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INVESTIGATION OF THE ASYMMETRY OF THE EARTH'S GRAVITATIONAL
FIELD USING THE REPRESENTATION OF POTENTIALS OF DISKS

The paper considers representations of the Earth external gravitational field, supplementing its traditional
approximation by series in spherical functions. The necessity for additional means of describing the external
potential is dictated by the need to study and use it at points in space close to the Earth's surface. It is in such
areas that the need arises to investigate the convergence of series with respect to spherical functions and to
adequately determine the value of the potential. The apparatus for approximating a piecewise continuous
function in the middle of the ellipse is used for the representation of the Earth external gravitational field by the
simple and double layer integrals. This makes it possible to expand the convergence region for the series
supplying the potential to the entire space outside the integration ellipse. Therefore, as a result, the value of the
gravitational potential coincides with the values of these series outside the body containing the interior masses
(except for the integration ellipse). It becomes possible to evaluate the gravitational field behavior in surface
areas and to carry out studies of geodynamic processes with greater reliability. Approximation of the
gravitational field with the help of surface integrals also determines the geophysical aspect of the problem.
Indeed, in the process of solving the problem we constructed two-dimensional integrands, which are uniquely
determined by a set of Stokes constants. In this case, their expansion coefficients into series are defined by linear
combinations of their function power moments. The resulting function schedules can be used to study the
external gravitational field features, e.g., to study its asymmetry with respect to the equatorial plane.

Key words: the gravitational field asymmetry; Earth, potential; Bjerhamer sphere; Stokes constants.

Introduction automatically transferred to the region of convergence
of the potential representation in spherical functions
[Pellinen, 1978]. In other words, outside a certain
sphere, which is called the convergence sphere, it is
legitimate to represent the gravitational field in the
form of a series in spherical functions. In the middle
of this sphere, the question of convergence is open:
the series can either coincide or be divergent. In the
theory of the Earth figure, the concept of a minimal
sphere, the “Bjerhamer” sphere, was even introduced
[Pellinen, 1978]. A detailed discussion of this issue
was made in [Sacerdote, & Sanso, 1991], where,
along with theoretical studies, examples of the
practical application of the methodology and the
difficulties of its implementation are considered.
Therefore, in practice, the questions of convergence
of the series in areas close to the Earth’s surface are
tried to be omitted, motivated by the representation of
the series by a finite sum [Meshcheryakov, 1991].
Obviously, this is not entirely correct, because for
large expansion orders (namely, this is what takes
place in modern models of the gravitational field

The history of research into the theory of
attraction dates back hundreds of years and continues
to develop both in theoretical [Axler et al, 2013;
Landkoff, 1966] and practical directions [Kondratiev,
2007; Antonov et al., 1988]. The force of gravity of
the Earth's gravitational field can be applied in
different ways [Antonov et al., 1982]. The most
common is the representation of the components of
this force in terms of partial derivatives of a certain
function called potential, which can be defined in
different ways. The practical use of gravity in various
fields affects the way it is specified [Antonov et al.,
1988]. For example, for space geodesy purposes, it is
advisable to represent the Earth's potential as the sum
of the point mass potentials located in the middle of
the Earth [Marchenko et al., 1985; Ostach, Ageeva,
1982]. In this case, different approaches and criteria
for the spatial significance of the point mass
placement are possible [Ostach, & Ageeva, 1982]. A
special niche is occupied by the representation of the

potential, caused primarily by the schedule of the
inverse radius vector into series [Hobson, 1953]. This
approach, in turn, defines the scope, determined by
convergence. After all, the schedule of the inverse
radius in a convergent series in spherical functions is
guaranteed outside the sphere of a fixed radius and is

[Pavlis et al., 2008]), the contribution of high
harmonics is determined by sensitive small numbers.
Moreover, constantly updated modern potential models
are time-variable [Kusche, et al 2009, Landerer, et al
2010] [Marchenko, Lopushanskyi 2018]. Therefore,
when applying the potential in areas close to the
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convergence limit, one should, if possible, consider other
ways of representing the potential, or investigate the
possible convergence of series in spherical functions.

In modern research, special attention is paid to the
study of the structure of the external potential
[Shkodrov, & Ivanova, 1988; Fys et al, 2019]. After
all, it is known to be characterized by its anisotropy,
in relation to the equatorial plane, primarily due to the
asymmetry of the Earth's figure. However, the three-
dimensional nature of the external gravitational field
is also due to the inhomogeneities of the mass
distribution inside the Earth, which, unlike the
deviations of the figure from the ellipsoid (sphere),
are difficult to identify. It is quite obvious that it is
impossible to establish an unambiguous connection
between the inhomogeneities of the gravitational field
and the internal structure, and approximate methods
give potential approximate connections. For an
unambiguous interpretation, it is necessary to put
significant restrictions on the mass distribution of the
Earth's interior, for example, the radial distribution of
masses, etc. And even with such restrictions, the
uniqueness of the solution is not always achieved.
One of the possible options for describing the
potential is its representation by the point mass
potentials, which gives a way to localize the sources
of generation of the features of the Earth's potential.
However, this raises a number of additional questions:
the placement of point masses and their optimal
representation of the gravitational field. At its core,
such a statement is presented as the main gravimetric
problem [Grushinsky, 1983].

A certain step forward can be the transition from a
discrete representation of the potential [Marchenko et
al., 1985; Ostach, & Ageeva, 1982] to its description
using them, which leads to the definition of a function
of two variables. It is this approach that makes it
possible to preserve the uniqueness of the problem
solution (the integrand uniqueness) for a fixed
placement surface. Specifically, this approach is the
basis of the concept of gravitational disks proposed in
[Meshcheryakov, 1991]. It was partially implemented
in works [Zavision, 2000], [Zavision, 2001]. However,
the lack of apparatus for approximating a function in an
ellipse (circle) did not allow it to be fully realized.
Therefore, the authors limited themselves to the one-
dimensional case (if we consider the rod as the ultimate
compression of the ellipse). If we use the classical
results obtained by a number of mathematicians
[Kampé de Fériet & P.E., 1926; Bateman, & Erdane,
1974], then we can construct an apparatus for
approximating piecewise continuous functions in an
ellipse by analogy for an ellipsoid [Fys et al, 2018]. It
can be used to approximate a two-dimensional
piecewise continuous function by series in biorthogonal
systems. The schedule coefficients of the series are
expressed in terms of the power moments of the
approximating function and in the two-dimensional
case are uniquely represented by a linear combination
of the Stokes constants.

It is this approach that is implemented in this
work, while the integration surface is chosen as one of
the simplest and represents ellipses located in the
equatorial plane. This allows you to compare the
action of the gravitational field relative to the equator,
that is, to identify symmetry or its absence during the
Earth's rotation.

Methodology

When solving problems of mathematical physics,
the solution is often presented in the form of integrals
of a simple or double layer. The implementation of
this approach is carried out in this work, while the
integration surface is chosen as one of the simplest
ellipses and represents ellipses located in the
equatorial plane.

Such a simplification further makes it possible to
compare the values of the external potential with
respect to the equator, that is, to reveal symmetry or
its absence.

Traditionally, the potential of the planet's gravity
is given by a series of spherical functions and looks
like this:

a Wn
v (P) - GM &0 (CooP, (cosI) +
ro (2)
n .
+ QP (cosJ)(C,, coskl +S, sinl ))9
k=1 g
where C,,S,, - expansion coefficients (Stokes

constants).

In the Earth sciences, slightly different quantities
are given, the so-called normalized coefficients,
related to the Stokes constants as follows:

(n-k)!(2n+1)
(n+k)!

Cox = Auk\/RR ) (2)

iLk=0
12.k10

Quantities (2) completely describe the Earth's
external gravitational field in the region of
convergence of series (1), defined as a sphere
covering all integrating masses. However, decom-
position (1) is used in practice for the inner part of the
sphere, while obtaining completely adequate results.
Simply put, series (1) can also coincide inside the
sphere. In theoretical geodesy [Hofmann-Wellenhof,
& Moritz, 2005], a special term is even introduced:
“Bjerhamer sphere” — the minimum sphere outside of
which the series begins to coincide.

It is also not easy to find a possible interpretation
of the formation of the Stokes constants and relate it
to the internal structure of the Earth. These issues
were dealt with by a number of researchers
(geophysicists, geodesists, gravimetrists), such as
Moritz G. [Hofmann-Wellenhof, & Moritz, 2005],

RR = 3)
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[Pellinen, 1978], Tarakanov Yu. O. [Tarakanov, &
Cherevko, 1979].

All the above considerations point to the necessity
to search for such potential representations for which
the problem of convergence would be at least partially
solved and would also carry some geophysical
information. One of the options for solving the
problem is proposed in this paper.

It was shown in [Meshcheryakov, 1991] that the
external potential of the planet can, in particular, be
represented by the sum of the potentials of two flat
figures (ellipses) with variable density located in the
equatorial plane, namely:

V=V'+V", 4)

where V ' and V" — the single-layer potential and
the double-layer potential S, respectively, defined as

1 1 darg 0 & r
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where Y - the angle between vectors OP, OQ.
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To determine the expressions (5) (the disclosure of
(6) is described in [Meshcheryakov, 1991]), we
establish the form of the density distribution functions
of a flat figure S . Relation (5) can be represented as
a sum of series in spherical functions [Hobson, 1953].

1
To do this, we represent the inverse distance —

I’Q'P
between two points Q(r'J'1'),P(R,J, 1) as

follows:

(7)

g

If the point is in the equatorial plane, then its
coordinates are as follows and the radius vector has
the form:
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The values of the attached Legendre polynomials at point O are as follows:
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Substitution (10) in the expression for potential (5) gives the following:

GM & s ra
Vi=s— n,0"n
R §0 " EeR; g
where a,, = a”lM oom(x,h)(r)" coskl 'ds,
1

Bk = oom (x.,h)(r)"sinkl'ds

a"M
of Stokes constants.

Equating the traditional notation of the potential
with the obtained expression (11) for even n - k, we

are analogues

obtain the relationship between the coefficients:

Cn,k = I‘n,ka'n,k’ Sn,k = I‘n,kbn,k'

Thus, the expansion coefficients a,,,b, , can be

considered known if the Stokes constants are given.
They can be given in a rectangular coordinate system
like this:

an,k + Ibn,k =

a”lM om (x,h)(x2 + yz)rn (x+iy)“ds,
S
0EkEn, m=Sn-ke (12)

g2 f
The system of equations (12) is a linear combi-
nation of the following expressions

Ea P, (cosJ)+ é L, P (cosJ)(a,, coskl +b,  sinkl )92 (11)
k=0
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which are called power moments [Ahiezer, & Crane,
1938]. Note that in the case of equality (12), they split

into two subsystems with respect to &, , and D,y
from which their moments (13) are determined. Let us
touch upon the definition of the function m(x,h),
which also decomposes into two terms (corresponding
to the Stokes constants C , and S, of pair orders):

m(x,h) =

Since the function is piecewise continuous, it can
be expanded into a series of biorthogonal polynomials

W, (x.,h),w,, (x,h), which can be considered as a
simplified version of the corresponding spatial
systems [Meshcheryakov, 1991]. Detailed calcu-
lations and justifications will be performed in a
separate publication. Here we use post factum only
the properties and formulas necessary for appro-
ximation:

m, (x,h)+m, (x,h).

n-2j

. ng? ageyo
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ﬁu
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The possibility of approximating the function can
be formulated by the following theorem.
Theorem. Any square-integrated function (m T1,)

can be represented as a series
¥ ¥
m(x,h)= & d.W,, (x,n).  (16)
n=0 m=0

where

(N +1)minta®b®

, m=m,n=n

00 MW, (x,h)dS
= S @an
00 W (X, 0)W,,, (x,h)dS

mn

and the series is convergent on average, i.e.:
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The consequence of this theorem is the uniform
convergence of the following series

¥ ¥
V=Gaad,g"eds,
n=0 m=0 S

representing external potential V. Thus, a set of
functions

(19)

is a set of harmonic functions describing a part of the
potential (1) with Stokes constants, the indices of
which are K = n is odd, and the sum of this series
coincides with the value of the potential in the region
that does not include the integrating masses. To
calculate expressions (20), we perform the following

Uy = OOWdeS (20) trar?sforr_natior!s. We expand the reversible radius into
S a binomial series as follows:
1 1 _ 1 _ 1
r 2 2 _ 2 2 _ + 2 _ -
QP \/r +r°-2rrcosy R\/r +r°-2rrcosy =1 R(m)\/Hr 2r2rcosy 1
r-+1 (21)
1 EL2 (-1)"(2n-1)Ye r? - 2rr cosy -16'0
R( /—r2+1)§ S § el G

The series (21) is absolutely convergent because
the modulus of its common term is less than one, ie

r? -2rr cosy -1

1.
r2+1

-1< (22)
This is easy to see by performing the following

transformations:
r’-2rrcosy -1 -

(r —r)2+2rr(1+cosy)+2(1— r2) =
-r>+r?+2rr(cosy ) +1+130
r?-2rr(cosy)-1<r?+1,
2)-r?-1<r?-2rrcosy -1,

(r-r)’+2rr(1-cosy)>0.
Therefore, it can be differentiated term by term,

1) 741 1, including with respect to variables V,n . To do this,
, e+ , we first write its expression in a rectangular
r°-2rrcosy -1<r”+1, coordinate system.
Then
11 391+§(—1)”(2n—1)!!ae r?-2rrcosy -16 0 _
o R(ESL)i 2 2§ ol g
1 & ¥(-1)"(2n-1)n n 0
1+é( ) (n ) (r2—2rrcosy —1) 1=
R( r2+1)§ 20! 5
1 E g (-1)"nt g (<) (vE+h?-2vx-2hy)
e e i(n-1)! =
2 _ - n-1)! -
R( r +1)8 n-1(r +1) 1=0 .
2 n n-I ta*y \; 2t +tgp 26,48, Lty O
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g1+é( - é( ) 2 ( ) y — (23)
R( r2+1)g n=1(r2+1 1=0 (n_l)!t1+t2+t3+t4zl Hltzltglt4l -
The functions U, can be reduced to the following form using the Stokes formula:
" &x2 h? 8" N N
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30



Geodesy

After substitution (23) in this formula we obtain:

(_2)12 +y v 2t1+t3h 2ty +t, X12 yt4 0

(-1™ 3

*ds =
t1t, 1t 1t +
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Finally, we now determine the potential V by a
sequence of formulas (25), (19), (17), (11) and
compare this value with the value of the potential
obtained from pair powers of spherical functions in
schedule (1). Outside the security sphere, these values
coincide, and points with different values define the
area of divergence of part of the series (1). In this
case, in contrast to (1), we obtain a function that
generates this part of the gravitational field value.
Therefore, it is possible to draw certain conclusions
on the basis of this function about the possible areas
that generate the features of the gravitational field.

Results

Numerical experiments were carried out to verify
the above methodology. The twenty first orders of the
EGM2008 gravity model [Pavlis et al., 2008] were
taken as initial data. The GR-84 ellipsoid of
revolution recommended by the International
Geophysical Union [NI&MATR, 1984] with
parameters  a=6378137m, a =1/298.257223,

b =6356752.3142 u., was taken as the figure of the
Earth. Based on these data, we calculated the

coefficients of the expansion of function m, (X,h)

(6) for even powers of Stokes constants of even
orders. Its visual representation is shown in Fig. 1 in
two versions: a three-dimensional image and
representation of a function using isolines. However,
it is difficult to make any analysis from these figures,
since the change in function is carried out not in a
planned interpretation (in latitude and longitude), but
in a combined form (in length and longitude).
Therefore, for clarity, it is necessary to develop other

S (m)l

minIR

ways of displaying such information, which is
currently being done by the authors of this
publication. From the figures, certain clusters can be
distinguished at a depth of 6371x0.6 km = 3826 km at
longitudes of 180 and 40 degrees, which in
geographical location is a projection of points under
Africa and in the Pacific Ocean. Without making any
interpretations and conclusions, one can only notice
the correlation of these placements with the recently
discovered two regions of the features of the Earth’s
internal structure [21]; one can also distinguish a
feature at a depth of 637 km in the region of 180
degrees. At depths of 0.6-0.8, positive values of the
integrand are clearly manifested, and from 0 to 0.02, a
negative value falling off from the origin. However, it
is difficult to make any qualitative interpretation and
associate it with a geographical location, because
these values are the result of action over the entire
latitude.

The potential is determined from the Stokes
constants up to the 10th order and takes into account
the paired Stokes constants. It is given in Table 1.
(columns with the name “sphere”) for different points
in space in latitude and longitude for a fixed radius of
the relative sphere (R =3). For radii that are less than
unity, there is a discrepancy between the values
calculated in two ways, which is not given here. This
discrepancy can be explained by the small number of
considerations for the terms of the sum and the way in
which the coefficients of the schedule (17) are
calculated. We emphasize that the linear combinations
include the values of the Stokes orders of all orders to
the power of the determination coefficient (17). This
effect is leveled out with increasing order of sum-
mation, but for small orders it can be noticeable.
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Fig. 1. Ellipse density distribution function (g/cm?), which corresponds
to the Stokes constants of paired orders, (p is the relative radius of the ellipse,
A is the polar angle, 0 < A < 360°), isolines are drawn every 0.15 g/cm?.

Also the results of Table 2 clearly illustrate the
closeness of the potential values for a relative radius
greater than unity. If the relative radius is less than
unity, then its gradual decrease gradually increases the
difference between the potential values calculated by
the two formulas (1), (19).

One more important note. Although the asymmetry
is also generated by the Stokes constants S, (n— k-pair),

their influence on the value of the total potential is
much smaller and is not studied in this paper due to
the need for additional study approaches (introduction
of scaling factors, the possibility of performing cal-
culations, etc.)

Table 1
The value of the potential calculated for the radius R = 3 by spherical functions
and using the integral of a simple layer taking into account
the Stokes constants C_ , (n - k-pair)
0° 60° 120° 180° 240° 300°
2
g M
V x106249482.0+10" —-
c
0° -2.005 | -2.005 | -2.005 | -2.005 | -2.005 | -2.005 | -2.005 | -2.005 | -2.005 | -2.005 | -2.005 | -2.005
45" | -0.501 | -0.499 | -0.502 | -0.502 | -0.502 | -0.502 | -0.501 -0.5 -0.502 | -0.502 | -0.502 | -0.502
90° 1.003 | 1.005 | 1.002 | 1.001 | 1.002 | 1.001 | 1.003 | 1.006 | 1.002 | 1.001 | 1.002 | 1.001
135° | -0.501 | -0.499 | -0.502 | -0.502 | -0.502 | -0.502 | -0.501 -0.5 -0.502 | -0.502 | -0.502 | -0.502
180° | -2.005 | -2.005 | -2.005 | -2.005 | -2.005 | -2.005 | -2.005 | -2.005 | -2.005 | -2.005 | -2.005 | -2.005
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Table 2
The value of the potential calculated for different radii at a fixed angle J = % by spherical functions and
using the integral of a simple layer taking into account the Stokes constants Cn « (n—Kk-pair)
0 60° 120° 180° 240° 300° 0°
2
g M
V x106249482.0x10° —-
c
0.7 | -0.518 -0.392 -0.446 -0.395 -0.446 -0.396 -0.518 -0.395 -0.446 -0.396 -0.446 -0.395 -0.518 |-0.392
0.8 | -0.315 -0.263 -0.295 -0.264 -0.295 -0.265 -0.315 -0.265 -0.295 -0.265 -0.295 -0.264 -0.315 | -0.263
0.9 | -0.216 -0.185 -0.211 -0.186 -0.211 -0.186 -0.216 -0.186 -0.211 -0.186 -0.211 -0.186 -0.216 | -0.185
1.0| -0.149 -0.135 -0.129 -0.135 -0.129 -0.136 -0.149 -0.135 -0.129 -0.136 -0.129 -0.135 -0.149 |-0.135
1.1| -0.108 -0.101 -0.101 -0.102 -0.101 -0.102 -0.108 -0.102 -0.101 -0.102 -0.101 -0.102 -0.108 |-0.101
1.2 | -0.082 -0.078 -0.076 -0.078 -0.076 -0.079 -0.082 -0.078 -0.076 -0.079 -0.076 -0.078 -0.082 | -0.078
Conclusions Akhiezer, N. & Crane, M. O. (1938). Some questions

1. The description by means of integrals of simple
layers of the gravitational field on the Earth
complements other attempts to represent it.

2. Calculation of the potentials of simple layers
can be done with the help of series coinciding outside
the region of integration.

3. Potential values obtained by different methods
are the same in space, excluding the distribution of
masses inside the planet.

4. The two-dimensional integrand of the surface
integral can be used for geophysical interpretation, in
particular, to reveal the asymmetry of the gravitational
field.

5. It is planned to further improve the above
technique with the aim of extending it to higher orders
and studying the properties caused by other constant
groups of Stokes.
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JIOCJIIIPKEHHS ACUMETPIi TPABITALIIMHOI'O T10JI5 3EMIII,
INOAAHOI'O ITOTEHIIAJTAMU ITJIOCKHX JUCKIB

Y po0oTi po3riasHYTO MOJAaHHS 30BHINTHHOTO TPABITAIIHOTO OIS 3eMill, sIKi JOTMOBHIOIOTH HOTO TpaiH-
[iffHy ampoKCHUMAINI0 psimaMu 3a KyaboBHUMHU (pyHKIissMu. HeoOXimHICTh JOJATKOBUX 3acO0IB OMKCY 30BHIII-
HbOTO MOTEHIialy MPOJMKTOBaHA NOTPeOOI0 HOro BHMBYEHHS Ta BHKOPUCTAHHS B TOYKaxX IPOCTOPY, LIO €
O6mu3pkuMHu 10 moBepxHi 3emii. CaMme B TakuX 00JacTAX BUHHUKAE MOTpeda MOCTiIKEHHS 301KHOCTI psiaiB 3a
KyJIbOBUMH (DYHKIIISIMH Ta aJeKBATHOTO BH3HAYCHHS 3HAYCHHS MOTEHIiamy. [IpencTaBieHHS 30BHIITHHOTO
TPaBITALIHOTO MOJIA 3eMJIi iHTerpajlaMy MPOCTOTO Ta MOJBIMHOTO MPOIIAPKY 13 3aTyUeHHSIM anapary arpoKCH-
Marlii KycKoBo-HemepepBHOI (yHKLIi B cepeiuHi eminca Aae 3MOTY pPO3LIMPHUTH Ui PAAIB, L0 IOAAIOTh
MOTEHITial, 00JacTh 301)KHOCTI 0 BCHOTO MPOCTOPY 032 EINCOM iHTerpyBaHHs. ToMy, sIK pe3ylbTar, 3HaUeHHS
rpaBiTAI[ifHOrO MOTEHIiaNy 30iraeThCs 31 3HAYEHHSAMH [MX PSIIB M03a TIJIOM, IO MiCTHTh Macu Haap (Kpim
eminca inTerpyBanss). lle ma€ MOXKIIMBICTH OILIHIOBATH TOBEAIHKY TPABITAI[IMHOTO MOJIS B MPHUIIOBEPXHEBUX
00acTIX Ta BUKOHYBATH 3 OLIBIIOI0 JAOCTOBIPHICTIO MOCTIIKCHHS T€ONMHAMIYHUX IMPOLECIB. ATPOKCHMAIS
TpaBITAIIfHOTO TOJA 32 JOTIOMOTOK MOBEPXHEBHUX IHTETPANB OKPECTIOE TAKOXK TeO(i3MIHHN acleKT 3aIadi.
Amxe mig yac il po3B’sa3aHHS 3AIMCHIOETHCA TNOOYIOBAa NBOBUMIPHHX MiMIHTETpadbHUX (QYHKIIH, 10
OJTHO3HAYHO BHM3HAYAIOTbCA HAOOPOM CTOKCOBHMX cCTanuX. [Ipm 1poMy KoedillieHTH iX pO3KIamiB y psau
BU3HAYAIOTHCS 32 JIHIHHUMH KOMOIHAILISIMU CTETIEHEBUX MOMEHTIB iX (yHkuiit. OtpuMani po3kiaan GyHKIIH
MOXYTh OyTH BHKOPHCTaHI AN JOCTIKEHHS OCOOJMBOCTEH 30BHIIIHBOTO TPABITALIfHOTO IO, HANPHUKIAZ,
BHUBUYEHHS 1OT0 acUMETpii BITHOCHO €KBaTOPiabHOI IUIOIHHH.

Knouosi crosa: acumeTpis TpaBiTaniifHOTO Tos; 3eMIs; MOTeHMial, chepa b’epxamepa; cCTOKCOBI OCTIiiHI.
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