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A physical and mathematical model for determining the thermostressed state of an elec-
troconductive solid ball under the action of an amplitude modulated radioimpulse is pro-
posed. The centrally symmetric problem of thermomechanics for the considered ball is
formulated. The azimuthal component of the magnetic field strength vector, tempera-
ture, and the radial component of the displacement vector were chosen as the determining
functions. To construct solutions of the formulated components of the initial-boundary
value problems of electrodynamics, heat conductivity, and thermoelasticity, a polynomial
approximation of the determining functions over the radial variable is used. As a result,
the initial-boundary value problems on the determining functions are reduced to the cor-
responding Cauchy problems on the integral characteristics of these functions over the
radial variable. General solutions of Cauchy problems under homogeneous nonstation-
ary electromagnetic action are obtained. Based on these solutions, the change in time of
Joule heat, ponderomotor force, temperature and stresses in the ball under the action of
amplitude-modulated radioimpulse depending on its amplitude-frequency characteristics
and duration is numerically analyzed.
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1. Introduction

Elements of many engineering structures in aviation and ship systems are solid balls made of electro-
conductive materials. In the process of functioning of such structures, they are affected by various
physical factors, in particular, electromagnetic radiation of the radio frequency range. To predict the
reliability of operation of structures with electroconductive ball elements, it is necessary to investigate
their thermomechanical behavior under the action of unstable electromagnetic fields (EMF), which
have the character of amplitude-modulated radioimpulse (AMRI).

Determining and study of the thermostressed state of electroconductive bodies of canonical shape
under the action of steady and quasi-steady EMFs are described in [1, 2].

In [3], the optimization of regimes of high-temperature induction processing for nonlinear electro-
conductive bodies is proposed.

Mathematical modeling of nonlinear behavior of environmental material and three-dimensional
internal heat sources in relation to heat conductivity processes is described in [4].

Physical and mathematical model of thermomechanics of non-ferromagnetic electroconductive bod-
ies under the action of impulsed EMFs with amplitude modulation is given in [5]. A monograph [6]
is devoted to the study of thermomechanical behavior of non-ferromagnetic electroconductive bodies
with plane-parallel boundaries under the action of impulsed EMFs with amplitude modulation.

In [7–9] mathematical models for predicting the temperature of an electroconductive plate element
under the action of impulsed electromagnetic radiation of the radio frequency range and calculating
the temperature-force regime of operation of cylindrical and ball electroconductive sensors under the
action of AMRI and electromagnetic action in the regime of damped sinusoid was considered.
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The work [10] is devoted to the prediction of bearing capacity and properties of contact connection
of bimetallic hollow balls under the action of electromagnetic impulses.

In [11] the thermomechanical behavior of an electroconductive cylindrical implant under the action
of external unstable electromagnetic fields, in particular, radioimpulses, was studied. However, the
thermomechanical behavior of electroconductive ball structural elements under the action of impulsed
EMFs with amplitude modulation has not been sufficiently investigated.

The aim of this work is to construct a physical and mathematical model for determining the ther-
mostressed state of an electroconductive solid ball under homogeneous nonstationary electromagnetic
action and study its thermomechanical behavior under the action of AMRI depending on its amplitude-
frequency characteristics and duration.

2. Formulation of the centrally symmetric problem of thermomechanics for an electro-
conductive ball

Let us consider an electroconductive elastic ball of the radius r = R, related to a spherical coordinate
system (r, θ, ϕ), the center of which coincides with the center of the ball. The material of the ball
is homogeneous isotropic and non-ferromagnetic, and its physical characteristics are assumed to be
constant and equal to their average values in the considered ranges of temperature change. The
surface of the ball is insulated or is in conditions of convective heat exchange with the environment.

The ball is under the action of nonstationary EMF given on its surface r = R by the values of the
azimuthal component Hϕ of the magnetic field strength vector H = {0;Hϕ(r, t); 0}

Hϕ(R, t) = Hϕ0(t). (1)

Here H0ϕ(t) is a known function that describes the change in time t of the azimuthal compo-
nent of the vector H on the surface of the ball. In the center of the ball r = 0, functions Hϕ

and Eθ = 1
σ

(

∂Hϕ

∂r +
Hϕ

r

)

satisfy the conditions of central symmetry of the electromagnetic field

(Hϕ(0, t) = 0, Eθ(0, t) = 0). Here Eθ is the meridian component of the electric field strength vec-
tor E = {0; 0;Eθ(r, t)}. Hence we obtain the following boundary conditions for the function Hϕ in the
center of the ball

Hϕ(0, t) = 0,
∂Hϕ(0, t)

∂r
= 0. (2)

At the first stage, we find the function Hϕ(r, t) from the equation

∂2Hϕ

∂r2
+

2

r

∂Hϕ

∂r
− σµ

∂Hϕ

∂t
= 0, (3)

at zero initial condition at the time t = 0

Hϕ(r, 0) = 0 (4)

and boundary conditions (1) on the surface of the ball and conditions (2) in its center. Here σ is the
coefficient of electrical conductivity, µ is the magnetic permeability of the ball material.

The specific Joule heat density Q(r, t) and the radial component Fr(r, t) of the ponderomotor force
vector F = {Fr; 0; 0} in terms of the known function Hϕ(r, t) are written in the form

Q =
1

σ

(

∂Hϕ

∂r
+

Hϕ

r

)2

, Fr = µ

(

∂Hϕ

∂r
+

Hϕ

r

)

Hϕ. (5)

At the second stage, from the equation of heat conductivity, in which the heat source is Joule heat
Q, we find the temperature distribution T in a solid ball
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∂2T

∂r2
+

2

r

∂T

∂r
−

1

κ

∂T

∂t
= −

Q

λ
. (6)

Here, κ, λ are the coefficients of thermal and heat conductivity of the ball material.
The boundary condition on the surface of the ball r = R in the case of its heat insulation is

∂T (R, t)

∂r
= 0. (7)

The boundary conditions in the center of the ball r = 0 correspond to the conditions of the central
symmetry of the temperature field

T (0, t) = 0,
∂T (0, t)

∂r
= 0. (8)

The initial condition for the temperature at the time t = 0 will be

T (r, 0) = 0. (9)

Note that equation (6) can be solved under other than (7) heat conditions on the surface of the
ball.

At the third stage, to determine non-zero radial σrr, azimuthal σϕϕ and meridian σθθ components
of the tensor of dynamic stresses σ̂(r, t) in the ball, for the initial we choose a system of equations of
the centrally symmetric problem of thermoelasticity in displacements [12]. Then the radial component
ur(r, t) of the vector of displacements in the ball is determined from equation [13]

∂2ur
∂r2

+
2

r

∂ur
∂r

−
2

r2
ur −

1

c2
∂2ur
∂t2

= α
1 + ν

1− ν

∂T

∂r
−

(1 + ν)(1− 2ν)

E(1− ν)
Fr (10)

under boundary conditions in the center of the ball and on its outer surface

∂ur(0, t)

∂r
= 0,

∂ur(R, t)

∂r
+

ν

1− ν

2

R
ur(R, t) = α

1 + ν

1− ν
T (R, t), (11)

as well as under zero initial conditions

ur(r, 0) = 0,
∂ur(r, 0)

∂r
= 0. (12)

Here c = (E(1−ν))/(ρ(1+ν)(1−2ν))−1/2 is the velocity of the elastic wave propagation of the elastic
wave during isothermal deformation, α is the coefficient of linear heat expansion, ν is Poisson ratio, E
is Young modulus, ρ is the density of the ball material.

According to the obtained component ur(r, t) of the displacement vector u, we determine the
components σjj (j = r, ϕ, θ) of the stress tensor σ̂ according to the formulas [12, 13]

σrr =
E

(1 + ν)(1− 2ν)

[

(1− ν)
∂ur
∂r

+ ν
2

r
ur − α(1 + ν)T

]

, (13)

σϕϕ = σθθ =
E

(1 + ν)(1 − 2ν)

[

ν
∂ur
∂r

+
ur
r

− α(1 + ν)T

]

.

In order to estimate the comparative contribution of Joule heat Q and ponderomotor force F to
the distribution and magnitude of the components σjj (j = r, ϕ, θ) of the dynamic stress tensor σ̂ when
performing numerical studies, we will present these components as the sum of two components [5]

σjj = σQ
jj + σF

jj. (14)

Here σQ
jj are components of the stress σjj caused by Joule heat, and σF

jj are components due to
ponderomotor force.
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3. Methodology of construction of solutions of centrally symmetric initial-boundary
value problems under homogeneous nonstationary electromagnetic action

To construct solutions of the centrally symmetric initial-boundary value problems formulated above,
which describe the electromagnetic and temperature fields and the thermostressed state in a continuous
electroconductive ball, we will find for key functions Φ(r, t) = {Hϕ, T, ur} in the form of [14]

Φ(r, t) =

4
∑

i=1

aΦi−1(t)r
i−1. (15)

The coefficients of the approximation polynomials (15) are determined by the given boundary
values of the functions Φ(r, t) on the surface of the ball r = R and integral characteristics Φs(t) of
these functions with respect to the radial variable,

Φs(t) =
s+ 1

Rs+1

∫ R

0
Φ(r, t)rs+1dr, s = 1, 2. (16)

As a result, we obtain the following representations:
– azimuthal component Hϕ(r∗, t) of the vector H

Hϕ(r∗, t) = Hϕ1(t)
(

630r2∗ − 1470r3∗ + 840r4∗
)

+Hϕ2(t)
(

−840r2∗ + 2016r3∗ − 1176r4∗
)

+Hϕ0(t)
(

15r2∗ − 42r3∗ + 28r4∗
)

, (17)

– temperature T (r∗, t) under conditions of heat insulation of the ball surface

T (r∗, t) = T1(t)
(

16− 60r2∗ + 40r3∗
)

+ T2(t)
(

−21 + 90r2∗ − 60r3∗
)

, (18)

– radial component ur(r∗, t) of the displacement vector

ur(r∗, t) =

3
∑

i=0

[ai1ur1(t) + ai2ur2(t) + ai3T (R, t)] ri∗. (19)

Here r∗ = r/R is dimensionless radial coordinate, ais
(

s = 1, 3
)

are numerical coefficients, which are
determined by the physical and mechanical characteristics of the material of the ball and its radius R.

To obtain the equations for the integral characteristics Φs(t) of the required functions Φ(r, t),
equations (3), (6) and (10) are integrated over the radial variable r∗ according to formula (16). At
transformations we use representations (17)–(19). Then we obtain the following systems of equations
to determine the integral characteristics Hϕs(t), Ts(t) and urs(t) of functions Hϕ(r∗, t), T (r∗, t) and
ur(r∗, t):











dHϕ1(t)

dt
− d1Hϕ1(t)− d2Hϕ2(t) = d3Hϕ0(t),

dHϕ2(t)

dt
− d4Hϕ1(t)− d5Hϕ2(t) = d6Hϕ0(t),

(20)











dT1

dt
+ dT1 T1 + dT2 T2 = WQ

1 (t),

dT2

dt
+ dT3 T1 + dT4 T2 = WQ

2 (t).
(21)











dur1
dt

+ du1ur1 + du2ur2 = W u
1 (t),

dur2
dt

+ du3ur1 + du4ur2 = W u
2 (t).

(22)

Here: coefficients d1÷6, d
T
1÷4, d

u
1÷4 are given in terms of the radius R of the ball and the physical and

mechanical characteristics of its material,

WQ
s (t) =

κ

λ

∫ R

0
Q(r∗, t)r

s
∗dr∗,
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W u
s (t) =

∫ R

0

[

α
1 + ν

1− ν

∂T (r∗, t)

∂r
−

(1 + ν)(1− 2ν)

E(1 − ν)
Fr(r∗, t)

]

rs∗dr∗ (s = 1, 2).

Systems of equations (20)–(22) according to conditions (4), (9), (12) are solved under zero initial
conditions on integral characteristics Hϕs(t), Ts(t) and urs(t) of key functions.

Solutions of Cauchy problems (20)–(22) with respect to the integral characteristics of key functions
are found using the Laplace integral transform with respect to the time variable t. They have a form of
convolutions of functions that describe given boundary conditions for key functions and homogeneous
solutions of Cauchy problems.

The expressions of the azimuthal component Hϕ(r∗, t) of the vector H

Hϕ(r∗, t) =

3
∑

i=0

{

2
∑

k=1

aik

∫ t

0
Ak(pk)Hϕ0(τ)e

pk(t−τ)dτ + ai3Hϕ0(t)

}

ri∗, (23)

temperature

T (r∗, t) =

3
∑

j=0

2
∑

m=1

(

bjm

∫ t

0

[

Bm1(pm)WQ
1 (τ) +Bm2(pm)WQ

2 (τ)
]

epm(t−τ)dτ

)

rj∗ (24)

and the radial component ur(r∗, t) of the displacement vector

ur(r∗, t) =
3

∑

α=0

2
∑

n=1

(

cαn

∫ t

0
[Bn1(pn)W

u
1 (τ) +Bn2(pn)W

u
2 (τ)] e

pn(t−τ)dτ

)

rα∗ (25)

are obtained.
Here aik, Ak(pk), bjm, Bms(pm), cαn, Bns(pn) are expressions that depend on the radius of the

ball and on the roots pk, pm, pn
(

k,m, n = 1, 2
)

of the characteristic equations, which correspond to
the homogeneous solutions of Cauchy problems (20)–(22) for determining the integral characteristics
of the functions Hϕ, T and ur.

4. Finding a solution of the thermomechanical problem for a ball under the action of
amplitude-modulated radioimpulse

Amplitude-modulated radioimpulse (AMRI) is obtained using generators of high-frequency electro-
magnetic oscillations [15].

The electromagnetic action of the AMRI form is mathematically described by the expression of
function Hϕ0(t) that characterizes the change in time of the azimuthal component Hϕ(r, t) of the
vector H on the surface r = R of the ball, in the form [6,16]

Hϕ0(t) = kH0 (exp(−β1t)− exp(−β2t)) cosωt. (26)

Here H0 is the amplitude of sinusoidal carrier electromagnetic frequency oscillations ω; β1, β2 are
parameters characterizing the times of the rise and fall fronts of the impulse signal ϕ(t) = exp(−β1t)−
exp(−β2t) that modulate the carrier sinusoidal electromagnetic oscillations.

Substituting expression (26) into the relations (23), (5), (24), (25), (13), we obtain the expressions
of the azimuthal component Hϕ(r, t) of the vector H , the specific Joule heat densities Q and the radial
component Fr of the ponderomotor force vector F , temperature T and component σjj (j = r, ϕ, θ) of
the dynamic stress tensor σ̂ in the ball.

Mathematical Modeling and Computing, Vol. 9, No. 2, pp. 431–439 (2022)



436 Musii R. S., Melnyk N. B., Drohomyretska Kh. T., Duza-Zadorozhna M. P., Druzhbiak S. V.

5. Investigation of the thermomechanical behavior of a ball under the action of
amplitude-modulated radioimpulse

Calculations were performed for a non-ferromagnetic ball of radius R = 0.01m made of stainless
steel. The parameters of AMRI: duration ti = 100µs, frequency of electromagnetic oscillations ω =
6.28 · 105 rad/s (beyond the resonant frequencies ωrk, where k− is the resonant frequency number)
and ω = ωr1 (ωr1 = 1.255 · 106 rad/s is the first resonant EMF frequency for the ball). Note that the
resonant frequencies of the EMF are ωrk ≈ ωnk/2, where ωnk are the eigenfrequencies of mechanical
oscillations of a given ball [1, 6].

Figures 1–3 show the change in time of the values Q, Fr, T when the frequency of the carrier signal
is ω = 6.28 · 105 rad/s for the duration of the electromagnetic action ti = 100µs. At this duration,
there are 10 periods f = 2π/ω of electromagnetic oscillations of this frequency.

Curves 1, 2 in Figs. 1–3 correspond to the values of the radial coordinate r = R and 0.5R. It
is obtained that the radial component Fr of the ponderomotor force F in the ball has an oscillating
compressive nature and, like Joule heat Q, reaches its maximum value on the surface of the ball r = R
at time t ≈ 0.1ti and temperature – at time t ≈ 0.5ti. It is obtained that the nature of the distribution
of all these physical quantities is close to near-surface distribution.
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Fig. 1. Change in time of Joule heat emissions in a
solid ball for frequency ω = 6.28 · 105 rad/s at r = R

and r = 0.5R (lines 1, 2).

Fig. 2. Change in time of ponderomotor force in a
solid ball for frequency ω = 6.28 · 105 rad/s at r = R.
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Fig. 3. Change in time of temperature in a solid ball
for frequency ω = 6.28 · 105 rad/s at r = R and r =

0.5R (lines 1, 2).

Fig. 4. Change in time of azimuthal stresses in a solid
ball at r = R.

According to expresion (14) we present numerical studies of each component σQ
ϕϕ and σF

ϕϕ of az-

imuthal stresses separately. Figure 4 shows the change in time of the components σQ
ϕϕ and σF

ϕϕ of
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azimuthal stresses at frequencies ω = 6.28 ·105 rad/s on the surface of the ball r = R, where they reach
maximum values.

At a given frequency ω 6= ωr1, the components σQ
ϕϕ and σF

ϕϕ of azimuthal stresses are values of the

same order. Accordingly, the component σF
ϕϕ has a tensile oscillating nature and reaches maximum

values over the time t ≈ 0.1ti. The component σQ
ϕϕ has a compressive nature and reaches maximum

values over the time t ≈ 0.5ti.
Figures 5–8 show the change in time of the values Q, Fr, T and σQ

ϕϕ, σF
ϕϕ at the frequency of the

carrier electromagnetic oscillations, equal to the first resonant frequency of the AMRI ω = ωr1 =
1.255 · 106 rad/s.

1 2.

0.8

0.4

0.0

0 20 40 t, µs

Q/H2
0 , J·m2/A2

0

-500

-1000

00 20 40 t, µs

Fr · 10
4/H2

0 , N·m2/A2

Fig. 5. Change in time of Joule heat emissions in a
solid ball for frequency ω = ωr1 = 1.255 · 106 rad/s at

r = R.

Fig. 6. Change in time of ponderomotor force in a
solid ball for frequency ω = ωr1 = 1.255 · 106 rad/s at

r = R.
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Fig. 7. Change in time of temperature in a solid ball
for frequency ω = ωr1 = 1.255 · 106 rad/s at r = R

and r = 0.5R (lines 1, 2).

Fig. 8. Change in time of components σQ
ϕϕ and σF

ϕϕ

of azimuthal stresses in a solid ball for frequency ω =
ωr1 = 1.255 · 106 rad/s at r = R.

For frequency ω = ωr1 = 1.255 · 106 rad/s, the maximum values of the component σF
ϕϕ of azimuthal

stresses are approximately ten times greater than the maximum values of the component σQ
ϕϕ. Thus,

the stress state of the ball at ω = ωr1 is mainly determined by the stresses due to the action of
ponderomotor force F .

Note that the azimuthal stresses σF
ϕϕ at frequency ω = ωr1 are two orders of magnitude greater

than the azimuthal stresses σQ
ϕϕ at ω = 6.28 · 105 rad/s.

The components σQ
rr and σF

rr of radial stresses at both frequencies are about two orders of magnitude
smaller than the components σQ

ϕϕ and σF
ϕϕ of azimuthal stresses. These stresses, as well as the meridian

stresses σQ
θθ and σF

θθ, according to formula (13) give a determining contribution to the stress state of
the considered solid ball.
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6. Conclusions

At the frequency of the carrier electromagnetic oscillations of AMRI ω 6= ωr1, components σQ
ϕϕ and

σF
ϕϕ of azimuthal stresses are values of the same order. It is obtained that the component σF

ϕϕ, which
has a stretching oscillating character, is determining at times t < 0.2ti. Accordingly, the component
σQ
ϕϕ, which has a compressive nature, is determining at times t > 0.2ti and takes maximum values that

are approximately 1.5 times greater than the maximum stretching values of the component σF
ϕϕ.

At the AMRI carrier electromagnetic oscillation frequencies ω = ωr1, the maximum values of the
azimuthal stress component σF

ϕϕ are two orders of magnitude greater than the same values of the

component σQ
ϕϕ and make a decisive contribution to the stress state of the ball.

It is obtained that the maximum values of the component σQ
ϕϕ that are determining at the frequency

ω 6= ωr1 are two orders of magnitude smaller than the same values of the component σF
ϕϕ that is

determining at the frequency ω = ωr1.
The revealed regularities of the thermomechanical behavior of an electroconductive solid ball under

the action of AMRI can be a theoretical basis for predicting the optimal regimes of electromagnetic
treatment of electroconductive balls with the help of radioimpulses.
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Термомеханiчна поведiнка суцiльної електропровiдної кулi за дiї
амплiтудно модульованого радiоiмпульсу

Мусiй Р. С., Мельник Н. Б., Дрогомирецька Х. Т., Дужа-Задорожна М. П., Дружбяк С. В.

Нацiональний унiверситет “Львiвська полiтехнiка”,

вул. C. Бандери 12, Львiв, 79013, Україна

Запропоновано фiзико-математичну модель визначення термонапруженого стану
електропровiдної суцiльної кулi за дiї амплiтудно модульованого радiоiмпульсу.
Сформульовано центрально-симетричну задачу термомеханiки для розглядуваної
кулi. За визначальнi функцiї вибрано азимутальну компоненту вектора напружено-
стi магнiтного поля, температуру та радiальну компоненту вектора перемiщень. Для
побудови розв’язкiв сформульованих складових початково-крайових задач електро-
динамiки, теплопровiдностi i термопружностi використано полiномiальну апроксима-
цiю визначальних функцiй за радiальною змiнною. У результатi вихiднi початково-
крайовi задачi на визначальнi функцiї зведено до вiдповiдних задач Кошi на iн-
тегральнi за радiальною змiнною характеристики цих функцiй. Отримано загальнi
розв’язки задач Кошi за однорiдної нестацiонарної електромагнiтної дiї. На основi
цих розв’язкiв чисельно проаналiзовано змiну в часi тепла Джоуля, пондеромоторної
сили, температури i напружень у кулi за дiї амплiтудно модульованого радiоiмпульсу
залежно вiд його амплiтудно-частотних характеристик i тривалостi.

Ключовi слова: суцiльна електропровiдна куля, радiоiмпульс, термонапружений

стан.
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