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Abstract: The study of the influence of learning 

speed (η) on the learning process of a multilayer neural 
network is carried out. The program for a multilayer 
neural network was written in Python. The learning 
speed is considered as a constant value and its optimal 
value at which the best learning is achieved is 
determined. To analyze the impact of learning speed, a 
logistic function, which describes the learning process, is 
used. It is shown that the learning error function is 
characterized by bifurcation processes that lead to a 
chaotic state at η> 0.8. The optimal value of the learning 
speed is determined. The value determines the appe-
arance of the process of doubling the number of local 
minima, and is η = 0.62 for a three-layer neural network 
with 4 neurons in each layer. Increasing the number of 
hidden layers (3 ÷ 30) and the number of neurons in each 
layer (4 ÷ 150) does not lead to a radical change in the 
diagram of the logistic function (xn, η), and hence, in the 
optimal value of the learning speed. 

Key words: multilayer neural network, learning 
speed, logistic function, chaotic state. 

1. Introduction (Style Header1) 
Most tasks that use neural networks are decision 

tasks. The increase in the volume of the information 
being processed leads to the use of multilayer neural 
networks (NN) and convolutional NN. NN are also used 
for cognitive-type tasks, the most effective NN are those 
in which the method of teaching with a teacher with the 
inverse propagation of error is used. This method 
involves the selection of weights, which are initially set 
randomly. In this paper, we will consider a multilayer 
NN, and we will consider a wrapped NN in the next 
work. In a multilayer NN weight correction is performed 
in each hidden layer. In the learning process, the 
correction of weights in them is carried out from one 
epoch to another until the specified accuracy of training 
is achieved. The learning process is influenced by a 
number of parameters: the speed of learning, the number 
of epochs, the number of input and output values, etc. In 

particular, increasing the number of input and output 
values increases the time for learning and decision-
making. Significant training time, and hence decision-
making is one of the negative characteristics of NN. 
Decreasing the learning time can be achieved by 
reducing the number of epochs required for learning. 
One of the effective ways to reduce the number of 
epochs (N) required to achieve a given accuracy is to 
increase the speed of learning. There are [1–3] several 
effective algorithms for selecting the speed of learning to 
optimize the learning process. Since the speed of lear-
ning (η) depends on the number of epochs N (η = A / N) 
[1] and η is a decreasing function of time, the optimi-
zation can be done in the same way as it is done in 
stochastic methods of optimization and adaptation [2]. 
This procedure can be performed until the values of the 
controlled variables are not stabilized, or until the error 
is reduced to an acceptable level. It should be noted that 
this procedure is characterized by a slow rate of 
convergence and the possibility of getting into the local 
minima of the target functional [2]. Also, this is a 
decrease and subsequent increase in the learning speed 
[3]. And also, this is the multiplication of the learning 
parameter by some coefficient depending on the number 
of input parameters. These are methods of conjugate 
gradients that are based on determining the direction in 
which the objective function decreases most rapidly. 

In a multilayer NN in each layer there shall be its 
own algorithm for selecting the learning parameter. 
When approaching the global minimum, there is an 
increase in the number of local minima, which also 
affect the algorithm for learning NN. An increase in the 
number of local minima when approaching the global 
minimum can lead to the appearance of indeterminate 
states (chaotic states) of NN. The values of the local and 
global minima of the error function become identical, 
and the number of such local minima increases. That is, 
in the first approximation of NN in the vicinity of the 
global minimum, it can be considered as a system 
characterized by uncertainty. The degree of this un-
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certainty goes to infinity in the vicinity of the global 
minimum. This mode of NN can be considered stochastic 
with the appearance of stationary and chaotic solutions. 
This mode is typical for both a single-layer and a 
multilayer NN. It is known [4] that an effective way to 
overcome local minima is to select such a learning 
parameter for the systems so that the number of the 
epochs required for learning can be reduced. 

2. Main 
Therefore, the task of this work is to establish an 

algorithm for automatic selection of learning speed for 
NN. To achieve this goal, in the Python environment we 
have developed a program for a multilayer neural 
network, which provides settings of the number of 
hidden layers and the number of neurons in them, and 
changing the learning parameter in the range of 0.001 ÷ 10. 
This interval of changes η was chosen taking into 
account the data of [5], where the influence of learning 
speed on the learning process in a multilayer NN is 
studied. We will consider each layer of the given NN 
as a separate deterministic system for which we will 
investigate the branching diagram with the use of the 
image function: 

2
1n n nх x xη+ − −= , 

where n is the step, η is the parameter that determines 
the learning speed.  

Its fixed points:  
1/2

1,2 (1 1)x η= − ± + , 

eigenvalues, which can be calculated as follows: 
1/2

1 (1 2 1)ρ η= − + . 
The choice of this logistic mapping is due to the fact 

that it describes the process of doubling the oscillation 
frequency when approaching chaos [6]. In our case, this 
process will be determined by the process of local 
minima when approaching the global minimum.  

 
Fig. 1. Diagram of the logistic function after the first layer 

of a three-layer NN under the condition: η = 0.5,  
n = 10 neurons in the layer, N = 100 epochs. 

In the beginning consider a three-layer neural 
network and investigate it as a deterministic system. 
Figure 1 shows the diagram of a logistic function at a 
constant value of the parameter η. The given diagram of 
the logistic function derives its adequate dependence 
under the condition that the logistic mapping is given 
only by the iterative formula for the bifurcation of the 
doubling. 

 
layer 1 

 
layer 2 

 
layer 3 

Fig. 2a. Branching diagram for each layer when changing  
the parameter η under the condition: n = 10 neurons  

in the layer, N = 100 epochs. 



Sergii Sveleba, Volodymyr Brygilevych, Ivan Katerynchuk, Ivan Kuno, Ivan Karpa,  
Ostap Semotiuk, Yaroslav Shmyhelskyy, Nazar Sveleba 

 

28 

First of all, we note that this logistic function most 
adequately describes this system, and suggests that the 
process of formation of local minima can be described in 
the first approximation as a process of doubling their 
number. 

The branching diagrams shown in Fig. 2, for each 
layer of a three-layer NN, indicate that each layer can be 
considered as a separate system characterized by the 
existence of chaotic and stationary solutions. 

 
layer 1 

 
layer 2 

 
layer 3 
Fig. 2b. Logistic function for each layer when changing  

the parameter η under the condition:  
n = 10 neurons in the layer, N = 100 epochs. 

 
layer 1 x0=0.608 

 
layer 2 x0=0.494 

 
layer 3 x0=0.469 
Fig. 2c. Diagram of logistic function хn+1=η - xn - xn

2  
for each layer when changing the parameter η under 

 the condition: n = 10 neurons in the layer, 
 N = 100 epochs, η=0.501. 

Depending on the value of the parameter η, the 
mapping has a different number of fixed points. At  
0 <η <0.4 the number of fixed points does not change, 
but both fixed points are unstable. Since the mapping is 
limited, the absence of a point attractor means the 
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formation of a more complex attractor of the limit cycle 
type. Although the map itself does not have stable fixed 
points, its square may have such stable fixed points. 
Therefore, the bifunction diagram in this area shows the 
branching of the lines. When the values of the parameter 
η > 0.4 (Fig. 2, a), the limit cycle loses stability. With 
such parameter values, stable fixed points must be 
sought in higher-order mappings.  

The situation with the period of the limit cycle of 
mappings of higher orders exists in a certain area of the 
parameter η, and then changes – there is an increase in 
local minima, etc.  

When the values of the parameter K > 0.78 (Fig. 2, a), 
none of the critical cycles has stability. From this value the 
chaotic behavior of the system begins. The value of xn does 
not change periodically. Such chaos is called deterministic 
because there is a clear, strictly defined law by which the 
value of a variable can be determined at any iteration, 
starting from the chosen initial value, but there is no 
periodicity in its behavior. If in the region of stability of 
boundary cycles the behavior of reflections was weakly 
dependent on the initial point, then in the region of chaos a 
small change in the initial value leads to a significant 
change in the value of the n-th iteration [7].  

In the region of chaos, there are “windows of 
transparency”, when at certain values of the parameter η 
the reflection behavior becomes regular (Fig. 2, a). The 
fractality of this map is due to the similarity of the 
process of doubling the boundary cycles. Therefore,  
Fig. 3, b–d, on an enlarged scale shows the doubling of 
the limit cycle. According to these dependencies, this 
process takes place in a single scenario. 

3. Conclusions 
Thus, in a multilayer neural network, a chaotic state 

can occur due to an increase in the speed of learning. 
The resulting chaotic state is sensitive to changes in the 
parameters of NN. A slight change in the parameters of  
NN causes significant changes in the chaotic state. The 
appearance of local solutions (local minima) due to the 
increase in the speed of learning leads to the appearance 
of bifurcations on the dependence of the learning error 
on the number of epochs. Such dynamics of the mag-
nitude of the error from the number of epochs at a 
constant rate of learning is the cause of a chaotic state, 
and shows that it is impossible to obtain the magnitude 
of the zero error. That is, there is a limit value of the 
error that can be achieved. Based on the studies of the 
branching diagram, this error value is almost indepen-
dent of the configuration of the multilayer NN. One way 
to solve this problem (to avoid chaotic NN states) is to 
automatically determine the minimum number of solu-
tions in the diagram of the logistic function, and hence 
the value of the speed at which the number of local 
minima is doubled. 

 

 

 

 
Fig. 3. The thin structure of the branching diagram when 

changing the parameter η in the third layer provided:  
n = 10 neurons in the layer, N = 200 epochs. 
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The algorithm for solving this problem is to 
determine the number of solutions on the diagram of 
the logistic function at a given value of the learning 
speed, which is the process of increasing the number 
of bifurcations by two or four times, and determines 
the optimal value of learning speed and optimal 
error. 
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БАГАТОШАРОВІ НЕЙРОННІ  
МЕРЕЖІ – ЯК ДЕТЕРМІНОВАНІ 

СИСТЕМИ  
Сергій Свелеба, Володимир Бригілевич, 
Іван Катеринчук, Іван Куньо, Іван Карпа,  
Остап Семотюк, Ярослав Шмигельський,  

Назар Свелеба 

В роботі досліджено вплив швидкості навчання (η) 
на процес навчання багатошарової нейронної мережі. 
Програма для багатошарової нейронної мережі була 
написана мовою Python. Швидкість навчання розгля-
далась як постійна величина і визначалась її оптимальна 
величина, за якої досягалось найкраще навчання. Для 
аналізу впливу швидкості навчання використовувалась 
логістична функція, яка описує процес навчання. Пока-

зано, що функція похибки навчання характеризується 
біфуркаційними процесами, які призводять до хаотич-
ного стану, якщо η>0,8. Визначено оптимальне значення 
швидкості навчання, яке визначає появу процесу 
подвоєння кількості локальних мінімумів, і становить 
для тришарової нейронної мережі з 4 нейронами в кож-
ному шарі η=0,62. Збільшення кількості прихованих 
шарів (3÷30), та кількості нейронів у кожному шарі 
(4÷150) не приводить до кардинальної зміни діаграми 
логістичної функції (xn,η), а отже, і оптимальної вели-
чини швидкості навчання.  
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