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Article demonstrates the applicability of modeling non-stationary non-isothermal gas flow
along a linear section of a gas transmission system by means of using various numerically
simulated models and sophisticated numerical techniques. There are described several
models of non-stationary non-isothermal regimes of gas flow along the pipeline section.
They are included in the considered general model and their comparative analysis is car-
ried out by the virtue of numerical simulation. The finite difference algorithm is used
to solve the simultaneous equations of the numerically simulated model for the pipeline
section. The results of calculating the gas flow parameters using various models are pre-
sented: both with and without taking into account kinetic energy, as well as both with
and without taking into account the Joule-Thompson effect. The matter of choosing the
appropriate model is discussed. The obtained results can be used at the stage of transfer
pipeline system operation in order to develop scientifically well-founded recommendations
for improving the safety and efficiency of the pipeline transportation system.
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1. Introductory note

Having regard to the growth of energy consumption value in the world, it can be said that gas is
currently becoming the top chosen energy resource. This growth has been especially observed in the
industrial sector, where the share of gas was 20.9% in 2013, is expected to be 22.2% in 2020, and is
expected to be 24.6% in 2040 [1].

The increase in world-embracing LNG trade has been the last decade trend. However, the transmis-
sion of gas through pipelines, which remains currently the most efficient way of supplying gas, continues
to be relevant. Most of the world’s reserves currently being produced and developed belong to the
so-called conventional gas. Modern technologies for the design, construction, operation and modern-
ization of transfer pipeline systems must be supplemented by numerical techniques for modeling the
operational lifetime of the considered pipeline transportation system, including techniques for modeling
gas flow regimes in emergency situations or unexpected occurrences, based on the use of numerically
simulated models that would consider all the nuances of gas transmission modes. Such supplement to
these technologies provides for the firm development of scientifically well-founded recommendations to
improve the safety and efficiency of the pipeline transportation system.

This paper presents emergency situations or unexpected occurrences caused by disconnection or
connection of large consumers, unsanctioned siphoning or leakage in the pipeline. Such gas flow regimes
(GFRs) are non-stationary non-isothermal.

416 (© 2022 Lviv Polytechnic National University



Mathematical modeling of non-stationary gas flow modes along a linear section of a gas ... 417

From this perspective, the timeliness of these studies is determined by the need for scientific de-
velopment and argumentation of both new mathematical models and numerical techniques that would
allow carrying out the modeling of gas flow non-stationary processes and using them as a base for
management of emergency situations or unexpected occurrences along the linear section (LS) of the
gas transmission system (GTS) taking into account boundary conditions (BCs). LS of a GTS is made
as pipes connected to a gas pipeline for joining gas-compressor stations. We assume that the LS is
a system of pipeline sections (PS) interconnected by shutoff valves (taps) and combined into a single
circuit.

2. Literature data analysis and target setting

First and foremost, mathematical models (MMs) of non-stationary non-isothermal gas flow regimes
(NNGFRs) along a LS of a GTS were analyzed. For the most part, MMs of NNGFRs along a LS are
presented as an interconnected partial differential system [2-8] or integral equations [5] that describe
such regimes in a pipeline section. These simultaneous equations are connected either by systems of
algebraic equations [2,4,7|, or partial differential systems [5, 6], or systems of differential and alge-
braic equations [3], which describe the conditions for matching the parameters of the gas flow at the
connections of pipeline sections. The regimes of gas flow through shutoff valves (taps) are set, most
commonly, by systems of nonlinear algebraic equations [2,4,7,21|. The primary target in development
of MMs of NNGFRs along the LS is selecting a MM for such regimes in a PS. The MM for such regimes
can be obtained from the Navier—Stokes basic equations of gas dynamics for the one-dimensional case
or from the principal laws of conservation (laws of conservation of mass, momentum and energy). In
addition, a MM of NNGFRs in a PS can be presented not only in the form of a partial differential
system [2,22], but also in an integrated form [5]. And at this point, the initial equations of MM [2-22]
can be simplified by making certain assumptions, for example, regarding the thermophysical properties
of a gas or medium, technical parameters of a pipeline, etc.

An analysis of numerical techniques for solving systems of hyperbolic partial differential equations
was carried out. Methods such as the finite difference algorithm with the use of various uniform
and non-uniform finite-difference grids [2-8, 12|, adaptive methods of implicit finite differences [13],
and the method of characteristics (Massau’s method, the modified Massau’s method) [16], the finite
volume method [5,6,14], the finite element method, the finite difference method using the Lagrange
particle method (is an update of the approach to solving hyperbolic partial differential equations by the
method of characteristics) [5, 6], the integro-interpolation method [5,6], and others, are often used for
the obtaining numerical solution of such systems. Each of the specified methods has both advantages
and disadvantages.

3. Purpose and objectives of the study

The article object is to choose the mathematical model of NNGFRs along a LS of a gas transmission
system, to study the mathematical models of NNGFRs along a LS, which are included in the general
MM of NNGFRs along a LS of a GTS, to analyze the results obtained based on numerical modeling
and to select the best model in terms of both the accuracy of the description of the processes under
consideration and speed-in-action. These models are considered taking into account (without taking
into account) various conditions: without taking into account the Joule-Thompson effect and kinetic
energy, taking into account the Joule-Thompson effect for the length of the pipeline, taking into
account kinetic energy. The finite difference method using a uniform finite-difference grid was chosen
as a method for solving a system of differential equations of hyperbolic type with a known non-linear
equation (NE) and boundary conditions (BCs) describing the MM of NNGFRs along a LS.
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4. Materials and methods for studying the influence of selecting a mathematical model
for non-stationary non-isothermal regimes of gas flow along a pipeline section on the
processes of modeling such regimes in a linear section of a gas transmission system

4.1. A mathematical model of non-stationary non-isothermal regimes of gas flow along a pipeline
section

For the general case of NNGFRs along a LS, which is a cylindrical pipe of constant diameter with rigid
walls, it is described by a quasi-linear partial differential system derived from the general Navier—Stokes
equations of gas dynamics for the one-dimensional case [4,7]:

d(pV) 0 AVIV  dh

(apt ) +o [P+ (1+B)pV? = —p[ |2D| g%] (1)
8p 0 B
o 8—(PV) 0, (2)
550E)+ 3 (o (B +2) )= 5T = 1)~ sV ®)

where p(z,t), V(x,t), T(x,t), P(x,t) are specific gravity, velocity, temperature, and pressure of gas;
t, x are temporal and spatial coordinate; A is flow friction characteristic; D is pipe diameter; K is
pipe-to-ground heat transmission coefficient; T, is ground temperature; h is pipe depth; 3 is Coriolis
correction for the uneven velocity distribution in the section; g is gravity acceleration; F is unit mass
total energy.

These equations were derived assuming, that there is no mass transfer with the environment, the
stationarity of regimes of heat transfer with the environment, thermal properties of the environment
were disregarded.

For non-stationary non-isothermal regimes of gas transmission, we can introduce the following
assumptions without loss of generality:

— the gas flow velocities are distributed uniformly in cross section, and the Coriolis correction can be
disregarded;

— in (1) and (2) equations, we can disregard the change in temperature, since the derivatives of
temperature are negligible;

— momentum energy can be disregarded in equation (3), and the Joule-Thompson effect can be
disregarded in (3) equation as well.

The (1)—(3) system has to be supplemented with the equation of state:
P
- = ZgRT, (4)
p

where z(z,t) is gas-compressibility factor; R is gas constant.
The (1)—(3) system transforms [4,7] after application of the relevant manipulations:

ang(l TSP2>ZP+2 TS%%—WJFBTSW]LW’Jr%g%:O, (5)
%]; aTS%—W =0, (6)
LI L T S G KL LU )
where a = M , B = 2D, v = C,,ngR7 S is sectional area, C), is gas specific heat, W (z,t) is gas mass

flowrate, t is temporal coordinate, x is spatial coordinate.
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The (5)—(7) simultaneous equations will be presented in matrix form:

0¢ 0o

E_‘_B(x,ta(ﬁ)% :(I)($7t7¢)7 (8)
where
[ w w2
B = oTlS 0 0 , (9)
T2 w
_aSF(’y -1) 0 aTSF’y
[ W|W| g Pdh
S T ST da
b = 0 . (10)
4K T TW dh
_—7(7—1)§(T—Tgr) 9(7—1)T@

In the case when the Joule-Thompson effect is taken into account in the (3) energy equation by
gas adiabatic throttling, the (1)—(3) simultaneous equations take the (8) form, where B, ® matrices
have the following form [20]:

W w2
B = TS 0 0 , (11)
T~ ) aSyD; T*W aSy  T?W
\T—+D,P T-4D;,P P T-~D,P P
r W|W| g Pdh
_gre—1—“1_ 4 2 =°
TS P aS T dx
3= 0 , (12)
AK(y=1) TX(T-T,)  g(y—1) T*Wdh
L D P(T —PDjy) T —-PDjy P dx

where D; is Joule-Thomson coefficient (K/Pa). Tables, graphs or empirical formulas are used when
determining the Joule-Thompson coefficient for certain values of both temperature and pressure.

In the case when momentum energy is taken into account in the (3) energy equation, the (1)—(3)
simultaneous equations take the (8) form, where B, ® matrices are the next:

— W 2
B = aTS 0 0 , (13)
2PT? N aST? 2T 20SWT N 20pP
LW P W P aSW
i W|W| g Pdh
S~ 5T dx
b = 0 . (14)
T2 W | 8K P
25—~ Dagwz L~ Tor)

In (8), B, ® are matrices, which elements are given x, t, W, P, T' continuous functions of variables
differentiable in a certain area of their arguments variation; ¢(z,t) = (W(z,t), P(z,t),T(x,t)) is
certain continuously-differentiable solution of (8) in A = (z,t),z € [0, L], t € [0, Trax], these matrices
are given either by (9)—(10) formulas, or by (11)—(12) formulas, or by (13)—(14) formulas.

Therefore, the NNGFRs are described by a quasilinear system of differential equations of hyperbolic
type (8), with the corresponding boundary and initial conditions.

The boundary conditions at the beginning and end of the section are as follows:
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G(0,t) = G°(t), G(L,t) = G'(t),
P(0,1) = P°(t), P(L,t) = P'(1), (15)
T(0,t) = TO(t), in case G(0,t) >0, |T(L,t)=Tt), in case G(L,t) <0,
where G = WS is gas-weight flotation (kg/s), GO(¢), T°(t), P°(t), G}(t), T (t), P'(t) are prescribed

functions.

The initial conditions are:
W(z,0) = Wy(x), P(x,0) = Py(z), T(x,0)=To(z), =x€(0,L), (16)

where Wy (x), To(x), Po(z) are prescribed functions.

Thus wise, it has been possible to obtain mathematical model 1 of NNGFRs along a LS, which
is given by (8), (9)—(10), (15)—(16) formulas, mathematical model 2 of NNGFRs along a LS, which is
given by (8), (11)—(12), (15)—(16) formulas, mathematical model 3 of NNGFRs along a LS, which is
given by (8), (13)—(14), (15)—(16) formulas.

4.2. Mathematical model of gas flow through shut-off valves

It is proposed to choose a model that represents the equations of energy conservation and local pressure
loss, describing the modes of natural gas flow through the valve, in the following form [2,4,7], as a
MM of the regimes for the gas flow through shut-off valves (SVs) (pipeline tap):

Rg Tkzi
2F% Pk
Tk =Ty — Dj(Py — Pk), (18)

Px =Py —¢ G, (17)

where Ty, Tk are temperature (K) at the input and output of the valve respectively, Py, Pk are
pressure (Pa) at the input and output of the valve respectively, D; is Joule-Thomson coefficient
(K/Pa), zk is gas-compressibility factor at the output of the valve respectively, Fi is pipe section area
after crossing the valve (m?), Gy is gas-weight flotation (kg/s) at the input of the valve.
Formula
Fi;
e (Fy)*

where (. is coefficient of local hydraulic resistance of compressed flow, (x is coefficient of local hydraulic

C:Cc

+ (ks (19)

resistance after crossing the valve, ¢ = Vil is constriction coefficient, Fi is sectional area (m2) of

compressed flow, F! is line flow area (mz)c before the flow compression, there is a total resistance
coefficient related to the flow in the section Fl.

As a rule, the local resistance coefficient is determined experimentally and is taken from the corre-
sponding tables and graphs in calculations.

4.3. A mathematical model of non-stationary non-isothermal regimes of gas flow along a linear
section of a gas transmission system

The LS can be considered as an oriented graph, which edges are PS and SVs, and connections of the
PS and SVs are the graph nodes. Consequently, the model of a structure of the LS of GFRs can be
defined by means of G(V, M) oriented graph, where V' is vertex set of the graph, M is set of edges of
the graph. The edges of the graph are places of interconnection of the technological elements. A set
of oriented edges M = M7 U M,, where M is a set of oriented graph edges of the relevant PS, M is a
set of oriented graph edges of the relevant valves. A vertex set V =V; U Vo U Vs U V4 U Vs, where V7,
Vo, V3, V4, V5 are a set of the PS inputs, a set of intermediate vertex, a set of the PS outputs, a set of
inputs and outputs of all valves from My respectively.
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The MM of NNGFRs in the LS of a GTS represents interconnected quasilinear systems of partial
differential equations corresponding to the i graph edge G(V, M), Vi € M; [4,7]:
¢ . i ¢Z ;
5 T B@t8") 5 =0z, ¢), (20)
where ¢' = (W'(,t), P'(z,t), T (z,t))), Wi(z,t), P ‘(x,t), T%(z,t) are mass flowrate (kg/m?s), tem-
perature (K), gas pressure (Pa) of i PS.

Equations (20) are supplemented by systems of nonlinear algebraic equations describing the oper-
ation modes of a linear crane corresponding to the ¢ graph edge G(V, M), Vi € My [2,4,7]:

. . i(ptt .
PZ(JE++,t) = Pl(iﬂ ) Cz (ﬁg) L (( ++t)t) (Gl(x+,t))27 (21)
T'(zt,t) = T'(at,t) — D; (P'(z*,t) — Pi(a™,t)), i€ My, jeM, (22)

where ¢’ is coefficient of local hydraulic resistance, 2’ is gas-compressibility factor at the output of the
valve, G* is gas-weight flotation (kg/s) at the valve input, D; is Joule-Thomson coefficient (K/Pa), S
is sectional area of the j edge (j € My) adjacent to the end of the i edge (i € Mj) corresponding to
the valve, 7, 27T are beginning and end of the i edge.

Systems (20), (21)—(22) are interconnected by systems of nonlinear algebraic equations at the
intermediate m-vertex (m € Vo U V3 U Vy) of the graph G(V, M):

Y Gt =) Glatt), me, (23)

JE€Va ' i€V

Py(t) =Pz, t) = P'a™,t), jeVy, i€V, (24)
Z (Gj(x++,t))+Tj(x++,t)+ Z (Gi(er,t))—Tz’(er,t)
Jjevit i€V

:Tg’”‘(Z(GJ @)+ Y (Giat,t) > (25)
JEVat i€Vim
in addition, _ '
Tzt ) =T (), jeV,) incase G'(z7T,t) <0,
Tz, t) = T™(t), j€V,, incase G'(z",t)>0,
where 21 and 1 are beginning and end of the ¢ edge, V7 and V, are a set of indices of the edges
incoming and outcoming from m graph vertex (m € Vo U V3 U Vy), G¥(x,t), T'(x,t), Pi(x,t) are mass
flowrate, pressure and temperature for the i-edge of the graph, ng”(t) is gas pressure in m-vertex,
T™(t) is average temperature of the gas flowing out of the m-vertex,

a, a>0 _ —a, a<0
(@) = , (@) = :
0, a<0 0, az=0
These systems correspond to the conditions for matching gas flow parameters at intermediate vertices
(Vo U V3 UVy) of the graph G(V, M).

The initial condition is determined by setting the distribution of gas flow parameters (mass flowrate,
pressure and temperature) at the initial time moment, i.e.

W'(z,0) = Wi(z), P'(x,0) = Fy(x), T"(x,0) = Tj(x), (27)

where © € [z, 2], i € My, Wi(z), Pj(z), Ti(z) are known functions.
Boundary conditions can be specified in various ways [4,7]. As a rule, pressure and temperature
are set at the inputs, and gas flow rate is set at the outputs, as time-varying functions.
Now it can be seen that, the mathematical model of NNGFRs in a LS of a GTS is presented
by simultaneous equations (20), (21)—(22) and (23)—(26), with non-linear equations of (27) type and
various combinations of BCs. In the (20) system, the B, ® matrices are calculated either by the

(9)—(10) formulas, or the (11)—(12) formulas, or the (13)—(14) formulas.

(26)
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4.4. A numerical technique for solving equations of a mathematical model of non-stationary
non-isothermal regimes of gas flow along a pipeline section

Numerical calculation of system (8) with the initial distribution (16) and BSs (15) will be performed
by means of a subtended finite-difference scheme having a second order in a spatial variable and a first
order in a temporary variable. For this purpose, the [0, L] segment will be divided for n segments of
Az length, and then it is possible to derive (n + 1) a point of division z;,i = 0, n.

In this case, the derivatives in system (8) are replaced by finite-difference formulas:

21 =94 i
| PYSL: M T
ot |. At ’ T ox|. 2Am 7 ) )
7 ? ¢k_¢k
n n—1 .
T Azx T

The following finite-difference equation system is formed taking into account the (33) and (34)
formulas:

1 1 1 .
~Bo + ¢o B§<z>1 0+ K% =0, (29)
1 i T
_K k(bz 1+_¢k+—Bk¢z+l (I)k—i_E k 1 = 1,71-1, (30)
1 .
—A—$Bﬁ¢fz—1 + Efbl}i + A—ngébk oF + N Wl i=n. (31)

The solution of the simultaneous equations (29)—(31) is vector oF = ((blg, <;5'f, (blg, . ,qﬁf, .. 7¢§) =
(WE, Py, 18, Wk PF T, ... Wk, Pk TF).
The system of nonlinear algebralc equations will be solved by the Newton method.

Linear equations system at the s-iteration of the k-time layer is:

awk:| k,s k,s—1
YT 0™ =™, (32)
|:a¢k ¢k,sfl

k
where [%} _— is the matrix of Jacobi; §¢®* is the vector of corrections to the indeterminates at
s

s-iteration; ¥®~! is the nullity vector.

The components of the nullity vectors and the components of the matrix of derivatives are found
in order to solve these simultaneous equations. The components of the vectors of corrections to the
indeterminates at s-iteration of the k-time layer are calculated by means of the linear system.

A numerical technique for solving the equations of the mathematical model of non-stationary non-
isothermal regimes of gas flow along the LS of a GTS is described in [4,7].

5. The results of studies on numerical modeling of NNGFRs in the PS using various
mathematical models

We would like to highlight the results of numerical modeling of NNGFRs in the PS using the following
examples. The results of calculating the gas flow parameters (flow rate, pressure, temperature) at
NNGFRs in the PS obtained using different mathematical models, are compared. These results were
obtained using the finite difference algorithm described in 4.4.

The PS having length of L = 112 km, diameter D = 1400 mm, section efficiency coefficient £ = 0.95,
wall thickness § = 10mm, equivalent pipe roughness K = 0.03mm, where the thermal capacity is
C, = 0.655952 keal /(kg K), the gas-ground heat transmission coefficient is k, = 1.4kcal/(m3 hK), the
specific gravity of gas is A = 0.604707, soil temperature at the depth of the gas pipeline is ¢4, = 10° C,
is considered. The subinterval for temporary variable is 7 = 300seconds, the number of point of
division is n = 20, Timax = 12 hours. The accuracy of calculation is € = 1076,
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The initial conditions are as follows:

Py = 84.6364456 atm, ty = 40°C, ¢ = 102.266 mill.m?/day. (33)

A stationary distribution is taken as the initial distribution.

The case of connecting a large consumer from the 200" minute after the start of the calculation
and disconnecting this consumer from the 400" minute, respectively, is considered. The boundary
conditions are formulated as:

P(0,t) = 84.6364 atm, G(L.t) = 102.266 mill.m? /day, ¢t < 200min, ¢ > 400 min,
T(0,t) = 40°C, "7 ] 112.266 mill.m3 /day, 200 min < ¢ < 400 min.

The remarkable thing is that the transition process starts from the 200*" minute, and then from the
400" minute, which corresponds to the 40" and 79*" time layer, the calculation ends after 12 hours,
which corresponds to the 144 time layer.

We will compare the results of numerical modeling obtained using model 1 and model 2.

The Table1 shows the maximum values of Table 1. The maximum values of the modules of differ-
the modules of the indeterminate differences: ences in terms of the flow rate, pressure and temperature
commercial flow rate as ¢ (mill.m3 /day), pres- (model 1 and model 2).

(34)

Oth

sure as Patm and temperature as T (°C), at Time layer
the 39", 79" time layers (before the transi- (mumber) q P T
tion process has been started), at the (40P 39 000232251 | 056747 | 754332
A1), (44%45") time layers, at the (807 40 0.020842 | 0.611251 | 8.03683
815t), (84th-85th) time layers (after the tran- A1 0 6282771 0.636008 8.27864
sition process has been started), at the 1440, 14 0'0335407 0.686733 8.71476
the last time layer. 45 0.0341976 | 0.700215 | 8.81933

The Figs. 1-3 show the arrangement of un- 79 0.00740013 | 0.850221 | 952532
known parameters: commercial flow rate as ¢ R0 00307913 | 0.800004 | 9.02821
(mill.m? /day), pressure as P (atm) and tem- 81 0036121 | 0.771965 | 8.78232
perature as T' (°C) in the pipeline section at 84 0.0390004 | 0.718994 | 833629
the 40t 80", and 144" time layers calculated 85 0-0391446 0.705665 8.22861
by means of the model 1 (the blue color) and 144 0.60096082 0:570683 7:54992
model 2 (the yellow color).
1ciz[ITnll.deay] 85l)’i[atm] 46[ C]
110} 80 351
108} 75
106} 70¢ 301
104} 65 951

5 10 15 20 5 0 15 20 5 0 15 20"

Fig. 1. Arrangement of the gas flow rate as ¢, pressure as P, temperature as T in the PS at the 40" time layer
(model 1 — blue, model 2 — yellow).

q [mill.m*/day] P [atm] t [°C]
112 85} 40
L10f | 35\
108} 751 \
70F
106} 30t
65f
104 60} 25}
5 10 15 20 5 10 15 20 5 10 15 20

Fig. 2. Arrangement of the gas flow rate as ¢, pressure as P, temperature as T in the PS at the 80" time layer
(model 1 — blue, model 2 — yellow).
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P [atm] t[°C]

q [mill.m*/day] 40}
102.300 80F
102.295 - 351
102.290 75t
102.285
102.280 70¢ 30
102.275
102.270 ; 65¢ 951

5 10 15 20 5 10 15 20 5 10 15 20

Fig. 3. Arrangement of the gas flow rate as ¢, pressure as P, temperature as 7' in the PS at the 144" time
layer (model 1 — blue, model 2 — yellow).

Keep in mind, that for the stationary regime defined by the NE (33), which was calculated under

the model 1 and model 2, ¢ = 1.92015- 1077, P = 0.569748, T' = 7.54274. The Figs. 4-6 show a graph

of variance of the gas flow parameters (flow rate, pressure, temperature) in terms of time where n = 20.

X, point of division
5

10

20

110
q [mill.m*/day]

105

X, point of division t, time layer 0

t, time layer

Fig. 4. Change in gas flow rate in the PS in terms of time (model 1 — yellow, model 2 — blue).

X, point of division

t, time layer

X, point of division i
200 0 t, time layer

Fig. 5. Change in gas pressure in the PS in terms of time (model 1 — yellow, model 2 — blue).

X, point of division

t, time layer

X, point of division 55 0 t, time layer

Fig. 6. Change in gas temperature in the PS in terms of time (model 1 — yellow, model 2 — blue).
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As the analysis of the modeling results (Table 1, Figs. 1-3) shows, taking the Joule-Thompson effect
into account affects all unknown gas parameters: flow rate, pressure and temperature. But where the
flow rate differs insignificantly: in the second decimal place during the transition process and already
in the fourth decimal place when the regime is almost stationary, the pressure value differs in the first
decimal place both in the transition regime of gas flow (up to max. 0.850221 atm.) and at almost
stationary state (0.570683 atm.). The main differences are related to temperature, where the difference
reaches several degrees.

The results of numerical modeling obtained using model 1 and model 3 will be compared.

The Table 2 shows maximum values of the
indeterminate difference modules:
cial flow rate as g (mill.m3/day), pressure as

Table 2. Maximum values of the difference modules in
terms of the flow rate, pressure, temperature (model 1
and model 3).

commer-

P (atm) and temperature as T' (°C), at the Time layer
390 79th time layers (before the transition (number) q P T
process has been started), at the (40"-41%), 39 0.000555952 | 0.00246855 | 0.0728544
(44-45"™) time layers, at the (80"*-81%), 40 0.0910354 | 0.0351283 | 3.26069
(84th785th) time layers (after the transition 41 0.0791501 0.0478333 2.65997
process has been started), at the 144", the 44 0.0290522 0.0474618 1.37989
last time layer. 45 0.029533 0.042375 1.03969
The Figs. 7-9 show the arrangement of un- 79 0.0064953 0.00964285 | 0.272224
known parameters: commercial flow rate as ¢ 0 0.114385 0.297267 3.45112
(mill.m?/day), pressure as P (atm) and tem- 81 0.102762 | 0.0384335 | 2.85515
perature as T (°C) in the pipeline section at ]4 0.0437087 0.0357521 1.60399
the 40th, 80th, and 144" time layers calcu- 85 0.0363086 0.0312974 1.26069
lated by means of the model 1 (the blue color) 144 0.00244977 | 0.00245885 | 0.0483599
and model 3.
q [mill.m*/day] P [atm] t[°C]
1ot 75} 40F
Lol 70} 38 T
65¢ 36}
108} 60k 34}
106} 55 39t \
104} / 50¢ 30
S b 28¢F
5 10 15 20 5 10 15 20 5 10 15 20

Fig. 7. Arrangement of the gas flow rate as ¢, pressure as P, temperature as T in the PS at the 40*® time layer
(model 1 — blue, model 3 — yellow).

q [mill.m%day] P [atm] t[°C]
B 75} 40k
110} 70¢
65} 38}
108’ 60,
106} 55 36¢
50}
104} 45t 34}
‘ ‘ ‘ N 40} ‘ ‘ ‘ > ‘ ‘ ‘ — .
5 10 15 20 5 10 15 20 5 10 15 20

Fig. 8. Arrangement of the gas flow rate as ¢, pressure as P, temperature as T in the PS at the 80" time layer
(model 1 — blue, model 3 — yellow).

Keep in mind, that for the stationary regime defined by the NE (33), which was calculated under
the model 1 and model 3, ¢ = 2.21192 - 1077, P = 0.784743 - 10~4, T = 0.00781894. The Figs. 10-12

show a graph of variance of the gas flow parameters (flow rate, pressure, temperature) in terms of time

where n = 20.
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P [atm] t[°C]
q [mill.m*/day] 75} 401
102.36 0 3gl
102.34 65¢ a6t
102.32 60} .
55 341 S

102.30 ~
102.28 : 50 32| S

5 10 15 20 5 10 15 20 5 10 15 20

Fig.9. Arrangement of the gas flow rate as ¢, pressure as P, temperature as 7' in the PS at the 144" time
layer (model 1 — blue, model 3 — yellow).

‘ X, point of division

‘ / / 110

q [mill.m*/day] q [mill.m¥day]

50

X, point of division .
0 t, time layer

Fig.10. Change in gas flow rate in the PS in terms of time (model 1 — yellow, model 3 — blue).

X, point of division

X, point of division t, time layer

200 0 t, time layer
Fig.11. Change in gas flow rate in the PS in terms of time (model 1 — yellow, model 3 — blue).

x, point of division

t, time layer h
200 0 t, time layer

Fig.12. Change in gas flow rate in the PS in terms of time (model 1 — yellow, model 3 — blue).

X, point of division

As an analysis of the modeling results (Table2, Figs. 7-9) shows, taking into account the kinetic
energy affects all unknown parameters of the gas: flow rate, pressure and temperature. But where
the flow rate and pressure differ slightly: in the first or second decimal place during the transition
process and in the third or fourth when the regime is almost stationary, the temperature value differs

by several degrees in the transition regime of gas flow and only in the second decimal place by almost
stationary state.
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The situation of connecting and disconnecting a large consumer with initial conditions (33) and
boundary conditions will be considered as follows:

P(0,t) = 84.6364 atm,
T(0,t) =40°C,

G(L1) = 102.266 mill.m?/day, ¢ < 200 min, ¢ > 400 min,
"7 ] 112.266 mill.m?3 /day, 200 min < ¢ < 400 min.

(35)

which means, that the flow rate changes not for 10 (mill.m?/day), but for 20 (mill.m?/day).

The Table 3 shows maximum values of the
indeterminate difference modules:
cial flow rate as ¢ (mill.m3/day), pressure as P

commer-

Table 3. Maximum values of the difference modules in
terms of the flow rate, pressure, temperature (model 1
and model 3).

(atm) and temperature as T (°C), at the 39", Time layer
79" time layers (before the transition process (number) q P T
has been started), at the (40"-41°"), (44"~ 39 0.000555952 | 0.00246855 | 0.0728544
45') time layers, at the (80'"-81%), (84'"- 40 0.165718 | 0.0804655 | 6.08443
85™") time layers (after the transition pro- 41 0.139331 0.110728 4.92419
cess has been started), at the 144", the last 44 0.0506785 0.113359 2.50449
time layer, obtained under the model 1 and 45 0.0745871 0.102485 1.87004
model 3. 79 0.0120931 | 0.0197671 | 0.42173
As the analysis of the modeling results 30 0.248109 0.0487604 6.3234
(Tables 2-3) shows, the larger the change in ]1 0.23243 0.0643595 | 5.21266
the flow rate of the transported gas during the ’4 0.107919 0.0599228 3.03022
transition regime of gas flow is, the greater the ]5 0.0960095 | 0.0520082 | 2.42554
difference in temperature is: when the flow 144 0.00488039 | 0.00419819 | 0.0957829

rate changes for 10 (mill.m®/day), the maxi-
mum value of difference modulus reaches 3.45112 degrees on the 80 time layer, and when the flow
rate changes for 20 (mill.m3/day), the maximum value of difference modulus reaches 6.3234 degrees
on the same 80" time layer.

6. Results and discussion of the study on the effect of selecting a MM of the NNGFRs
in a PS on the processes of modeling such regimes

The results of numerical modeling obtained using model 1 and model 2 (Table1, Figs.1-3) are com-
pared. As the analysis of the modeling results shows, the main differences are related to temperature,
and the larger the flow rate of gas transported along the PS is, the greater the difference in temperature
is. The gas temperature obtained by model 2, that is, taking into account the Joule-Thompson effect,
is lower than the temperature obtained by model 1. This effect is manifested along the entire length
of the pipeline.

The results of numerical modeling obtained using model 1 and model 3 (Tables2-3, Figs.7-9)
will be compared. The analysis of the modeling results shows: there are differences in the simulated
unknown parameters obtained by model 1 and model 3, both in flow rate and pressure, and especially
in gas temperature. This difference is maximum at the beginning of the transition process (Table 2),
it decreases as the transition process has been in the stationary state (Figs.7-8, Table2), and it is
insignificant in the case of a stationary state gas flow (Table2, Fig.9). In case the gas temperature
is considered, then the maximum modulus of the differences between the temperature obtained by
model 1 and model 3 is reached at the end of the section (Figs.7-8). This effect, associated with a
sharper change in temperature when using model 3 (taking into account the kinetic energy), manifests
itself only in course of the transition process of the gas flow. The pressure drop when using model 3
results in a sharper drop in temperature (Fig.7), the pressure increase when using model 3 results in
a sharper increase in temperature (Fig.8).

As the analysis of the modeling results (Table2-3) shows, the larger the change in the gas flow
rate in course of the transition process is, the greater the temperature difference is. This is due to the
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fact that with an increase in the change in gas flow during the transition process, the pressure drop in
the gas increases accordingly, which leads to a sharp change in the gas velocity and, accordingly, to a
change in kinetic energy. In this case, model 3 describes the transition process more accurately.

7. Summary

The paper proposes a mathematical model of the NNGFRs in the LS, and also offers several models
of NNGFRs in the PS, which are included in the general model. The model of the NNGFRs in the PS
taking into account the kinetic energy is proposed for the first time. A comparative analysis of various
models of the NNGFRs in the PS based on numerical modeling is also carried out.

The analysis of numerical methods for solving simultaneous equations of the MM in terms of a PS
is carried out. A method based on the application of the finite difference algorithm using a uniform
finite-difference implicit scheme is chosen as a numerical method.

The results of calculating the parameters of the NNGFR gas flow in the PS using various models
are presented. Analysis of the results of the study on the effect of selecting a MM of the NNGFRs in
a PS on the processes of modeling such regimes shows the following. The model 2 shall be selected for
large diameter pipes. In this case, the Joule-Thompson effect is manifested along the entire length of
the pipeline. The model 3 is more effective at modeling transients associated with large pressure drops.
This will allow more accurate modeling of unknown parameters of the gas flow: flow rate, pressure,
and especially temperature. Differences in temperature are observed at the beginning of the transition
process and are leveled when the transition process becomes stationary.

The obtained results can be used at the stage of transfer pipeline system operation in order to
develop scientifically well-founded recommendations for improving the safety and efficiency of the
pipeline transportation system.
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MaTtemaTnyHe mMoaentoBaHHA HecTauiOHApPHUX pPeXUMIB Tedil rasy no
NiHIAHIA AiNsIHUI ra30TPaHCNOPTHOI CMCTEMU

I'ycaposal. I}, Tesames A. 1.1, Tesimena O. A.2

L Kaghedpa npuxaadnoi mamemamuruy,
Xapriscokutll HayioHarvHul yrisepcumem padioesekmponiry,
np. Hayxu, 14, 61166, Xapxis, Yxpaina
2Kagedpa KoMN10MEPHOT MAMEMAMUKY, M GHANIZY OGHUL,
Hauionarvrutd mexnivnut ynisepcumem “Xapriscokut nosrmerniwHul themumym.”,
sys. Kipnivosa, 2, 61002, Xapxie, Yxpaina

Y crarTi OOTPyHTOBaHA aKTYaJbHICTH MOJIE/IOBAHHS HECTAI[IOHAPHOTO HEI30TEePMIiYHOrO
pexRuMy Tedil ra3y mo JHIHHIH JTSHIN Ta30TPAHCIIOPTHOI CHCTEMU 3 BUKOPUCTAHHSIM Pi3-
HUAX MATEeMATHIHUX MOJIEJIEH 1 CyIacHUX IUCETbHUX METOIB. Y POOOTI MPOIIOHYETHCS KiJib-
Ka MoJiesieil HeCTaI[ilOHAPHUX HEei30TEepMITHUX PEXKHUMIB Tedil ra3y o JUISHII TpyOOorpo-
BOJLY, fAKl1 BXOJATH B 3araJibHy MOJIEJIb, IIPOBOJIMTHCS 1X MOPIBHSAJIBHUN aHAJI3 HA OCHOBI
qHUCeIbHOTO MOJeioBaHHs. J[1s1 po3B’si3aHHsI CUCTEM PiBHSAHL MATEMATUYIHOT MOJIEI 1O JTi-
JISTHITI TPYOOIIPOBOY 3aCTOCOBAHUN METOJ, CKiHUYeHHUX pi3Huih. HaBoagaTbest pe3ysibraru
PO3PaxyHKy IapaMeTpPiB ra30BOro MOTOKY 3 BUKOPUCTAHHSIM Pi3HUX MOJEJIeil: 3 ypaxyBaH-
HAM Ta 0e3 ypaxyBaHHs KiHETUIHOI eHepril, 3 ypaxyBaHHIM Ta 0e3 ypaxyBaHHsS edeKkTy
Ixxoysisi—Tomricorna. OBroBoproeThCsl IUTaHHs BUOOPY BimosiaHol Mojesi. OTpumani pe-
3yJIbTATH MOXKYTb OyTH BUKOPUCTAHI Ha €Talli eKCILTyaTallil Mepek MaricTpaJbHUX TPy0o-
IIPOBOJIIB 3 METOI0 BUPODJIEHHST HAYKOBO OOI'DYHTOBAHUX PEKOMEHIAINH OO i IBUIICHHS
6e3mekn Ta epeKTUBHOCTI pobOTH TPYOOIPOBIIHOT CHCTEMH.

Kntouosi cnoBa: ainiting diaanka, necmayionaphutl neizomepmivhutl pescum mevii 2a-
3Y, M00eA08aHHA, MEMOOD CKIHYEHHUT PI3HUYD.
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