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This paper presents theoretical studies of formation regularities for the statistical mean
and variance of normally distributed random values with the unlimited argument values
subjected to nonlinear transformations of functions \/m and vX. It is shown that
for nonlinear square root transformation of a normally distributed random variable, the
integrals of higher order mean n > 1 satisfy the inequality (y —Y)" # 0. On the basis of
the theoretical research, the correct boundaries m, o — oo of error transfer formulas are

suggested.
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1. Introduction

Among the methods of analyzing physical measurement data, averaging algorithms rank high, including
the most commonly known Cauchy mean values, such as arithmetic mean and mean square deviation
(MSD). If the arithmetic mean reflects the center of the statistical probability distribution (the expected
value), MSD is its length.

Standard algorithms for statistical data analysis are designed primarily for normal distribution, so
random experimental data would be first checked for normal distribution. In physical statistical models,
there are widely used such distributions as the Cauchy (Lorentz) ones, which have no mathematical
expectation since the integral of averaging diverges [1]. In addition, if the data sample contains extreme
values, then estimating the center of a distribution by the arithmetic mean may also be incorrect. In
this case, weighted estimates are used |[2].

On the other hand, in the process of statistical processing, experimental data are often transformed
by nonlinear functions, which, as we know [3,4], is accompanied by a change in the law of probability
distribution and by the emergence of constraints on the set of allowed values of a random variable
(RV), as in the case of transformations by square radicals. Such a problem is particularly relevant for
transformations of normally Nx(mx,ox) distributed RV since for them the averaging integrals are
not always expressed through elementary functions in the form of tabular integrals, and one has to use
the Taylor series [2].

The approximate formulas for calculating the mean and variance of transformations of normally
Nx(mx,ox) distributed RV using the Taylor algorithm are know [5|. In the recent paper [6], this
approach was developed for the following type of transformations

XL (a)
VY, Y_{X7 ) (1)

however, without taking into account the fact that transformations of the type (1,a) of normally
Nx(mx,ox) distributed RV with the set of values X € (—o00,400) are accompanied by a change in
the law of distribution |7, 8], and by the restriction of the set of values to X € [0, 400) for (1,b).
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These shortcomings of the statistical model are eliminated in the given work. Moving closer to the
agreement on the level “30y;,,” with confidence probability P(\X —m\ < O’FND) = 2erf(3) = 0.998
between functions (1) and their representation in the form of Taylor series, the formulas of statistical
mean of normally Nx (mx,ox) distributed data are substantiated and the comparative analysis with
corresponding error transfer formulas (7) is carried out [9]. It should be noted that accurate statistical
analysis of data is important for maximum objectivity in their visualization in modern advanced
technologies, for example in probe microspectroscopy and nanospectroscopy [10], in the development
of physical tests for pseudorandom number generators [11], in the processing of physical measurements
data in medicine [12], etc.

2. Results and discussion

Transformation (1,a). According to |7,8], a normally distributed RV transformed by the law (1,a)
acquires a folded normal distribution (ND) or distribution of a module of a normally distributed RV,
which in coordinates (|mx/|,ox) is described by the probability density function

p (y—mx)? \/E < (y+mx)? : _ 1
—exXp(—"5z ) T/ Z&XP |52 ) it y=>20, p= )
fY:\X|(y = |z]) = \/; ( 20% ) T 20% ) 20.%( (2)

0, if y <0,

with the mean Ypnp and the variance Dygyp:

2 m? mx
Yenp = 1/ = X f 3
FND \/;UXGXP< 20_%() +mx er <\/§0'X>, (3)

- )
Dygnp = (YFND)2 - (YFND) = 0’?( + m?x — (YFND) . (4)
Given mx = 0 and
2 y? .
—O'XGXp<——>7 lfy>ou
frenp(y) = \/; 20%

Therefore, according to (2), the folded ND reflects the transformed by the law Y = |X| normally
distributed data X € (—o0,400) in the range of argument values y > 0.

Considering the domain of function definition (2), in the following calculations we will take into
account the known table integral (No.7 (2.3.15) [13])

/0°° yrem-mgy = CL" \/gaa_;[exp <%> erc (%)] (5)

where erfc(§) = 1 —erf(§) = % Jo exp(—&?)d¢ is a special nonanalytic error function [14], and the

distribution function (2) is transformed to the form:

m2 m m
fenn(y) = \/Eexp <——§> (exp(—py? — Oy) + exp(—py® — qv)), 0= -——, q=—, (6)
T 20% ox ox

and calculate its normalizing constant Crnp:

m2
exp ( — 53) 2
CrND = <=5 5 1 = T =1
Jo " exp(—=py? — qy)dy + [¢~ exp(—py? — Oy)dy 1_erf(\/"_;jx) _|_1_|_erf(\/%"birfx>
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Thus, the application of the transformation |X| to the input normally Nx(mx,ox) distributed RV
with a set of values X € (—o0, +00) does not change the normalizing constant (7) of function (2) and
the variance (4), but only the mean (3) is changed.

To prove that the substitution § = —2*5 in (6) in order to apply (5) was correct, we calculate

20%
formulas (3) and (4):

D m2 0 0
YrnD = CFND\/;QXP —ﬁ / yexp(—pa® — qz)dz + / yexp(—pa® — Oz)dx
0 0

Y

— my erf [ =X +\/§J ex —m—z (])
o V20x 7 (XS 202 )

Given RV, Y and Ygpyp are statistically independent, the variance Dpnp is calculated by the formula:

Drxp = (Yenp)? — (YFND)za

where the mean (Ypnp)? is:

m2 0 0
(Yenp )2 = C’FND\/Eexp <—2—% {/ y?exp (—pr® — qz) dz + / y?exp (—pz? — 0z) dz
T O'y 0 0

1 q\2 Vo )2
:%4—(%) =ox+m%x => Dpxp=o0%x+m% — (Yen)',

which agrees with (4).

6T _ _
mx =20, 0x =5 61 mx =10, ox = 20
1000 T
54 51
myyy (m)
44 i
500 +
Taylor _root(y) Taylor _root(y) .m.Y.(ﬂf)
3 5]
Yy
o\/o_o o 3 o\/ogo ] e 0 0 ° ¢
2 : : —y 2 : : — : - : : Fm
10 20 30 10 20 30 —r1 6 8 10
a b c

Fig.1. The illustration of the consistency rule “3ox” of the function vY expansion in a Taylor series in

approximation considering four terms for two values of the ratio 7 = 0.25 (a) and 22 = 2 (b), c: illustration

of the implementation of inequality (Ypnp)? # (YFND)?’, where (Yenp)3 = myyy (m), (YFND)3 = my(m)3.

The integral (5) with the fractional value of the exponent n = % is not tabular, so we expand the

radical /Y into the Taylor series in terms of functions Yynp. As follows from Fig. 1, when changing the
parameters my and ox of input RV, “30y,,,”, the level of agreement with the confidence probability
P([Y — Yenp| < ornp) = 2erf(3) = 0.998 with the function /Y is achieved taking into account the

first four members of the expansion:

— —\2 ———\3
/Vinp & /m_i_(y_YFND)_ (y — Yenb) n (y — Yenb) IR

2
2V YrND 8YrnDV YPND  16(YEND) vV YEND

A 1 — 1 E—;
VYrnp = \/YenD + ———=(y — YrnD) — ———=(y — YrnD
2/ YEND ( ) 8YrND V YEND ( )

(y—Yenp) ' + .., 9)

1
+ 2
16(YrND) vV YFND

where the statistical averaging of higher order expansions is calculated as integrals
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2
Crnp exp <_;Z—}2;)
V2mox
o

X [/0 (y — Yenn) " exp(—py? — qy)dy + /0 (y — Yenn) " exp(—py? — Oy)dy|. (10)

(y —Yenp)" =

The first order mean

(y—Yrnp) = YrnD — YinD =0

is equal to zero and the second order mean is (y — YpnD)? = Dygyp, therefore

— D 1 T —3
vV YrND & 4/ YFND — YND (y—Yenp) + .. .. (11)

8YrNDV YrND  16(YEND) */Yenn

The series (11) differs from the corresponding one in [6] by the formula (8) due to the fact that the
known regularity is used for (8) [6] that the integrals in even limits from odd functions (10) are zero.

However, for transformations (1), this pattern does not hold, i.e., the third-order mean (y — YpNp)? # 0
and the higher order mean values are not zero. In fact,

(y — YFND)3 = (Yrnp)? — 3(YenD)? YEND + 3YEND (YFND)2 - (YFND)3

= (Yrnp)? — 3(Yenp)? YenD + 2(YFND)3~

However, in the systems with the variance of statistically independent RV Dy = Y2 — Y)2>0
therefore Y2 # (Y)2. Let us prove that Y3 # (Y)? and calculate the mean Y3:

m2 o] [e'e)
(Yenp)? = \/gCFND exp (—2 N > [/0 y® exp(—py”® — qy)dy +/0 y’ exp(—py® — 9y)dy]

Ox

9 2
= (20%mx + m¥%) erf <\/Tg: > - \/;Jx(dg(— + 2m% ) exp (—;Z_—;;) .
The inequality Y3 # (?)3 is confirmed in Fig. 1¢, where the notation (Yrnp)? = myyy (m), (YFND)3 =
my (m)? is introduced. Therefore,

<( ) ) ——\/7— ( 2 2 2) m,: ( 9 2) m)?
5 ag g + m ex — —:; g +m m eri
Yy FND X X X p 2 2 X X X \/i

3
mx 2 m?X
2 f — - .
2t () + v (53 )

Since equality (v/YrnD)? = YenD is satisfied, the variance is calculated by the formula:

- 2
D jvixs = YenD — (\/ YFND) : (12)

Transformation (1,b). Although the function /X limits the set of allowed values of RV X by
a positive half-bounded interval X € [0,400) the distribution of the transformed RV is described by
the truncated (left) ND:

_Ip C(e=mx)®\ _ [p - mi 9
INmx,ox) () = \/;exp< 720§( ) = \/;exp< 5 Ug{ exp(—pz® —0x), x> 0. (13)

According to the table integral \/gfexp (_(12—2#)2) dz = —3erf (%) [15] or (5), the nor-
O'X ag

malizing constant C'y of function (13) is equal to:
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_ ! - 2
o= \/geXP (_2%2);%> Jo” 2% exp(—pa? — fz)dz L+ (\gfx) |

Then the statistical mean Xy ) is:

+o00 2
_ P (x —mx)
X[0,00) = \/;C[O,oo)/o Z exp <—W> dz
D mg( o 9 2
=1/=Cloo0) XD | =55~ xexp(—py* — Oy)de =mx + 1/ —ox K(mx,ox),
s 20% ) Jo T

where the input function is
mx
eXp - 20%(

K(myx,ox) = , (14)
trert (355)
the graphs of which are shown in Fig.2 and the standard RV representation X = mx + oxZ =
if £ =0 then z:—?—;{‘

] is used and the change of integration boundaries is taken into account.
if x =00 then z =0

4T oy =5 6T mx =20 )

root_Y(m) ¢

e ¢ 0 o root_X(m)
root  RX(m) 4t
-------- RMS_root_Y(m)

—-—--RMS root_ X(m)
o o oRMS root RX(m) =of

root_Y(o)
o e 0o root X(o)

root_ RX(o)
........ RMS root_Y(o)
—-—--RMS root_ X(o)
o o oRMS root RX(o)

----- + + + K(m,o)
oo
+ m
b M o
0 05 1 15 30
a b

Fig. 2. The dependence graphs for ox = const (a) and mx = const (b) mean and MSD transformations /| X|,
VX, built by formulas root Y(m) (9), RMS_root_Y(m) (12), root X(m) (17), RMS_root X(m) (19) and
root_ RX(m), RMS_ root RX(m) (7) [9], and the graphs of function K (m,o) (14).

Now let us calculate the mean (X[O,Oo))2:

Then, the variance is:

— 2 2 2
Dxig ey = (= Xo,00))” = (Xpp00))” = (Xp,00)
5 2 2 2
=m%x +0ox + ;mXO')(K(mX,Ux)— mx + ;O’X}((mx,ax) . (15)

Let us check the result (15):
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400 2
2 T —mx
C[o,oo>/ (2 = Xjo.00)) " exp <—7( 52 : >dx
0 ox

p
T
m2 +oo
- \/%C[o,oo) Xp <_—Y> / (- X[o,oo))2 exp(—pz? — fz) dx
0

_ S 2
= o'g( —l—m%( — 2X{07oo) mx + (X[O,Oo))z — [— mx + 2X[0’oo)] \/;UX K(mx,ax).

Let us apply expansion (8) to the function /X [0,00)»

X0 X))’ X))’
Xom = Ko+ (== Xpooo) (= Xjoo0) (= L ) (16)
2/ X000)  8X[0.00)\/ Xl0.oo)  16(X[0,00)) "1/ X[0,00)
and carry out averaging (16)
B w—X ) (w—X 2 (x—X )3
~ [0,00) [Ooo [0,00)
X = — +...
\/ 0,00 VX
2\/AXOoo 8X000\/X[Ooo X[Ooo \/X[Ooo
Digos X
X000 — O 4 (= Xoo)® DA (17)

8 Koo/ Koo 16(K000)”/ o)

where (2 — X[oo)) = 0 and (2 — X[g,o0))? = Djo,o0) are taken into account. Given X2 4 (7)2 and
X 4 (X)°,

where

(2 = Xjo.00)” = Kjooe)” = 3 (Xjo,00))* Kjo.oo) +2(Xp.00)) " (18)
2 exp (-

2

-0 _X
(Xjooo))” = [mk + 20%mx] + [0k +m%] \/jax 2 > .
T 1+4erf <\/@ )

For statistically independent RV the variance of transformation (1,b) is

D /Ko = (V X[O’OO>)2 - (\/ X[o,oo)>2 = Xo,00) — ( X[o,oo>>2- (19)

Discussion. Figure2 shows the graphs of the dependences of myx(ox = const) and ox(myxy =
const) on the mean root Y(m) (9) and root X(m) (17), MSD RMS root Y(m) (12) and
RMS root X(m) (19) at intervals 3ox, the approximation within which the agreement of Taylor
series for the transformation functions (1) was achieved. We see that within the interval 3ox, the in-
dividual regularities of the statistical mean values of the two transformations emerge (1). Beyond this
uncertainty, the dependencies (9), (18), (12), (19) mx — oo ( ox = const) and ox — 0 (mx = const)
are very close to root  RX(m, o) and RMS_root RX(m, o)

/ 1
VX = X—iaX, oy = \/mx—\/mX—i- ~o% (20)

built by formulas (7) [9]. In addition, the graphs in Fig.2 confirm the reservations made in [16,17]
regarding the existence of restrictions on the application of formulas (20). Given ox = const (Fig.2a),
the restriction region is formed in the range of values myx > mx jim, with respect to some boundary
MY Jim = U—\/’% Given myx = const (Fig.2b, the boundary region is formed in the range of values
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o > ox 1im With respect to some boundary o > ox jim = v2mx. The differences between formulas (20)
with the boundaries of the mean root X(m) and MSD RMS root X(m) transformations v X and
V/|X| can be minimized and more optimal agreement can be achieved (Fig.3) if formulas (20) are

represented as follows:
[ ] 1
VY = m%(+503(, aﬁ§\/—mx+(vY)2.

In contrast to (20), the formulas (21) allow us to transfer approximate values of the mean and transfer
errors (1) by the square root of a normally distributed RV over the whole range of values m, o.

(21)

AT oy =5 10T my =20
3 o oo s root_X(m) o000 ToOt X(0)
root R(m) root_R(o)
;| _
‘é‘--.,‘. """" RMS_root_Y(m) == oo RMS_root_X(o)
Og._ =+-.. o o o RMS_root_R(m)
1T Dnnnﬁaﬁﬁ.ﬁ.ﬁ O 0 o0 RMS_root_R(o)
. . . . m
t T T T - g
0 02 04 06 08 30 100
a b

Fig. 3. The illustration of the consistency of formulas (21) with the dependencies (9), (18) and (12), (19) on
the level “30x”.

3. Conclusions

The theoretical studies carried out in this work once again confirmed the importance of the correct
application of the basic provisions of probability theory for the statistical averaging of random val-
ues of physical measurements subjected to nonlinear transformations. It is shown that for nonlinear
transformation of a normally distributed RV with a square root, the integrals of higher order averaging
n > 1 satisfy the inequality (y — ?)n # 0. On the basis of the theoretical research, correct boundary
m, o — oo formulas of error transfer are proposed.

We are grateful to V. I. Romanenko (Institute of Physics, Kyiv) for fruitful discussions.
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MopaentoBaHHsSI CTaTUCTUYHNX CepeaHiX | Aucnepcii HopMasibHO
pO3noAiieHNX BUNAAKOBUX BESINYMH, NEPEeTBOPEHUX HeiHIiiHNMN

dbynkuismn /| X| Ta VX

Kocobyupkuit I1. C., Kapkyasoeceka M. C.

Hauionarvrut ynisepcumem “/Ivsiscora nosimexnira”,
eyn. C. Bandepu, 12, 79013, Jlveis, Yrpaina

Y poboTi BukoHaHI TEOPETUUHI JOC/TiI?KeHHsT 3aKOHOMipHOCTE (hOPpMYBaHHS CTATUCTATHO
ycepeaHeHnx i aucmepcii HopMaJIbHO PO3IOIiIeHUX BUIAIKOBUX 3HAYEHD 13 HEOOMEXKEHUM
iHTepBaJIOM 3HAYEHb apryMEHTY, siKi IepeTBOPEHi HeJIHIHUM MepeTBOPEeHHAM (MYHKITisI-
mu /| X| Ta VX . Tlokasano, 1o 1yis HeJIHIAHOTO IIepeTBOPEHHST HOPMAJIBHO PO3IIOLICHOT
BUIAJKOBOI 3MiHHOI KBaJPATHUM KOPEHEM, IHTerpan CTATUCTUIHOTO YCePETHEHHST BUIITIX
nopaaKis n > 1 3370BOMBHAIOTH HepiBHicTh (y — Y)™ # 0. Ha ocHOBi mpoBeenux Teope-
TUYIHAX JOC/TPKEHDb 3aIIPOIIOHOBAHO KOPEKTHI TPAHUYIHI M, T — 00.

Kntouosi cnoea: cmamucmuuni cepedne, Jucnepcis, nepemeoperis, HoOPpMasbHull pos-
nodia, 6uUNAdKOBA BEAUMUNG.

Mathematical Modeling and Computing, Vol.9, No.2, pp.318-325 (2022)



