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Abstract. Using the apparatus of the special periodic Ateb-functions in combination with the 
asymptotic methods of nonlinear mechanics, the nonlinear mathematical models of motion of 
working environment of the oscillation system, which dependences take into account resilient and 
viscid making tensions from descriptions of the deformation state of environment, her physical and 
mechanical properties and features of co-operation of environment with the oscillation system, are 
worked out. The nonlinear model for describing the dynamics of the working environment of 
oscillating systems is more flexible, because the nonlinearity index, which depends on the type of 
working load, significantly affects the results of the oscillating loading process. It allows us to take 
into account the type of load, and, accordingly, increase the level of adequacy of the constructed 
analytical model of the oscillatory process that needs to be investigated. Taking into account this 
model, the study of various processes in oscillating systems can be carried out, in particular in 
different modes of vibration processing. 

Keywords: oscillation, asymptotic methods, environment, mathematical model, nonlinear 
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Introduction and Problem Statement 

Processing of raw materials and semi-finished products is common in various production cycles. 
Intermediate stages of processing of bulk raw materials include separation, mixing, transportation, dosing, 
compaction, etc. The use of vibrating equipment in these processes and the direct impact of vibration on 
the processed raw materials, contribute to improving the quality of raw materials. In particular, due to 
constant shaking, the particles of raw materials are loosened and a high degree of their separation by 
physical and mechanical properties is achieved. The efficiency of the passage of bulk raw material's 
particles through the holes of the sieve is influenced by geometric dimensions, mass, structure of particles, 
their amplitude and frequency of oscillation, the interaction of particles with each other. Accordingly, the 
productivity of the separation process is affected not only by the design parameters of the vibrating 
separator, but also listed above characteristics of the loaded raw materials. 

To date, a large number of studies and simulations of the movement of the bulk medium on the sieve 
of the vibrating separator. It was considered on the basis of many hypotheses, in particular, as the motion 
of a single particle, the motion of a set of particles, the motion of a solid body, the layering of layers of 
particles, etc. However, given that bulk raw materials perform complex spatial motion on the vibrating 
separator sieve, none of these hypotheses describes the process of the vibration separation in full. 
Therefore, the implementation of further research is still relevant. 
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Review of Modern Information Sources on the Subject of the Paper 

To date, a number of models of the working environment of vibration systems have been developed, 
which to some extent reflect the physics of the studied vibration process. Work on the calculation of the 
dynamics of vibration systems can be divided into two main types: 1) work in which the environment is 
taken into account by the attached mass; 2) work in which the interaction of the environment and the 
vibration system is determined by other considerations. In these works there are those in which the 
problems of the dynamics of the working environment are considered in one-dimensional, flat and spatial 
formulation. In conducting many theoretical studies of the motion of the working environment of the 
vibration system, their authors tried to simplify, linearize the mathematical apparatus in solving these 
dynamic problems. These representations, on the one hand, made it possible to obtain simple relationships 
between some parameters of the medium, and on the other hand, did not reflect such properties of the 
medium as elasticity, viscosity, density change, and its motion. There are many ways to approach the basic 
problems of the dynamics of the bulk environment of vibrating systems by modelling it, but existing 
models are quite limited to use their assumptions [1].   

Main Material Presentation 

Construction of a nonlinear mathematical model of the working environment of vibration systems 
that implement vibration technologies of separation, grinding, mixing, compaction, transportation, surface 
treatment of products, vibration control technologies on systems and mechanisms for further study to 
improve the efficiency of vibration machines, devices and mechanisms and relevant technological 
processes. In recent years, the hypothesis of material's motion as a continuous medium, the material of 
which satisfies Voigt's linear law, has been used to study the motion of the working environment of 
vibration systems [1, 2]. This choice of model is primarily due to the fact that the dynamic processes in the 
medium are described by linear differential equations with partial derivatives, the study method of which is 
well developed. The latter in many cases prompted, in research, to linearize the corresponding nonlinear 
elastic characteristics of linear or completely neglect them. However, such “linearization” in many cases 
does not always reflect the real picture of the processes of a dynamic system. Representing the mixture of 
parts to be machined with the workpieces as a homogeneous continuous medium will be fair with 
sufficient accuracy for the small size of the first. In addition, assuming that the parts to be machined and 
the workpieces made of the same material (for example, when vibrating or deburring metal parts to be 
machined interact with steel balls), this homogeneous mixture can be given such properties of a solid 
material such as elasticity and viscosity, using Voigt's linear law. Stresses and strains that occur in it in the 
case of uniaxial stress are related: 







+⋅=

dt

d
kE

ζζσ 0 , (1) 

where σ – normal voltage in the Vocht model; ζ – relative deformation of the model along the axis ξ ; E – 

modulus of elasticity of the model material; 0k  – constant, which characterizes the viscosity properties of 

the model (the coefficient of viscosity of the material). 
Using Voigt's generalized law, which can be presented in nonlinear form by introducing a power 

exponent of nonlinearity (it will depend on the physical and mechanical properties of the environment) in 
the corresponding terms, the mathematical apparatus of nonlinear differential equations with partial 
derivatives and the method of separation of Fourier variables, a model of motion of the working 
environment of the vibration system is built. The use of Voigt's law in nonlinear formulation made it 
possible to build on its basis nonlinear equations, and consequently their solutions of the medium motion, 
which are most adequate to reflect the physics of its motion during the vibration system compared to linear 
equations on the one hand and simple in its form – on the other. 

Hypotheses for building a model of the working environment of the vibration system: 
1. The material of the medium is continuous and homogeneous, presented as a layer of flat elastic-

plastic beams, the thickness of which is much less than the length and which are in contact with the 
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working body of the vibrating system: a) as hinged beams, b) in the form of rigid contact, c) in the form of 
elastic contact. Such types of contact make it possible to take into account in the mathematical model 
various forms of interaction of the environment with the working body of the vibrating system.  

2. The medium moves in layers and is in complex motion (in the plane of motion of the container): 
the portable motion of the medium layer is the movement together with the container of the vibrating 
system, the relative motion of the medium layer is oscillations relative to the horizontal axis of the layerξ . 

3. The material of the medium satisfies Voigt's nonlinear law. Two cases were considered:  
a) nonlinearity of the viscous stress component of Voigt's law (2), b) nonlinearity of the elastic stress component 
of Voigt's law (3), by introducing the power index of nonlinearity ν  in the corresponding terms: 

1

0

+
 = +  
 

d
E k

dt

νζσ ζ , (2) 

1
0( ) += + d

E k
dt

ν ζσ ζ ,  (3) 

where σ  – normal stress in the medium layer; 
∂=
∂

uζ
ξ

 – deformation of the medium layer relative to the 

longitudinal axis of the layerξ ; ( , )=u u tξ  – moving along the axis ξ  of arbitrary cross section of the 

model of the environment for some time t ; E , 0k , ν – constants, characterizing the viscous and elastic 
properties of the medium. 

4. The force of internal friction R  in the layer of the medium, and also between its individual layers 
is determined by Bolotin's law [3]:  

( )2
0= +tR u B B u , (4) 

where 0,B B  – constants, which are determined by the type  of the environment; 
∂=
∂t

u
u

t
 

Then the equation of longitudinal nonlinear oscillations – the equation of relative motion of the 
middle layer's cross section of the vibration system will look like [1, 3]: 

a) for the stress in the layer of the form (2) 

( ) ( )12 2( )
+

− − = + +tt t tu u u f t u u
ν

ξξ ξξα β ϑ δ ; (5) 

b) for the stress in the layer of the form (3) – 

( ) ( )12 2( )
+

− − = + +tt t tu u u f t u u
ν

ξξ ξξα β ϑ δ , (6) 

where 
ρ

α E=2 ; 
ρ

β 0k
= ; 

F

B

⋅
=

ρ
ϑ 0 ; 

F

B

⋅
=

ρ
δ ; F – the cross-sectional area of the layer of the model 

environment; ρ  – equivalent density of the environment model; )(tf – inertial load, which according to 

[4] is accepted harmonic type with amplitude 1b , (fluctuation amplitude of vibration system) 
30

nπμ = , 

where n  – the number of revolutions per minute of the motor drive vibration system), ie tbtf μsin)( 1= . 
When considering equations (5) and (6), it is assumed that the forces of viscous friction are small 

compared to the nonlinear-elastic (reducing) force in the same layer, ie 2,, αδϑβ << . 

Separate studies of the dynamics of the working environment based on equations (5) and (6) have 
been conducted. Equation (5) also investigates longitudinal nonlinear oscillations of the medium layer 
during its modeling by a homogeneous elastic-plastic beam, the length of which far exceeds the thickness 
of the hinged and elastic fixing of the ends (corresponding contact of the medium with the container). 

The influence of parameters characterizing nonlinear elastic properties of the medium on the 
dynamic characteristics of the medium layer is studied in order to bring the model closer to the reflection 
of real vibrational processes occurring in the medium and to compare the corresponding characteristics of 
the medium (amplitude-phase characteristics) in quasilinear and nonlinear formulations of this problem. 
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Development of the model of a medium layer motion with a nonlinear elastic stress component. 
To build models in this case, it was used a mathematical apparatus of special Ateb-functions, which 

includes a certain variable, which to describe certain physical processes can be interpreted as an indicator 
of nonlinearity (it depends on the physical and mechanical properties of the working environment). Using 
Ateb functions, real physical vibrational processes can be described nonlinearly mathematically and 
therefore most adequately. 

As an example, consider the model of the vibrating system environment in its contact with the 
working body of the vibrating system in the form of rigidly fixed beams. Using assumptions 3 and 4 of the 
proposed hypothesis of the motion of the medium, the equation with a nonlinear elastic stress component 
(6) is transformed into the following: 

( ) ),,...,(12 tuuuGuu tttt μεα ξξ
ν

ξξ =− + , (7) 

where 2
1( , ,... , ) sin = − − + t t t t tG u u u t b t u u u uξξ ξξμ μ ϑ δ β  

Differential equation (7) is a mathematical model  of the medium layer motion in the working 
container. At rigid contact of the environment and the container the boundary conditions are fair: 

0),(),(
0

==
== l

tutu ξξ ξξ   

The solution of equation (7) allows us to establish the law of motion of the medium layer – ),( tu ξ  
Solving method 
It is known that in real mechanical systems with many degrees of freedom, as well as in systems with 

distributed parameters, the presence of friction forces (both external and internal) leads to rapid damping of 
high-frequency oscillations and the establishment of a dynamic process with a single frequency. Therefore, in 
these systems it is advisable to consider the so-called single-frequency modes of oscillations with a frequency 
equal to the first (main frequency). The latter greatly facilitates the method of studying the perturbed equation 
(7). Let's build single-frequency solutions for it. It is easy to check that the undisturbed equation (it describes 
from a physical point of view the oscillations of the medium – in the absence of external forces on the vibration 
system, mathematically – the right part of equation (7) is zero), which corresponds to (7), ie equation 

( ) 12 0
+

− =ttu u
ν

ξξα , 
(8) 

allows the use of the Fourier variable separation method when finding its solution.  
Representing according to the specified method function ( , )u tξ  as ( , ) ( ) ( )= Ξu t T tξ ξ  for finding 

unknown functions ( )Ξ ξ  and ( )T t nonlinear differential equations will be obtained: 
2

2

2
2 1

2

( ) 0,

( 1) ( ) 0,+

 Ξ Ξ + Ξ = 
 

+ + =

d d

d d

d T
T t

dt

ν

ν

λ ξ
ξ ξ

α ν λ

 
(9) 

where λ  – невідомий параметр, який буде визначений нижче. 
Based on (8), the function )(ξΞ in (9) must meet the boundary conditions: 

(0) ( ) 0Ξ = Ξ =l  
(10) 

Linearly independent solutions of a differential equation for a function ( )Ξ ξ are determined using 
special periodic Ateb-functions [5] in the form of: 

1

2

0

0 1

2

0

1 2
1, ,

1 2

( )

1 2
1, ,

1 2

+

+

  
 +  
   + Ξ    Ξ = Ξ 

   +     + Ξ    

sa

ca

ν

ν

νλ ν ξ
ν

ξ
νλ ν ξ

ν

, 
(11) 

where 0Ξ  is integration constant. 
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In (7) and below the parameter 1+ν  satisfies the condition 
2 1

1
2 1

++ =
+

n

m
ν , where , 0,1,2,.....,=m n  

that is 1> −ν  (at 0=ν nonlinear model of oscillations of the medium layer becomes linear). The latter 
does not significantly narrow the set of parameter ν  values, because, it can always be replaced with 
sufficient accuracy by the specified rational dependence. 

Given (11) and boundary conditions (10), we'll find λ  and the solution of the boundary value 
problem for the function ( )Ξ ξ  in the form: 

2

02 1

2

+Ξ  =  +  
П

l

νν

ξλ
ν

, 
(12) 

0

1 1
( ) 1, ,

1
 Ξ = Ξ  + 

sa П
lξξ ξ

ν
, 

(13) 

where ξП2  is a period of the used special Ateb functions, ie 

1 1
2 2

2 2
1 1
2 2

+   
   +   =

+ + + 

Г Г
П

Г
ξ

ν
ν

ν
ν

, 

1
2

1 1
2 2

+ 
 + =

+ + + 

Г
П

Г
ξ

νπ
ν
ν
ν

, 

( )...Г  is the gamma function of the corresponding argument.  

Similarly, the solution of the equation for the function )t(T  taking into account (12), takes the form: 

*
0( ) ( 1,1, ( ) )= +T t T ca a tν ω , 

(14) 

where 
2

*2 2( )
+

 
=  

 

П
a a

l

ν
ξνω α , 0T  – constant, 0 0= Ξa T . Thus, from (12) and (13) we obtain the natural 

oscillations of the model layer in the case  0G = , (single-frequency solution of the boundary value 
problem for the undisturbed equation (8)), which can be written as: 

1
( , ) 1, , ( 1,1, )

1
 = ⋅ + + 

u t a sa П ca
lξ
ξξ ν ψ

ν
, 

(15) 

where *( )= +a tψ ω θ , and θ  is constant.  
We will also look for the solution of the perturbed equation (7) in the form (15), only for this case 

according to the averaging method [6] a  and θ  will already be  functions of parameter t , that is )t(aa =  
and )t(θθ = . Given the latter, to determine )t(a  and )t(θ  it will be obtained [7], for the non resonant case 

( )
 ≠ 
 

ТПaω μ
π

 system of differential equations of the environment model layer's  motion: 

)1*
0

(1, 1, )

( , , , ) ,1
1, ,( )

1

+ ×
=  × ×  + 
&
l

sa

Пa F a dx
saa p

l
ξ

ν ψ
ε ξ ψ γ

ξω
ν

, 

*
10

( 1,1, )
( 2)

1
1, , ( , , , )2 ( )

1

+ × 
+  = ×   ×   +  

&
l

ca

П dx
sa F aa a p

l
ξ

ν ψ
ε νθ

ξ ξ ψ γω
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(16) 

where  

2 2 2
0 0

0 0

1 1
1 2 2

( ) 1, ,
3 11

2
2 2

+ +   + = Ξ Ξ = =  ++    + + 

 
l l lГ

П
P d sa d

l
Г

ξ

ν
νξ ξ ξ ξ
νν
ν

, 

11 ( 1,1, ) 1, ,
1

( , , , ) ( , ,... )  
= ⋅ +   + 

= П
t u a ca sa

l

F a F u u ξν ψ ξ
ν

ξ ψ γ γ , = tγ μ  
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Given that the right-hand sides of differential equation (16) are periodic functions of the parameters 
ψ  and γ  and the amplitude and phase of the oscillations θ  for the period varies slightly, they can be 

written for the nonresonance case in the form: 

(
2 2

1*
0 0 0

1
(1, 1, ) 1, , ( , , , )

4 ( ) 1

 
= + ×   +  

  &
TПl

Т

П
a sa sa F a d d dx

П P a l

π
ξε ν ψ ξ ξ ψ γ γ ψ

ω π ν
, 

(
2 2

1*
0 0 0

( 2) 1
( 1,1, ) 1, , ( , , , )

8 ( ) 1

 += + ⋅   +  
  &

TПl

Т

П
ca sa F a d d dx

П Pa a l

π
ξε νθ ν ψ ξ ξ ψ γ γ ψ

ω π ν
 

(17) 

Taking into account the accepted hypotheses of the motion of the medium, the system of differential 
equations (17) to determine its AFX (amplitude-phase characteristic) takes the form: 

2 2
1

2 2

1 1 3 1 1 1
2 8 1 4

2 2 2 2 2 2 2
1 1 1 3 1 3 1

( 2) ( 2)
2 2 2 2 2 2 2

+        + + +        + + + +        = − −+       + + + + +       + + + +       

&

Г a Г Г aplГ
a

l Г Г lГ Г

ν νε π ϑ π
ν ν ν ν

νπ ν ν
ν ν ν ν

, 

3
1

3 1
3

2 2
,

3 3 5 1
8

2 2 2 2

+   
    + +    − × +    + +    + +    

a Г Г
l

П
Г Г ξ

νδ π
ν ν

ν
ν ν

 0=&θ  

From the obtained relations it follows that in the first approximation for the amplitude of oscillations 
there are two stationary fixed values, which are respectively equal: 

1 0=a , 

2 2
1

2 2

2

1

1 1
8 1 4

2 2 2
3 1 3 1

( 2) ( 2)
2 2 2 2

3 1
3

2 2
3 3 5 1

8
2 2 2 2

      +       + +     − 
    + + + +    + +    =

 +   
    + +    ⋅

+    + +    + +    

Г Г plГ

lГ Г

a

Г Г
l

П
Г Г ξ

νπ ϑ π
ν ν

ν ν
ν ν

νδ π
ν ν

ν
ν ν

. 

The first stationary value corresponds to the relative calm of the environment, the second - a steady 
dynamic process, which is stable at 2( ) 0′ <A a and unstable in the opposite case. 

Conclusions 

Based on the Voigt's law the elastic-viscous model of the working environment of the vibrating 
system, which is presented as a continuous and homogeneous layer of flat elastic-plastic beams, the 
thickness of which is much less than their width. Solutions of the obtained equations of motion of the 
working medium layer for the stationary (steady) mode of its motion are constructed. In order to describe 
the physical and mechanical properties of different types of bulk media in the model, a power law (or close 
to it) of the relationship between the deformation of the medium layer and the stress in it is proposed. 
Accordingly, the nonlinearity index is introduced: a) into the elastic stress component in Voigt's law,  
b) into the viscous stress component in Voigt's law. Nonlinear equations for describing the oscillations of 
an arbitrary layer of the vibrating system medium are constructed. Using the asymptotic methods of 
nonlinear mechanics and special Ateb functions, the solutions of these equations are obtained. 

The nonlinear model for describing the dynamics of the working environment of vibrating systems 
with boundary conditions of rigid contact of the environment with the vibrating system is more flexible, as 
the nonlinearity of the model, which depends on the type of working environment, significantly affects the 
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oscillating process. increase the level of adequacy of the analytical model to the physics of the studied 
vibration process. 
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