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Abstract: The study of the influence of learning
speed () on the learning process of a multilayer neural
network is carried out. The program for a multilayer
neural network was written in Python. The learning
speed is considered as a constant value and its optimal
value at which the best learning is achieved is
determined. To analyze the impact of learning speed, a
logistic function, which describes the learning process, is
used. It is shown that the learning error function is
characterized by bifurcation processes that lead to a
chaotic state at > 0.8. The optimal value of the learning
speed is determined. The value determines the appe-
arance of the process of doubling the number of local
minima, and is | = 0.62 for a three-layer neural network
with 4 neurons in each layer. Increasing the number of
hidden layers (3 + 30) and the number of neurons in each
layer (4 + 150) does not lead to a radical change in the
diagram of the logistic function (x,, #), and hence, in the
optimal value of the learning speed.
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1. Introduction (Style Header1)

Most tasks that use neural networks are decision
tasks. The increase in the volume of the information
being processed leads to the use of multilayer neural
networks (NN) and convolutional NN. NN are also used
for cognitive-type tasks, the most effective NN are those
in which the method of teaching with a teacher with the
inverse propagation of error is used. This method
involves the selection of weights, which are initially set
randomly. In this paper, we will consider a multilayer
NN, and we will consider a wrapped NN in the next
work. In a multilayer NN weight correction is performed
in each hidden layer. In the learning process, the
correction of weights in them is carried out from one
epoch to another until the specified accuracy of training
is achieved. The learning process is influenced by a
number of parameters: the speed of learning, the number
of epochs, the number of input and output values, etc. In

particular, increasing the number of input and output
values increases the time for learning and decision-
making. Significant training time, and hence decision-
making is one of the negative characteristics of NN.
Decreasing the learning time can be achieved by
reducing the number of epochs required for learning.
One of the effective ways to reduce the number of
epochs (N) required to achieve a given accuracy is to
increase the speed of learning. There are [1-3] several
effective algorithms for selecting the speed of learning to
optimize the learning process. Since the speed of lear-
ning (57) depends on the number of epochs N (7 = A / N)
[1] and 7 is a decreasing function of time, the optimi-
zation can be done in the same way as it is done in
stochastic methods of optimization and adaptation [2].
This procedure can be performed until the values of the
controlled variables are not stabilized, or until the error
is reduced to an acceptable level. It should be noted that
this procedure is characterized by a slow rate of
convergence and the possibility of getting into the local
minima of the target functional [2]. Also, this is a
decrease and subsequent increase in the learning speed
[3]. And also, this is the multiplication of the learning
parameter by some coefficient depending on the number
of input parameters. These are methods of conjugate
gradients that are based on determining the direction in
which the objective function decreases most rapidly.

In a multilayer NN in each layer there shall be its
own algorithm for selecting the learning parameter.
When approaching the global minimum, there is an
increase in the number of local minima, which also
affect the algorithm for learning NN. An increase in the
number of local minima when approaching the global
minimum can lead to the appearance of indeterminate
states (chaotic states) of NN. The values of the local and
global minima of the error function become identical,
and the number of such local minima increases. That is,
in the first approximation of NN in the vicinity of the
global minimum, it can be considered as a system
characterized by uncertainty. The degree of this un-
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certainty goes to infinity in the vicinity of the global
minimum. This mode of NN can be considered stochastic
with the appearance of stationary and chaotic solutions.
This mode is typical for both a single-layer and a
multilayer NN. It is known [4] that an effective way to
overcome local minima is to select such a learning
parameter for the systems so that the number of the
epochs required for learning can be reduced.

2. Main

Therefore, the task of this work is to establish an
algorithm for automatic selection of learning speed for
NN. To achieve this goal, in the Python environment we
have developed a program for a multilayer neural
network, which provides settings of the number of
hidden layers and the number of neurons in them, and
changing the learning parameter in the range of 0.001 + 10.
This interval of changes m was chosen taking into
account the data of [5], where the influence of learning
speed on the learning process in a multilayer NN is
studied. We will consider each layer of the given NN
as a separate deterministic system for which we will
investigate the branching diagram with the use of the
image function:

X =N =X, =X,
where 7 is the step, # is the parameter that determines
the learning speed.
Its fixed points:
x,=-1t(m+D",

eigenvalues, which can be calculated as follows:

p=1-2n+1".

The choice of this logistic mapping is due to the fact
that it describes the process of doubling the oscillation
frequency when approaching chaos [6]. In our case, this
process will be determined by the process of local
minima when approaching the global minimum.
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Fig. 1. Diagram of the logistic function after the first layer
of a three-layer NN under the condition: n = 0.5,
n = 10 neurons in the layer, N = 100 epochs.

In the beginning consider a three-layer neural
network and investigate it as a deterministic system.
Figure 1 shows the diagram of a logistic function at a
constant value of the parameter 1. The given diagram of
the logistic function derives its adequate dependence
under the condition that the logistic mapping is given
only by the iterative formula for the bifurcation of the
doubling.
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Fig. 2a. Branching diagram for each layer when changing
the parameter 1 under the condition: n = 10 neurons
in the layer, N = 100 epochs.
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First of all, we note that this logistic function most
adequately describes this system, and suggests that the
process of formation of local minima can be described in
the first approximation as a process of doubling their
number.

The branching diagrams shown in Fig. 2, for each
layer of a three-layer NN, indicate that each layer can be
considered as a separate system characterized by the
existence of chaotic and stationary solutions.
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Fig. 2b. Logistic function for each layer when changing

the parameter n under the condition:
n = 10 neurons in the layer, N = 100 epochs.
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Fig. 2c. Diagram of logistic function Xy.1=1 - Xy - )cn2
for each layer when changing the parameter n under
the condition: n = 10 neurons in the layer,

N = 100 epochs, n=0.501.

Depending on the value of the parameter #, the
mapping has a different number of fixed points. At
0 < <0.4 the number of fixed points does not change,
but both fixed points are unstable. Since the mapping is
limited, the absence of a point attractor means the
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formation of a more complex attractor of the limit cycle
type. Although the map itself does not have stable fixed
points, its square may have such stable fixed points.
Therefore, the bifunction diagram in this area shows the
branching of the lines. When the values of the parameter
n > 0.4 (Fig. 2, a), the limit cycle loses stability. With
such parameter values, stable fixed points must be
sought in higher-order mappings.

The situation with the period of the limit cycle of
mappings of higher orders exists in a certain area of the
parameter #, and then changes — there is an increase in
local minima, etc.

When the values of the parameter K > 0.78 (Fig. 2, a),
none of the critical cycles has stability. From this value the
chaotic behavior of the system begins. The value of x, does
not change periodically. Such chaos is called deterministic
because there is a clear, strictly defined law by which the
value of a variable can be determined at any iteration,
starting from the chosen initial value, but there is no
periodicity in its behavior. If in the region of stability of
boundary cycles the behavior of reflections was weakly
dependent on the initial point, then in the region of chaos a
small change in the initial value leads to a significant
change in the value of the n-th iteration [7].

In the region of chaos, there are “windows of
transparency”, when at certain values of the parameter #
the reflection behavior becomes regular (Fig. 2, a). The
fractality of this map is due to the similarity of the
process of doubling the boundary cycles. Therefore,
Fig. 3, b—d, on an enlarged scale shows the doubling of
the limit cycle. According to these dependencies, this
process takes place in a single scenario.

3. Conclusions

Thus, in a multilayer neural network, a chaotic state
can occur due to an increase in the speed of learning.
The resulting chaotic state is sensitive to changes in the
parameters of NN. A slight change in the parameters of
NN causes significant changes in the chaotic state. The
appearance of local solutions (local minima) due to the
increase in the speed of learning leads to the appearance
of bifurcations on the dependence of the learning error
on the number of epochs. Such dynamics of the mag-
nitude of the error from the number of epochs at a
constant rate of learning is the cause of a chaotic state,
and shows that it is impossible to obtain the magnitude
of the zero error. That is, there is a limit value of the
error that can be achieved. Based on the studies of the
branching diagram, this error value is almost indepen-
dent of the configuration of the multilayer NN. One way
to solve this problem (to avoid chaotic NN states) is to
automatically determine the minimum number of solu-
tions in the diagram of the logistic function, and hence
the value of the speed at which the number of local
minima is doubled.
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Fig. 3. The thin structure of the branching diagram when
changing the parameter 1 in the third layer provided:
n = 10 neurons in the layer, N = 200 epochs.
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The algorithm for solving this problem is to
determine the number of solutions on the diagram of
the logistic function at a given value of the learning
speed, which is the process of increasing the number
of bifurcations by two or four times, and determines
the optimal value of learning speed and optimal

CITor.
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BAT'ATOIIAPOBI HEMPOHHI
MEPEXI - AK JETEPMIHOBAHI
CUCTEMU

Cepriii Csesie6a, Bosjoqnumup bpurisiesny,
IBan Karepunuyk, IBan Kynso, IBan Kapna,
Ocran CemoTtiok, SIpocaas HHImureascbkui,

Ha3zap Cseneba

B po6oTi mochimkeHo BILUTUB OIBUIAKOCTI HaBYaHHSA (77)
Ha TIpoIleC HaBYaHHs 0araTomapoBOi HEHPOHHOI Mepexi.
IIporpama nms OGararomapoBoi HepoHHOI Mepexi Oyma
HanucaHa MoBoro Python. IlIBuakicTs HaBY4aHHS PO3TIIS-
Iajiach SK MOCTIMHA BEJIMUYMHA 1 BU3HAYanach i1 ONTUMaIbHA
BEIMYMHA, 33 SIKOI JOCATaloCh HalKpamle HaB4YaHHA. Jlis
aHaJli3y BIUIMBY IIBHJKOCTI HaBYaHHS BHKOPHCTOBYBAIach

JIOTiCTHYHA d)yHKLIiS{, sJAKa ONHMCYE IMPOLUEC HaBYaHHA. Tloxka-

3aHO, M0 (YHKIiS MOXHOKH HaBYAHHS XapaKTEePU3YEThCS
OihypKaliiHUMU MPOIECaMH, SIKi TPU3BOAATH JO XAOTHY-
HOT'0 CTaHy, sikuo 7>0,8. BuzHaueHo onTuManbHe 3HAYSHHS

HJBI/I,Z[KOCTi HaB4YaHHA, AK€ BH3Hada€ IOABY MPOLECY

MOJBOEHHS KIUIBKOCTI JIOKAJIbHHX MIiHIMyMiB, i CTaHOBHTH
IIJIsL TPULIApOBO1 HEHPOHHOT Mepexi 3 4 HepoHAMH B KOX-
HoMy mapi #=0,62. 30impmIeHHS KUTBKOCTI MPUXOBAHUX
mapiB (3+30), Ta KiIBKOCTI HEHpPOHIB y KOXHOMY IIapi
(4+150) He TMPHWBOIUTH O KAapAMHAIBHOI 3MiHH Hiarpamu
nmorictuaHol QyHKIIT (X,,1), a OTXKE, 1 ONTUMATBHOI BENHU-

YHUHU HIBI/IIIKOCTi HaBYaHHA.
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