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Abstract. Problem statement. Mobile robotic systems are widely used in various fields of 
industry and social life: from small household appliances to large-size road-building machinery. 
Specific attention of scientists and designers is paid to the vibration-driven locomotion systems able 
to move in the environments where the use of classical wheeled and caterpillar robots is impossible 
or inefficient. Purpose. The main objective of this paper consists in generalizing the actual research 
results dedicated to various design diagrams and mathematical models of suspension systems of 
mobile vibration-driven robots. Methodology. The differential equations describing the robot motion 
are derived using the Lagrange-d'Alembert principle. The numerical modeling is carried out in the 
Mathematica software by solving the derived system of differential equations with the help of the 
Runge-Kutta methods. The verification of the obtained results is performed by computer simulation 
of the robot motion in the SolidWorks and MapleSim software. Findings (results). The time 
dependencies of the basic kinematic parameters (displacement, velocity, acceleration) of the robot’s 
vibratory system are analyzed. The possibilities of maximizing the robot translational velocity are 
considered. Originality (novelty). The paper generalizes the existent designs and mathematical 
models of the mobile vibration-driven robots’ suspensions and studies the combined four-spring 
locomotion system moving along a rough horizontal surface. Practical value. The obtained results 
can be effectively used by researchers and designers of vibration-driven locomotion systems while 
improving the existent designs and developing the new ones. Scopes of further investigations. While 
carrying out further investigations on the subject of the paper, it is necessary to solve the problem of 
optimizing the robot’s oscillatory system parameters in order to maximize its translational velocity. 

Keywords: mobile robotic system, locomotion system, numerical modelling, computer 
simulation, kinematic parameters, translational velocity, optimization problem. 

Introduction and Problem Statement 

Mobile robots are currently of significant interest among researcher in various fields of industry and 
social life [1]. The possibilities of practical implementation of classical wheeled and caterpillar drives are 
sometimes inexpedient or inefficient. Therefore, the specific attention of scientists and designers is paid to 
the vibration-driven locomotion systems considered as one of the most prospective drives of mobile robots 
[2]. In particular, the vibration-driven systems are usually used for cleaning and inspecting the internal 
surfaces of pipelines [3], in conveying equipment of mining industry [4], or in compacting machines used 
in the field of road-building [5]. There exist a number of developed designs of vibration-driven locomotion 
system that can be implemented in household appliances [6], agriculture [7], and medicine [8, 9]. 

The problems of studying the dynamic behavior of various designs of mobile vibration-driven 
systems are of significant interest among researchers all over the world. There exist a great variety of the 
robot’s structures differing in the driving system, excitation mechanism, suspension, number of oscillating 
masses, etc. The vibration-driven locomotion systems are sometimes designed on the basis of the multi-
module structures with several independent drives [2, 10, 11]. The operation of such systems is often based 
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on the vibro-impact excitation conditions [3, 8, 9, 12, 13]. Among a great variety of vibration exciters, the 
centrifugal ([2, 4, 5, 10]), electromagnetic ([3, 9, 12, 13]), and crank-type (eccentric) ([14, 15]) ones are the 
most widely used in mobile vibration-driven locomotion systems.  

The specific attention of researchers is currently paid to the mobile robots equipped with bristles 
[16–18]. In particular, the paper [16] presents the numerical modelling and experimental investigation 
results describing the dynamic behavior of the mobile vibration-driven robot with bristle-type suspension 
lying on the vibrating surface. Similar theoretical and experimental research on locomotion conditions of 
the relatively small bristle-robot driven by a piezoelectric actuator was carried out in [17]. The paper [18] 
is devoted to designing and investigating the novel hybrid soft actuator for mobile robotic systems 
characterized by the controllable leaning direction of the elastic spikes. 

Considering all the information sources mentioned above, the present paper is aimed at generalizing 
the actual research results dedicated to various design diagrams and mathematical models of suspension 
systems of mobile vibration-driven robots. The original idea of this study consists in developing and 
investigating the combined four-spring suspension of the self-propelled locomotion system moving along a 
rough horizontal surface and vibrationally excited by the generalized periodic forces. While carrying out 
the numerical modeling and computer simulation of the robot motion conditions, the applied software 
Mathematica [19], MapleSim [20], and SolidWorks [21] is to be used. This allows for carrying out the 
virtual experimental studies with no need to implement the robot’s suspension in practice and verifying the 
correctness of the derived differential equations describing the robot motion. 

Main Material Presentation 

Generalized dynamic diagram of the robot’s suspension system. 
Based on the thorough analysis of numerous scientific papers related with vibration-driven robots’ 

suspensions, the generalized dynamic diagram of the combined four-spring locomotion system moving 
along a rough horizontal surface is presented in Fig. 1. The rigid body 1 of the mass m1 simulating the 
robot’s working member is supported by the suspension system 2 and feet 3 on the horizontal surface 4. 
The suspension system 2 is based on two legs with two hinged spring-damper elements characterized by 
the corresponding stiffness (k1, k2) and damping (c1, c2) coefficients (see Fig. 1). The whole mass m1 of the 
robot’s body is concentrated at the point O, to which two independent perpendicularly directed forces F1x, 
F1y are applied. Let us consider the case, when one force (F1x) is directed horizontally to the right, while 
the other one (F1y) acts vertically upwards. The applied assumption allows for studying the plane 
translational motion of the robot’s body with no need to consider its angular inclination. The surface 
roughness is considered by applying the corresponding dry friction forces between the robot’s feet and the 
supporting surface characterized by the static and kinematic friction coefficients µfr.s, µfr.k. 

 

Fig. 1. Generalized dynamic diagram of the robot’s suspension system 
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Let us apply the inertial Cartesian coordinate system xOy with its origin O located at the mass center 
of the robot’s body in its equilibrium position (in the state of rest). The applied coordinate system is fixed 
to the unmovable supporting surface. The Ox axis is directed horizontally to the right and is parallel to the 
surface, while the Oy axis is directed vertically upwards. The angular positions of the straight lines 
connecting the hinges D1, B1 and D1, A1 are defined by the angles ϕ1, ϕ2, respectively. In general, the robot 
motion is characterized by two independent coordinates x1, y1 unambiguously describing the position of the 
robot’s body mass center in the applied coordinate system xOy at each moment of time. 

Mathematical model describing the system motion. 
In order to derive the differential equations of the robot motion, let us use the Lagrange-d'Alembert 

principle. Among lots of statements of this principle, let use the following one: the mechanical system 
consisting of rigid bodies remains in the dynamic equilibrium when the total virtual work (the sum of the 
virtual works of the applied forces (active forces, reactions of constraints) and the inertial forces) is equal 
to zero for any virtual displacement of the considered system. In our case, the plane motion of the robot’s 
body along two mutually perpendicular axes is studied. Therefore, the corresponding projections of the 
inertial forces acting upon the mass m1 at point O (see Fig. 1) can be expressed as follows: 

. 1 1in xF m x= − ⋅ && ;    . 1 1in yF m y= − ⋅ && , (1) 

where 1x&& , 1y&&  denote the second-order time derivatives of the corresponding displacements x1, y1. 

Let us present the angles ϕ1, ϕ2 (see Fig. 1) as the functions of the generalized coordinates x1, y1: 
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where LDB.0 is the initial length of the spring-damper member D1B1 in the robot’s suspension equilibrium 
position (in the state of rest); φ1.0 is the initial angle between the straight line connecting the hinges D1, B1 
and the positive direction of the horizontal axis Ox; φ2.0 is the initial angle between the straight line 
connecting the hinges D1, A1 and the negative direction of the horizontal axis Ox. 

The dependencies of the lengths of the spring-damper members D1B1 and D1A1 on the displacements 
x1, y1 can be written as follows: 
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(7) 

The suspension acts upon the robot’s body in vertical direction only in the case when its vertical 
displacement is less than the static deflection yst caused by the gravity forces, i.e., when the robot moves 
under the non-detachable (non-jumping) conditions. Otherwise, the suspension vertical action is equal to 
zero. The suspension system spring force acts upon the robot’s body in horizontal direction only in the case 
when its absolute horizontal value is less than the absolute value of the friction force Ffr acting between the 
supporting feet and the rough surface. Otherwise, the suspension horizontal action is equal to the friction 
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force Ffr. Similar conclusions can be drawn about the suspension damping forces. Therefore, let us derive 
the simplified expressions of the corresponding projections of the spring and damping forces: 
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where DALΔ & , DBLΔ &  denote the first-order time derivatives of the corresponding displacements DALΔ , 

DBLΔ ; yst is the suspension vertical static deflection caused by the gravity forces acting upon the robot’s 

body in its equilibrium position (in the state of rest). 
The dry friction force acting between the supporting feet and the rough surface, along which the 

robot is sliding, can be approximately determined as follows: 
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where g  is the free-fall (gravity) acceleration; 1x&  denotes the first-order time derivatives of the robot’s 

body horizontal displacement; ( )1sign x&  is the function defining the direction of the robot’s body motion; 

( )1sign x  is the function defining the horizontal position of the position. 

The suspension vertical static deflection yst caused by the gravity forces acting upon the robot’s body 
in its state of rest can be derived from the corresponding equilibrium conditions: 
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Substitution of equations (2), (3), (5), (7) into the equilibrium conditions (13) leads to the extra-large 
analytical expression for yst. In our case, let us consider the small-amplitude oscillations of the robot’s body 
with respect to the suspension’s overall dimensions. This allows for assuming the angles φ1, φ2 to be 
constant and for simplifying the analytical expression for yst: 
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Taking into account the derived expressions (1)–(14), the mathematical model describing the robot 
motion can be presented as the system of two differential equations: 

. . . 1 0;in x spr x dam x xF F F F+ + + =  (15) 

. . . 1 0.in y spr y dam y yF F F F+ + + =  (16) 

Due to the extra-large analytical form of the equations (15), (16), let us omit their full presentation in 
the present paper. The following stages of the carried out investigation are dedicated to the numerical 
modeling and computer simulation of the system motion. The input data to be predefined is following: the 
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initial geometric, stiffness, and damping parameters of the suspension (LDB.0, φ1.0, φ2.0, k1, k2, c1, c2); the 
robot’s body mass (m1); friction parameters (µfr.s, µfr.k); excitation forces (F1x, F1y). 

Results and Discussion 

Numerical modeling of the robot motion in the Mathematica software. 
In order to carry out further numerical modeling and computer simulation, let us introduce the 

robot’s parameters: 1 30 kgm = , 1 0 N / mk = , 4
2 3 10 N / mk = ⋅ , 1 0 N s / mc = ⋅ , 2 50 N s / mc = ⋅ , 

. 0.5fr kμ = , . 0.6fr sμ = , ( )1 100 sin 30 NxF t= ⋅ ⋅ , ( )1 100 sin 30 NyF t= ⋅ ⋅ , .0 0.2 mDBL = , 10 4ϕ π= , 

20 2ϕ π= . In the considered case, the robot’s body performs the straight-line (directed) oscillations at the 

angle of approximately 45° with a horizontal axis and simultaneously slides along the rough horizontal 
surface (see Figs. 2 and 3). Fig. 2 presents time dependencies of the robot’s body horizontal and vertical 
displacements, speeds, and accelerations, while Fig 3 shows the trajectory (path) of its mass center motion. 

 

 

a 

 

b 

 

c 

Fig. 2. Time dependencies of the robot’s mass center horizontal and vertical displacements (a), velocities (b) and 
accelerations (c) obtained by numerical modeling in the Mathematica software 

 

Fig. 3. Motion path of the robot’s mass center obtained by numerical modeling in the Mathematica software 

The maximal vertical displacement of the robot’s body from its equilibrium position is about 3 mm, 
while the maximal horizontal displacement during one step (period) reaches 26 mm. The maximal 
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horizontal and vertical speeds are 0.27 m/s, 0.058 m/s, respectively. The robot’s average locomotion speed 
is about 0.11 m/s. The amplitude values of vertical and horizontal accelerations reach 4.4 m/s2, 2.75 m/s2, 
respectively. The results of numerical modeling show that the maximal vertical acceleration of the robot’s 
body doesn’t exceed the free-fall (gravity) acceleration. This allows for drawing the conclusion about the 
nondetachable motion conditions (no bouncing, jumping, or skipping over the horizontal surface). Let us 
analyze the correctness of the derived mathematical model describing the robot motion by means of the 
computer simulation of the robot’s suspension operation in the MapleSim and SolidWorks software. 

Simulation of the robot’s suspension in the MapleSim software. 
Fig. 4 presents the simulation model of the robot’s suspension developed in the MapleSim software 

according to the dynamic diagram considered above. The prismatic sliders P2, P6 are sliding along the 
horizontal axis whose origins are located at the fixed frames FF1, FF2. Four rigid body frames (rods) RBF1, 
RBF , RBF5, RBF7 are fixed to the movable ends of the sliders P2, P6. The spring-damper elements SD1, 
SD2, SD3, SD4 control the prismatic sliders P1, P3, P4, P5 displacements. The later are hinged to the rods 
RBF1, RBF2, RBF3, RBF4, RBF5, RBF6, RBF7, RBF8 by the revolute joints R2, R3, R4, R1, R6, R5, R8, R7, 
respectively. The rigid bodies RB1, RB2, RB3 are located between the rods RBF9-RBF10, RBF3-RBF4, 
RBF8-RBF6 of the same lengths. The body RB1 is subjected to the action of the disturbing periodical forces 
simulated by the Applied World Force AWF1 block and sinusoidal signal blocks S1, S2 defining its 
horizontal and vertical components. The friction forces are applied between the ends of the sliders P2, P6 
and are simulated by the friction brakes B1, B2. The magnitudes of the normal forces acting upon the 
braking blocks are defined by the Force-and-Moment Sensors FAM1, FAM2. The vertical components of 
the forces acting upon the sliding blocks and defining the magnitudes of the normal braking forces are 
determined by analyzing the sensors FAM1, FAM2 signals using the real demultiplexers DMR1, DMR2. 

 

 

Fig. 4. Simulation model of the robot’s suspension developed in MapleSim software 
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Prescribing the same input parameters of the robot’s suspension as in the previous section 
dedicated to the numerical modeling, the corresponding simulation results have been obtained  
(see Fig. 5). The robot’s body has passed about 0.45 m during the first 4 s after the start. Therefore, 
the average horizontal speed exceeds 0.1 m/s. The vertical oscillations amplitude is approximately 
0.003 m. The general character of the robot motion simulated in the MapleSim software 
satisfactorily agrees with the results of numerical modeling carried out in the Mathematica software. 
The minor differences can be observed on the path 

(trajectory) plots of the robot’s mass center (see Fig. 3 and Fig. 5, b). This fact can be explained by 
the phase shifts of the horizontal and vertical components of the disturbing forces and the difference 
between the initial conditions applied in numerical modeling and computer simulation. Therefore, let us 
omit the plots of the rest kinematic parameters, in particular, the velocities and accelerations of the robot’s 
body. 

 

 

a 

 

b 

Fig. 5. Time dependencies of the robot’s mass center horizontal and vertical displacements (a)  
and its motion path (b) simulated in the MapleSim software 

Computer modeling of the robot motion in the SolidWorks software. 
The next stage of the present study aimed at analyzing the correctness of the derived 

mathematical model consists in computer simulation of the robot motion in the SolidWorks software. 
The corresponding suspension model is presented in Fig. 6. It consists of the horizontal unmovable 
plate 4, feet 3, suspension system 2 and the rigid movable plate 1. The coincidence contact between 
the corresponding surfaces of the bodies 3 and 4 is characterized by the sliding friction coefficients 
µfr.s, µfr.k. The gravity force acts vertically downwards. All the geometrical, inertial, stiffness, and 
damping parameters correspond to the ones used in the previous sections of the paper. The active 
(disturbing) forces F1x, F1y are applied to the mass center m1 of the robot’s body (movable plate 1). All 
the hinges A1, A2, B1, B2, D1, D12 are simulated as the ideal revolute joints (with no friction and 
clearance). The springs (colored in red) are characterized by the linear exponents of the spring and 
damper forces expressions with the corresponding coefficients k1, k2, c1, c2. 

The results of computer modeling of the robot motion are presented in Fig. 7. In analogy to the 
previous simulation, let us analyze time dependencies of the robot’s body horizontal and vertical 
displacements (Fig. 7, a), and its motion path (Fig. 7, b). Due to some inconveniences of starting the 
robot’s body motion from the zero-position, the plots have a little bit different scale (starting and end 
points). Nevertheless, it can be concluded that the horizontal locomotion speed exceeds 100 mm/s, the 
amplitude of the robot’s body vertical oscillations is about 3 mm, and the general character of the 
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robot motion is approximately the same as the ones simulated above. Therefore, the conclusion about 
the correctness of the derived mathematical model describing the robot motion can be drawn. While 
performing further investigations on the subject of the paper, it is expedient to the substantiate the 
robot’s inertial, stiffness, damping, and excitation parameters with the purpose of maximizing the 
robot’s locomotion velocity. 

 

 

Fig. 6. Simulation model of the robot’s suspension developed in SolidWorks software 

 

 

a 

 

b 

Fig. 7. Time dependencies of the robot’s mass center horizontal and vertical displacements (a)  
and its motion path (b) simulated in the SolidWorks software 

Conclusions 

Based on the thorough analysis of various research publications dedicated to the vibration-driven 
robots and their locomotion principles, the present paper considers the generalized dynamic diagram of the 
robot’s combined four-spring suspension system (Fig. 1). The corresponding mathematical model 
describing the robot locomotion is developed using the Lagrange-d'Alembert principle. The numerical 
modeling of the robot motion during the first 4 s after the start is carried out in the Mathematica software 
by solving the derived system of differential equations with the help of the Runge-Kutta methods. 

The maximal vertical displacement of the robot’s body from its equilibrium position is about 3 
mm, while the maximal horizontal displacement during one step (period) reaches 26 mm. The 
maximal horizontal and vertical speeds are 0.27 m/s, 0.058 m/s, respectively. The robot’s average 
locomotion speed is about 0.11 m/s. The amplitude values of vertical and horizontal accelerations 
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reach 4.4 m/s2, 2.75 m/s2, respectively. The results of numerical modeling show that the maximal 
vertical acceleration of the robot’s body doesn’t exceed the free-fall (gravity) acceleration. This allows 
for drawing the conclusion about the nondetachable motion conditions (no bouncing, jumping, or 
skipping over the horizontal surface). 

In order to verify the correctness of the derived mathematical model describing the robot motion, the 
corresponding computer simulation is carried out in the MapleSim and SolidWorks software. The 
simplified models of the robot’s suspension are presented in Figs. 4 and 6. The computer simulation results 
(Figs. 5 and 7) satisfactorily agree with the results of numerical modeling carried out in the Mathematica 
software. While performing further investigations on the subject of the paper, it is expedient to the 
substantiate the robot’s inertial, stiffness, damping, and excitation parameters with the purpose of 
maximizing the robot’s locomotion velocity and minimizing the energy consumption. 
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