equatorial plane. 

Key words: the gravitational field asymmetry; Earth, potential; Bjerhamer sphere; Stokes constants. 

Introduction 

The history of research into the theory of 
attraction dates back hundreds of years and continues 
to develop both in theoretical [Axler et al, 2013; 
Landkoff, 1966] and practical directions [Kondratiev, 
2007; Antonov et al., 1988]. The force of gravity of 
the Earth's gravitational field can be applied in 
different ways [Antonov et al., 1982]. The most 
common is the representation of the components of 
this force in terms of partial derivatives of a certain 
function called potential, which can be defined in 
different ways. The practical use of gravity in various 
fields affects the way it is specified [Antonov et al., 
1988]. For example, for space geodesy purposes, it is 
advisable to represent the Earth's potential as the sum 
of the point mass potentials located in the middle of 
the Earth [Marchenko et al., 1985; Ostach, Ageeva, 
1982]. In this case, different approaches and criteria 
for the spatial significance of the point mass 
placement are possible [Ostach, & Ageeva, 1982]. A 
special niche is occupied by the representation of the 
potential, caused primarily by the schedule of the 
inverse radius vector into series [Hobson, 1953]. This 
approach, in turn, defines the scope, determined by 
convergence. After all, the schedule of the inverse 
radius in a convergent series in spherical functions is 
guaranteed outside the sphere of a fixed radius and is 

automatically transferred to the region of convergence 
of the potential representation in spherical functions 
[Pellinen, 1978]. In other words, outside a certain 
sphere, which is called the convergence sphere, it is 
legitimate to represent the gravitational field in the 
form of a series in spherical functions. In the middle 
of this sphere, the question of convergence is open: 
the series can either coincide or be divergent. In the 
theory of the Earth figure, the concept of a minimal 
sphere, the “Bjerhamer” sphere, was even introduced 
[Pellinen, 1978]. A detailed discussion of this issue 
was made in [Sacerdote, & Sanso, 1991], where, 
along with theoretical studies, examples of the 
practical application of the methodology and the 
difficulties of its implementation are considered. 
Therefore, in practice, the questions of convergence 
of the series in areas close to the Earth’s surface are 
tried to be omitted, motivated by the representation of 
the series by a finite sum [Meshcheryakov, 1991]. 
Obviously, this is not entirely correct, because for 
large expansion orders (namely, this is what takes 
place in modern models of the gravitational field 
[Pavlis et al., 2008]), the contribution of high 
harmonics is determined by sensitive small numbers. 
Moreover, constantly updated modern potential models 
are time-variable [Kusche, et al 2009, Landerer, et al 
2010] [Marchenko, Lopushanskyi 2018]. Therefore, 
when applying the potential in areas close to the 
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convergence limit, one should, if possible, consider other 
ways of representing the potential, or investigate the 
possible convergence of series in spherical functions. 

In modern research, special attention is paid to the 
study of the structure of the external potential 
[Shkodrov, & Ivanova, 1988; Fys et al, 2019]. After 
all, it is known to be characterized by its anisotropy, 
in relation to the equatorial plane, primarily due to the 
asymmetry of the Earth's figure. However, the three-
dimensional nature of the external gravitational field 
is also due to the inhomogeneities of the mass 
distribution inside the Earth, which, unlike the 
deviations of the figure from the ellipsoid (sphere), 
are difficult to identify. It is quite obvious that it is 
impossible to establish an unambiguous connection 
between the inhomogeneities of the gravitational field 
and the internal structure, and approximate methods 
give potential approximate connections. For an 
unambiguous interpretation, it is necessary to put 
significant restrictions on the mass distribution of the 
Earth's interior, for example, the radial distribution of 
masses, etc. And even with such restrictions, the 
uniqueness of the solution is not always achieved. 
One of the possible options for describing the 
potential is its representation by the point mass 
potentials, which gives a way to localize the sources 
of generation of the features of the Earth's potential. 
However, this raises a number of additional questions: 
the placement of point masses and their optimal 
representation of the gravitational field. At its core, 
such a statement is presented as the main gravimetric 
problem [Grushinsky, 1983]. 

A certain step forward can be the transition from a 
discrete representation of the potential [Marchenko et 
al., 1985; Ostach, & Ageeva, 1982] to its description 
using them, which leads to the definition of a function 
of two variables. It is this approach that makes it 
possible to preserve the uniqueness of the problem 
solution (the integrand uniqueness) for a fixed 
placement surface. Specifically, this approach is the 
basis of the concept of gravitational disks proposed in 
[Meshcheryakov, 1991]. It was partially implemented 
in works [Zavision, 2000], [Zavision, 2001]. However, 
the lack of apparatus for approximating a function in an 
ellipse (circle) did not allow it to be fully realized. 
Therefore, the authors limited themselves to the one-
dimensional case (if we consider the rod as the ultimate 
compression of the ellipse). If we use the classical 
results obtained by a number of mathematicians 
[Kampé de Fériet & P.E., 1926; Bateman, & Erdane, 
1974], then we can construct an apparatus for 
approximating piecewise continuous functions in an 
ellipse by analogy for an ellipsoid [Fys et al, 2018]. It 
can be used to approximate a two-dimensional 
piecewise continuous function by series in biorthogonal 
systems. The schedule coefficients of the series are 
expressed in terms of the power moments of the 
approximating function and in the two-dimensional 
case are uniquely represented by a linear combination 
of the Stokes constants. 

It is this approach that is implemented in this 
work, while the integration surface is chosen as one of 
the simplest and represents ellipses located in the 
equatorial plane. This allows you to compare the 
action of the gravitational field relative to the equator, 
that is, to identify symmetry or its absence during the 
Earth's rotation. 

Methodology 

When solving problems of mathematical physics, 
the solution is often presented in the form of integrals 
of a simple or double layer. The implementation of 
this approach is carried out in this work, while the 
integration surface is chosen as one of the simplest 
ellipses and represents ellipses located in the 
equatorial plane. 

Such a simplification further makes it possible to 
compare the values of the external potential with 
respect to the equator, that is, to reveal symmetry or 
its absence.  

Traditionally, the potential of the planet's gravity 
is given by a series of spherical functions and looks 
like this: 

( ) ( )(

( )( ))

,0
0

, ,
1

1 cos

cos cos sin ,

J

J l l

¥

=

=

æ æ ö= + +ç ç ÷ç è øè
ö+ + ÷
ø

å

å

n
e

n n
n

n
r

n n k n k
k

aGMV P C P
R r

P C k S

  (1) 

where , ,,Sn k n kC  – expansion coefficients (Stokes 
constants).  

In the Earth sciences, slightly different quantities 
are given, the so-called normalized coefficients, 
related to the Stokes constants as follows: 
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Quantities (2) completely describe the Earth's 
external gravitational field in the region of 
convergence of series (1), defined as a sphere 
covering all integrating masses. However, decom-
position (1) is used in practice for the inner part of the 
sphere, while obtaining completely adequate results. 
Simply put, series (1) can also coincide inside the 
sphere. In theoretical geodesy [Hofmann-Wellenhof, 
& Moritz, 2005], a special term is even introduced: 
“Bjerhamer sphere” – the minimum sphere outside of 
which the series begins to coincide. 

It is also not easy to find a possible interpretation 
of the formation of the Stokes constants and relate it 
to the internal structure of the Earth. These issues 
were dealt with by a number of researchers 
(geophysicists, geodesists, gravimetrists), such as 
Moritz G. [Hofmann-Wellenhof, & Moritz, 2005], 
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[Pellinen, 1978], Tarakanov Yu. O. [Tarakanov, & 
Cherevko, 1979]. 

All the above considerations point to the necessity 
to search for such potential representations for which 
the problem of convergence would be at least partially 
solved and would also carry some geophysical 
information. One of the options for solving the 
problem is proposed in this paper. 

It was shown in [Meshcheryakov, 1991] that the 
external potential of the planet can, in particular, be 
represented by the sum of the potentials of two flat 
figures (ellipses) with variable density located in the 
equatorial plane, namely: 

' ''= +V V V ,               (4) 

where 'V  and ''V  – the single-layer potential and 
the double-layer potential S, respectively, defined as 
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To determine the expressions (5) (the disclosure of 
(6) is described in [Meshcheryakov, 1991]), we 
establish the form of the density distribution functions 
of a flat figure S . Relation (5) can be represented as 
a sum of series in spherical functions [Hobson, 1953]. 

To do this, we represent the inverse distance 
,
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where y  – the angle between vectors ,OP
uuur

 OQ
uuur

. If the point is in the equatorial plane, then its 
coordinates are as follows and the radius vector has 
the form: 

( )

( ( ) ( ) ( )
( ) ( ) ( )( )

1,

1 0

1 1 1 cos

!1 1 0 cos 2 0 cos cos cos ' sin sin '
!

y

J J l l l l

¥

=

¥

= =

æ öæ ö= + =ç ÷ç ÷ç ÷è øè ø
öæ ö-æ ö+ + + ÷ç ÷ç ÷ ç ÷÷+è ø è øø

å

å å

n

n
nQ P

n n
k k

n n n n
n k

r P
r R R

n kr P P P P m m m m
R R n k

 (8) 

The values of the attached Legendre polynomials at point 0 are as follows: 
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Substitution (10) in the expression for potential (5) gives the following: 
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of Stokes constants. 
Equating the traditional notation of the potential 

with the obtained expression (11) for even ,-n k  we 
obtain the relationship between the coefficients: 

, , , , , ,,n k n k n k n k n k n kC L a S L b= = . 

Thus, the expansion coefficients , ,,n k n ka b  can be 

considered known if the Stokes constants are given. 
They can be given in a rectangular coordinate system 
like this: 
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The system of equations (12) is a linear combi-
nation of the following expressions 
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which are called power moments [Ahiezer, & Crane, 
1938]. Note that in the case of equality (12), they split 

into two subsystems with respect to ,n ka  and ,n kb , 

from which their moments (13) are determined. Let us 

touch upon the definition of the function ( ),m x h , 

which also decomposes into two terms (corresponding 

to the Stokes constants ,n kC  and ,n kS  of pair orders): 

( ) ( ) ( )1 2, , ,m x h m x h m x h= + . 

Since the function is piecewise continuous, it can 
be expanded into a series of biorthogonal polynomials 

( ) ( ), ,, , ,m n m nW x h w x h , which can be considered as a 

simplified version of the corresponding spatial 
systems [Meshcheryakov, 1991]. Detailed calcu-
lations and justifications will be performed in a 
separate publication. Here we use post factum only 
the properties and formulas necessary for appro-
ximation: 
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The possibility of approximating the function can 
be formulated by the following theorem. 

Theorem. Any square-integrated function ( 2lm Î ) 

can be represented as a series 
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and the series is convergent on average, i.e.: 
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The consequence of this theorem is the uniform 
convergence of the following series 
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representing external potential .V  Thus, a set of 
functions 
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is a set of harmonic functions describing a part of the 
potential (1) with Stokes constants, the indices of 
which are -k n  is odd, and the sum of this series 
coincides with the value of the potential in the region 
that does not include the integrating masses. To 
calculate expressions (20), we perform the following 
transformations. We expand the reversible radius into 
a binomial series as follows: 
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The series (21) is absolutely convergent because 
the modulus of its common term is less than one, ie 
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This is easy to see by performing the following 
transformations: 
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Therefore, it can be differentiated term by term, 
including with respect to variables ,V h . To do this, 
we first write its expression in a rectangular 
coordinate system. 

Then 
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The functions mnu  can be reduced to the following form using the Stokes formula: 
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After substitution (23) in this formula we obtain: 
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Finally, we now determine the potential V  by a 
sequence of formulas (25), (19), (17), (11) and 
compare this value with the value of the potential 
obtained from pair powers of spherical functions in 
schedule (1). Outside the security sphere, these values 
coincide, and points with different values define the 
area of divergence of part of the series (1). In this 
case, in contrast to (1), we obtain a function that 
generates this part of the gravitational field value. 
Therefore, it is possible to draw certain conclusions 
on the basis of this function about the possible areas 
that generate the features of the gravitational field. 

Results 

Numerical experiments were carried out to verify 
the above methodology. The twenty first orders of the 
EGM2008 gravity model [Pavlis et al., 2008] were 
taken as initial data. The GR-84 ellipsoid of 
revolution recommended by the International 
Geophysical Union [NI&MATR, 1984] with 
parameters   6378137  a м= , 1 / 298.257223a = , 

6356752.3142 .b м= , was taken as the figure of the 
Earth. Based on these data, we calculated the 

coefficients of the expansion of function ( )1 ,m x h  

(6) for even powers of Stokes constants of even 
orders. Its visual representation is shown in Fig. 1 in 
two versions: a three-dimensional image and 
representation of a function using isolines. However, 
it is difficult to make any analysis from these figures, 
since the change in function is carried out not in a 
planned interpretation (in latitude and longitude), but 
in a combined form (in length and longitude). 
Therefore, for clarity, it is necessary to develop other 

ways of displaying such information, which is 
currently being done by the authors of this 
publication. From the figures, certain clusters can be 
distinguished at a depth of 6371×0.6 km = 3826 km at 
longitudes of 180 and 40 degrees, which in 
geographical location is a projection of points under 
Africa and in the Pacific Ocean. Without making any 
interpretations and conclusions, one can only notice 
the correlation of these placements with the recently 
discovered two regions of the features of the Earth`s 
internal structure [21]; one can also distinguish a 
feature at a depth of 637 km in the region of 180 
degrees. At depths of 0.6-0.8, positive values of the 
integrand are clearly manifested, and from 0 to 0.02, a 
negative value falling off from the origin. However, it 
is difficult to make any qualitative interpretation and 
associate it with a geographical location, because 
these values are the result of action over the entire 
latitude. 

The potential is determined from the Stokes 
constants up to the 10th order and takes into account 
the paired Stokes constants. It is given in Table 1. 
(columns with the name “sphere”) for different points 
in space in latitude and longitude for a fixed radius of 
the relative sphere ( 3R = ). For radii that are less than 
unity, there is a discrepancy between the values 
calculated in two ways, which is not given here. This 
discrepancy can be explained by the small number of 
considerations for the terms of the sum and the way in 
which the coefficients of the schedule (17) are 
calculated. We emphasize that the linear combinations 
include the values of the Stokes orders of all orders to 
the power of the determination coefficient (17). This 
effect is leveled out with increasing order of sum-
mation, but for small orders it can be noticeable. 
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Fig. 1. Ellipse density distribution function (g/cm2), which corresponds  

to the Stokes constants of paired orders, (ρ is the relative radius of the ellipse,  
λ is the polar angle, 0 ≤ λ ≤ 360°), isolines are drawn every 0.15 g/cm2. 

Also the results of Table 2 clearly illustrate the 
closeness of the potential values for a relative radius 
greater than unity. If the relative radius is less than 
unity, then its gradual decrease gradually increases the 
difference between the potential values calculated by 
the two formulas (1), (19). 

One more important note. Although the asymmetry 
is also generated by the Stokes constants ,n kS  (n – k-pair), 
their influence on the value of the total potential is 
much smaller and is not studied in this paper due to 
the need for additional study approaches (introduction 
of scaling factors, the possibility of performing cal-
culations, etc.) 

 

Table 1 

The value of the potential calculated for the radius R = 3 by spherical functions  
and using the integral of a simple layer taking into account  

the Stokes constants ,n kC  (n – k-pair) 

 0˚ 60˚ 120˚ 180˚ 240˚ 300˚ 

 
2

8
2106249482.0 10 мV
с

× ×  

0˚ -2.005 -2.005 -2.005 -2.005 -2.005 -2.005 -2.005 -2.005 -2.005 -2.005 -2.005 -2.005 

45˚ -0.501 -0.499 -0.502 -0.502 -0.502 -0.502 -0.501 -0.5 -0.502 -0.502 -0.502 -0.502 

90˚ 1.003 1.005 1.002 1.001 1.002 1.001 1.003 1.006 1.002 1.001 1.002 1.001 

135˚ -0.501 -0.499 -0.502 -0.502 -0.502 -0.502 -0.501 -0.5 -0.502 -0.502 -0.502 -0.502 

180˚ -2.005 -2.005 -2.005 -2.005 -2.005 -2.005 -2.005 -2.005 -2.005 -2.005 -2.005 -2.005 
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Table 2 

The value of the potential calculated for different radii at a fixed angle 
3
p

J =  by spherical functions and 

using the integral of a simple layer taking into account the Stokes constants ,n kC  (n – k-pair) 

 0˚ 60˚ 120˚ 180˚ 240˚ 300˚ 0˚ 

 
2

8
2106249482.0 10 мV
с

× ×  

0.7 -0.518 -0.392 -0.446 -0.395 -0.446 -0.396 -0.518 -0.395 -0.446 -0.396 -0.446 -0.395 -0.518 -0.392 

0.8 -0.315 -0.263 -0.295 -0.264 -0.295 -0.265 -0.315 -0.265 -0.295 -0.265 -0.295 -0.264 -0.315 -0.263 

0.9 -0.216 -0.185 -0.211 -0.186 -0.211 -0.186 -0.216 -0.186 -0.211 -0.186 -0.211 -0.186 -0.216 -0.185 

1.0 -0.149 -0.135 -0.129 -0.135 -0.129 -0.136 -0.149 -0.135 -0.129 -0.136 -0.129 -0.135 -0.149 -0.135 

1.1 -0.108 -0.101 -0.101 -0.102 -0.101 -0.102 -0.108 -0.102 -0.101 -0.102 -0.101 -0.102 -0.108 -0.101 

1.2 -0.082 -0.078 -0.076 -0.078 -0.076 -0.079 -0.082 -0.078 -0.076 -0.079 -0.076 -0.078 -0.082 -0.078 

 

Conclusions 

1. The description by means of integrals of simple 
layers of the gravitational field on the Earth 
complements other attempts to represent it. 

2. Calculation of the potentials of simple layers 
can be done with the help of series coinciding outside 
the region of integration. 

3. Potential values obtained by different methods 
are the same in space, excluding the distribution of 
masses inside the planet. 

4. The two-dimensional integrand of the surface 
integral can be used for geophysical interpretation, in 
particular, to reveal the asymmetry of the gravitational 
field. 

5. It is planned to further improve the above 
technique with the aim of extending it to higher orders 
and studying the properties caused by other constant 
groups of Stokes. 
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ДОСЛІДЖЕННЯ АСИМЕТРІЇ ГРАВІТАЦІЙНОГО ПОЛЯ ЗЕМЛІ,  
ПОДАНОГО ПОТЕНЦІАЛАМИ ПЛОСКИХ ДИСКІВ 

У роботі розглянуто подання зовнішнього гравітаційного поля Землі, які доповнюють його тради-
ційну апроксимацію рядами за кульовими функціями. Необхідність додаткових засобів опису зовніш-
нього потенціалу продиктована потребою його вивчення та використання в точках простору, що є 
близькими до поверхні Землі. Саме в таких областях виникає потреба дослідження збіжності рядів за 
кульовими функціями та адекватного визначення значення потенціалу. Представлення зовнішнього 
гравітаційного поля Землі інтегралами простого та подвійного прошарку із залученням апарату апрокси-
мації кусково-неперервної функції в середині еліпса дає змогу розширити для рядів, що подають 
потенціал, область збіжності до всього простору поза еліпсом інтегрування. Тому, як результат, значення 
гравітаційного потенціалу збігається зі значеннями цих рядів поза тілом, що містить маси надр (крім 
еліпса інтегрування). Це дає можливість оцінювати поведінку гравітаційного поля в приповерхневих 
областях та виконувати з більшою достовірністю дослідження геодинамічних процесів. Апроксимація 
гравітаційного поля за допомогою поверхневих інтегралів окреслює також геофізичний аспект задачі. 
Адже під час її розв’язання здійснюється побудова двовимірних підінтегральних функцій, що 
однозначно визначаються набором стоксових сталих. При цьому коефіцієнти їх розкладів у ряди 
визначаються за лінійними комбінаціями степеневих моментів їх функцій. Отримані розклади функцій 
можуть бути використані для дослідження особливостей зовнішнього гравітаційного поля, наприклад, 
вивчення його асиметрії відносно екваторіальної площини.  

Ключові слова: асиметрія гравітаційного поля; Земля; потенціал; сфера Б’єрхамера; стоксові постійні. 
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