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A physical and mathematical model for determining the thermostressed state of an elec-
troconductive solid ball under the action of an amplitude modulated radioimpulse is pro-
posed. The centrally symmetric problem of thermomechanics for the considered ball is
formulated. The azimuthal component of the magnetic field strength vector, tempera-
ture, and the radial component of the displacement vector were chosen as the determining
functions. To construct solutions of the formulated components of the initial-boundary
value problems of electrodynamics, heat conductivity, and thermoelasticity, a polynomial
approximation of the determining functions over the radial variable is used. As a result,
the initial-boundary value problems on the determining functions are reduced to the cor-
responding Cauchy problems on the integral characteristics of these functions over the
radial variable. General solutions of Cauchy problems under homogeneous nonstation-
ary electromagnetic action are obtained. Based on these solutions, the change in time of
Joule heat, ponderomotor force, temperature and stresses in the ball under the action of
amplitude-modulated radioimpulse depending on its amplitude-frequency characteristics
and duration is numerically analyzed.

Keywords: solid electroconductive ball, radioimpulse, thermal stress state.
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1. Introduction

Elements of many engineering structures in aviation and ship systems are solid balls made of electro-
conductive materials. In the process of functioning of such structures, they are affected by various
physical factors, in particular, electromagnetic radiation of the radio frequency range. To predict the
reliability of operation of structures with electroconductive ball elements, it is necessary to investigate
their thermomechanical behavior under the action of unstable electromagnetic fields (EMF), which
have the character of amplitude-modulated radioimpulse (AMRI).

Determining and study of the thermostressed state of electroconductive bodies of canonical shape
under the action of steady and quasi-steady EMFs are described in [1,2].

In [3], the optimization of regimes of high-temperature induction processing for nonlinear electro-
conductive bodies is proposed.

Mathematical modeling of nonlinear behavior of environmental material and three-dimensional
internal heat sources in relation to heat conductivity processes is described in [4].

Physical and mathematical model of thermomechanics of non-ferromagnetic electroconductive bod-
ies under the action of impulsed EMFs with amplitude modulation is given in [5]. A monograph [6]
is devoted to the study of thermomechanical behavior of non-ferromagnetic electroconductive bodies
with plane-parallel boundaries under the action of impulsed EMFs with amplitude modulation.

In [7-9] mathematical models for predicting the temperature of an electroconductive plate element
under the action of impulsed electromagnetic radiation of the radio frequency range and calculating
the temperature-force regime of operation of cylindrical and ball electroconductive sensors under the
action of AMRI and electromagnetic action in the regime of damped sinusoid was considered.
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The work [10] is devoted to the prediction of bearing capacity and properties of contact connection
of bimetallic hollow balls under the action of electromagnetic impulses.

In [11] the thermomechanical behavior of an electroconductive cylindrical implant under the action
of external unstable electromagnetic fields, in particular, radioimpulses, was studied. However, the
thermomechanical behavior of electroconductive ball structural elements under the action of impulsed
EMFs with amplitude modulation has not been sufficiently investigated.

The aim of this work is to construct a physical and mathematical model for determining the ther-
mostressed state of an electroconductive solid ball under homogeneous nonstationary electromagnetic
action and study its thermomechanical behavior under the action of AMRI depending on its amplitude-
frequency characteristics and duration.

2. Formulation of the centrally symmetric problem of thermomechanics for an electro-
conductive ball

Let us consider an electroconductive elastic ball of the radius r = R, related to a spherical coordinate
system (7,0, ), the center of which coincides with the center of the ball. The material of the ball
is homogeneous isotropic and non-ferromagnetic, and its physical characteristics are assumed to be
constant and equal to their average values in the considered ranges of temperature change. The
surface of the ball is insulated or is in conditions of convective heat exchange with the environment.

The ball is under the action of nonstationary EMF given on its surface r = R by the values of the
azimuthal component H,, of the magnetic field strength vector H = {0; H,(r,t);0}

Hy(R,t) = Heo(t). (1)

Here Hy,(t) is a known function that describes the change in time ¢ of the azimuthal compo-

nent of the vector H on the surface of the ball. In the center of the ball » = 0, functions H,,

and Fy = % (agf" + %) satisfy the conditions of central symmetry of the electromagnetic field

(H,(0,t) = 0, Ep(0,t) = 0). Here Ejy is the meridian component of the electric field strength vec-
tor E = {0;0; Ey(r,t)}. Hence we obtain the following boundary conditions for the function H,, in the
center of the ball

0H,(0,1)
or
At the first stage, we find the function H,(r,t) from the equation
0*H, 20H, 0H,
oz i or Mo

H,(0,1) =0, ~0. 2)

=0, (3)

at zero initial condition at the time ¢t =0
HSD(T7 O) = 0 (4)

and boundary conditions (1) on the surface of the ball and conditions (2) in its center. Here o is the
coefficient of electrical conductivity, p is the magnetic permeability of the ball material.

The specific Joule heat density Q(r,t) and the radial component F,.(r,t) of the ponderomotor force
vector F' = {F};0;0} in terms of the known function Hy(r,t) are written in the form

2
Q:l<%+ﬂ>7 FT:M<%+E>H¢. (5)

o\ Or r or r

At the second stage, from the equation of heat conductivity, in which the heat source is Joule heat
@, we find the temperature distribution 7" in a solid ball
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o*r 20T 10T Q
R e i (6)

Here, k, A are the coefficients of thermal and heat conductivity of the ball material.
The boundary condition on the surface of the ball » = R in the case of its heat insulation is

9T (R, 1)
o =0. (7)

The boundary conditions in the center of the ball r = 0 correspond to the conditions of the central
symmetry of the temperature field

aT(0, 1)

T(07 t) =0, or

—0. 8)

The initial condition for the temperature at the time ¢ = 0 will be
T(r,0) = 0. 9)

Note that equation (6) can be solved under other than (7) heat conditions on the surface of the
ball.

At the third stage, to determine non-zero radial o,,, azimuthal o,, and meridian py components
of the tensor of dynamic stresses &(r,t) in the ball, for the initial we choose a system of equations of
the centrally symmetric problem of thermoelasticity in displacements [12]. Then the radial component
ur (1, t) of the vector of displacements in the ball is determined from equation [13]

2 2 _
8ur+28ur zur_i(‘) ur _ 1+v0T  (1+v)d 2V)F7" (10)
o2 ror  r? 2oz “1-vor E(1-v)
under boundary conditions in the center of the ball and on its outer surface
Ou,(0,1) Ou,(R,t) vo2 14w
or =0 or * 1—V§uT(R7t) _al—yT(R’t)’ (11)
as well as under zero initial conditions
Ou,.(r,0)
r(r,0)=0, —————==0. 12
ur(r,0) =0 5 0 (12)

Here ¢ = (E(1—v))/(p(1+v)(1—21))~/2 is the velocity of the elastic wave propagation of the elastic
wave during isothermal deformation, « is the coefficient of linear heat expansion, v is Poisson ratio, E
is Young modulus, p is the density of the ball material.

According to the obtained component w,(r,t) of the displacement vector w, we determine the
components oj; (j =1, ¢, 0) of the stress tensor  according to the formulas [12,13]

Opp = = y)?l ) [(1 - l/)% + V%ur —o(l+ V)T] , (13)
E ou,
J“D“D:J%:(l—i—u)(l—Qy) [ or -|-——a(1—|—y)T}

In order to estimate the comparative contribution of Joule heat ) and ponderomotor force F' to
the distribution and magnitude of the components o;; (j = r, ¢, 6) of the dynamic stress tensor & when
performing numerical studies, we will present these components as the sum of two components [5]

F
0jj = 05 + ;- (14)

Q

Here 05 are components of the stress oj; caused by Joule heat, and aj

ponderomotor force.

; are components due to
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3. Methodology of construction of solutions of centrally symmetric initial-boundary
value problems under homogeneous nonstationary electromagnetic action

To construct solutions of the centrally symmetric initial-boundary value problems formulated above,
which describe the electromagnetic and temperature fields and the thermostressed state in a continuous
electroconductive ball, we will find for key functions ®(r,t) = {H,, T, u,} in the form of [14]

4
O(r,t) =Y af () (15)
=1

The coefficients of the approximation polynomials (15) are determined by the given boundary
values of the functions ®(r,t) on the surface of the ball » = R and integral characteristics ®4(t) of
these functions with respect to the radial variable,

1 R
B(t) = % /0 o(r, ) dr, s =1,2. (16)

As a result, we obtain the following representations:
— azimuthal component H(7,t) of the vector H

Hy(ri,t) = Hp(t) (63007 — 147072 + 840r)) + Hyo(t) (—840r2 + 201672 — 117673

+ Hyo(t) (1507 — 4273 +28r)), (17)

— temperature T'(r,,t) under conditions of heat insulation of the ball surface
T(r.,t) = Ti(t) (16 — 60r7 4+ 40r2) + Ta(t) (—21 + 9077 — 60r?) , (18)

— radial component wu,(ry,t) of the displacement vector
3
e (ri,t) = Y [aur (t) + aupa(t) + aisT(R, 1)) rl. (19)
i=0

Here r, = /R is dimensionless radial coordinate, a;s (s = m) are numerical coefficients, which are
determined by the physical and mechanical characteristics of the material of the ball and its radius R.
To obtain the equations for the integral characteristics ®(¢) of the required functions ®(r,t),
equations (3), (6) and (10) are integrated over the radial variable r, according to formula (16). At
transformations we use representations (17)-(19). Then we obtain the following systems of equations
to determine the integral characteristics Hys(t), Ts(t) and u,4(t) of functions Hy(r«,t), T(ry,t) and

Up (7, 1):
dH (1)

dt
dH (1)

dt

_ lespl (t) — dgHspQ(t) = d3H¢0(t), (20)
— dyHyi(t) — dsHpo(t) = deHypo(t),

T
TN+ G = WE(t),

drT:
d—: +dITy +dTTy = WE(t).

durl

dt
durg

dt

Here: coefficients d; ¢, d1.,, di., are given in terms of the radius R of the ball and the physical and
mechanical characteristics of its material,

K R
W =5 [T Qo

(21)

+ diupy + dyury = W),
(22)

+ dBupy + dYupg = W(t).
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R v Tu, v)(1—2v
WS“(t):/O [O‘iyaﬂm H_a ;(i(i V)Q V()| ridr, (s =1,2).

Systems of equations (20)—(22) according to conditions (4), (9), (12) are solved under zero initial
conditions on integral characteristics Hy4(t), Ts(t) and wu,4(t) of key functions.

Solutions of Cauchy problems (20)—(22) with respect to the integral characteristics of key functions
are found using the Laplace integral transform with respect to the time variable ¢. They have a form of
convolutions of functions that describe given boundary conditions for key functions and homogeneous
solutions of Cauchy problems.

The expressions of the azimuthal component H,(r,t) of the vector H

3
H@(T*vt) = Z {

2 t
> am / Ak(pr)Hyo(r)eP T dr 4 aiBHsDO(t)} e (23)
i=0 0

k=1

temperature
3 2 '
1600 = 3 Y (b [ [Baslond W2 + BoalouWEE)] s ) ot (2

and the radial component u,(r,,t) of the displacement vector

3 2

wnlret) =33 ( /O [But (pn) Wi (7) + Bz (pa) W3 (7)] epn“—”df) re (25)

a=0n=1

are obtained.

Here aj, Ak(Pk), bjm: Bms(Pm), Can, Bns(pn) are expressions that depend on the radius of the
ball and on the roots pg, pm, Pn (k‘, m,n = 1,—2) of the characteristic equations, which correspond to
the homogeneous solutions of Cauchy problems (20)—(22) for determining the integral characteristics
of the functions H,, T" and u,.

4. Finding a solution of the thermomechanical problem for a ball under the action of
amplitude-modulated radioimpulse

Amplitude-modulated radioimpulse (AMRI) is obtained using generators of high-frequency electro-
magnetic oscillations [15].

The electromagnetic action of the AMRI form is mathematically described by the expression of
function Ho(t) that characterizes the change in time of the azimuthal component H,(r,t) of the
vector H on the surface r = R of the ball, in the form |6, 16]

H,o(t) = kHo (exp(—pit) — exp(—/pat)) cos wt. (26)

Here Hy is the amplitude of sinusoidal carrier electromagnetic frequency oscillations w; B1, Py are
parameters characterizing the times of the rise and fall fronts of the impulse signal ¢(t) = exp(—[51t) —
exp(—/fat) that modulate the carrier sinusoidal electromagnetic oscillations.

Substituting expression (26) into the relations (23), (5), (24), (25), (13), we obtain the expressions
of the azimuthal component H(r,t) of the vector H, the specific Joule heat densities @ and the radial
component F). of the ponderomotor force vector F', temperature T" and component o;; (j = r,¢,0) of
the dynamic stress tensor & in the ball.
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5. Investigation of the thermomechanical behavior of a ball under the action of
amplitude-modulated radioimpulse

Calculations were performed for a non-ferromagnetic ball of radius R = 0.01m made of stainless
steel. The parameters of AMRI: duration ¢; = 100 us, frequency of electromagnetic oscillations w =
6.28 - 10°rad /s (beyond the resonant frequencies w,;, where k— is the resonant frequency number)
and w = wy1 (wp1 = 1.255 - 108 rad /s is the first resonant EMF frequency for the ball). Note that the
resonant frequencies of the EMF are w,; = wy,i/2, where w, are the eigenfrequencies of mechanical
oscillations of a given ball [1,6].

Figures 1-3 show the change in time of the values @Q, F;., T when the frequency of the carrier signal
is w = 6.28 - 10°rad/s for the duration of the electromagnetic action t; = 100 us. At this duration,
there are 10 periods f = 27/w of electromagnetic oscillations of this frequency.

Curves 1, 2 in Figs. 1-3 correspond to the values of the radial coordinate r = R and 0.5R. It
is obtained that the radial component F) of the ponderomotor force F' in the ball has an oscillating
compressive nature and, like Joule heat @), reaches its maximum value on the surface of the ball r = R
at time t ~ 0.1t; and temperature — at time ¢ =~ 0.5¢;. It is obtained that the nature of the distribution
of all these physical quantities is close to near-surface distribution.

Q/H2, J-m?/A? F,-10*/H2, N-m?/A2

1 0t ] ﬂf\ NonAa
0.8 N | \/\/\,

0.6

-500
04 f\ S Ot SO U
/\ A A ~1000 - B -

-

0.0
0

t, us 0 20 40 t, us

Fig.1. Change in time of Joule heat emissions in a Fig. 2. Change in time of ponderomotor force in a
solid ball for frequency w = 6.28 - 10°rad/s at r = R solid ball for frequency w = 6.28 - 10° rad/s at r = R.
and r = 0.5R (lines 1, 2).

T-103/H2, K-m?/A? 0pp - 107/HZ, Pa-m? /A2

20

10

=500 +

-1000

0

0 20 40 t, us 0 20 40 t, us

Fig. 3. Change in time of temperature in a solid ball ~ Fig.4. Change in time of azimuthal stresses in a solid
for frequency w = 6.28 - 10°rad/s at r = R and r = ball at r = R.
0.5R (lines 1, 2).

According to expresion (14) we present numerical studies of each component afﬁp and 0530 of az-

imuthal stresses separately. Figure4 shows the change in time of the components J&D and Jf;(p of
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azimuthal stresses at frequencies w = 6.28-10° rad/s on the surface of the ball r = R, where they reach
maximum values.

At a given frequency w # w,1, the components Ug@ and Ugeo of azimuthal stresses are values of the
same order. Accordingly, the component Ugeo has a tensile oscillating nature and reaches maximum
values over the time ¢ ~ 0.1¢;. The component afﬁp has a compressive nature and reaches maximum
values over the time t =~ 0.5¢;.

Figures 5-8 show the change in time of the values @, F,., T and afﬁp, Ugeo at the frequency of the
carrier electromagnetic oscillations, equal to the first resonant frequency of the AMRI w = w,; =

1.255 - 108 rad /s.
Q/Hg, Jm?/A® F.-10*/HZ, N-m2 /A2

N n A
Vv

12 n ﬂ n ” 0
0 500 U

RN ”

0 20 40 t, us 0 20 40 t, us
Fig.5. Change in time of Joule heat emissions in a Fig.6. Change in time of ponderomotor force in a
solid ball for frequency w = w,; = 1.255-10%rad/s at solid ball for frequency w = wy,; = 1.255-10%rad/s at
r=R. r=R.
T-103/Hg, K-m?/A? 0pp - 10*/HZ, Pa-m? /A2

04,\

0 L P
B / . 4/\{\[\

-100 {
I

0
0 20 40 t, us 0 20 40 t, us
F

Fig. 7. Change in time of temperature in a solid ball ~ Fig. 8. Change in time of components ag@ and o,
for frequency w = w,1 = 1.255-10%rad/s at r = R of azimuthal stresses in a solid ball for frequency w =
and r = 0.5R (lines 1, 2). wr1 = 1.255-10%rad/s at r = R.

For frequency w = wy1 = 1.255-10° rad /s, the maximum values of the component Ugeo of azimuthal

stresses are approximately ten times greater than the maximum values of the component afﬁp. Thus,
the stress state of the ball at w = w1 is mainly determined by the stresses due to the action of
ponderomotor force F.

Note that the azimuthal stresses Jgp at frequency w = wyq are two orders of magnitude greater
than the azimuthal stresses 0830 at w = 6.28 - 10° rad /s.
Q

The components 0,5 and aﬁ of radial stresses at both frequencies are about two orders of magnitude
smaller than the components Ugw and 0'5;0 of azimuthal stresses. These stresses, as well as the meridian

stresses 0’529 and 059, according to formula (13) give a determining contribution to the stress state of
the considered solid ball.
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6. Conclusions

At the frequency of the carrier electromagnetic oscillations of AMRI w # w1, components 0830 and
0530 of azimuthal stresses are values of the same order. It is obtained that the component Jf;W which
has a stretching oscillating character, is determining at times ¢t < 0.2¢;. Accordingly, the component
ag@, which has a compressive nature, is determining at times ¢ > 0.2¢; and takes maximum values that
are approximately 1.5 times greater than the maximum stretching values of the component aggo.

At the AMRI carrier electromagnetic oscillation frequencies w = w;1, the maximum values of the
azimuthal stress component af;(p are two orders of magnitude greater than the same values of the
component Ugw and make a decisive contribution to the stress state of the ball.

It is obtained that the maximum values of the component afﬁp that are determining at the frequency
w # wy1 are two orders of magnitude smaller than the same values of the component Ugw that is
determining at the frequency w = wy1.

The revealed regularities of the thermomechanical behavior of an electroconductive solid ball under
the action of AMRI can be a theoretical basis for predicting the optimal regimes of electromagnetic

treatment of electroconductive balls with the help of radioimpulses.
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3anpononoBano (hizMKO-MaTEeMATHIHY MOJIEh BU3HAYEHHS] TEPMOHAIPYZXKEHOI'O CTaHy
€JIEKTPOIIPOBIJIHOT CYIIJIBHOI KyJIi 3a Jiil aMILITYJHO MOJYJIbOBAHOTO Pa/Ii0iMITY/IbCY.
ChopMysIbOBAHO MEHTPAJIHHO-CUMETPUIHY 3aJady TEePMOMEXAHIKU JJIs PO3TJISILY BAHOT
KyJi. 3a Bu3HAYAbHI (DYHKII BUOPAHO a3MMyTaJbHY KOMIIOHEHTY BEKTODA HAIPYKEHO-
CTi MArHITHOTO MOJISA, TEMIEPATYPY Ta Pa/iiajJbHy KOMIOHEHTY BEKTOPA IepeMimeHb. s
o0y10BU PO3B’si3KiB CHOPMYJIBOBAHUX CKJIAJOBUX IMOYATKOBO-KPAWOBUX 38121 €JIEKTPO-
JUHAMIKHU, TEIJIONPOBIIHOCTI i TEPMOIPYKHOCTI BUKOPUCTAHO TOJIIHOMIaJJIbHY aIIpOKCUMAa-
110 BU3HAYAJLHUX (DYHKIH 32 paJiabHOI0 3MIHHOO. ¥ pe3ysbTaTi BUXi/IHI MOYaTKOBO-
KpaiioBi 3ajadi Ha BU3HAYAJbHI (PYHKII 3BemeHo a0 Biamosimumx 3amad Komri na io-
TerpaJjbHi 3a paIiaJibHOI0 3MIHHOIO XapaKTepucTuku nux (yHkiiit. OTpuMmaHo 3arajibHi
po3B’s3ku 3aja4 Ko 3a omHOPigHOT HecTamioHapHOI eekTpoMaraiTHol ail. Ha ocHosi
X PO3B’I3KiB INCEIHHO TPOAHAIIZ0BAHO 3MiHy B 1aci Temsia JI2Koyiis, MoHIepOMOTOPHOT
CHJIW, TEMIIEPATYPU 1 HANIPY2KEHDb Y KYJIi 3a Jii1 aMILIITY/IHO MOJIYJIbOBAHOT'O PATI0IMITYJIbCY
3aJIE2KHO BiJ MO0 aMILITYIHO-4YACTOTHUX XapPaKTEPUCTUK 1 TPUBAJIOCTI.

Knrouosi cnoBa: cyyisvha eaexmponposiona Kyas, padiotmnyive, mepmonanpyicenul
CMaH.
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