
ADVANCES IN CYBER-PHYSICAL SYSTEMS
Vol. 7, No. 1, 2022

SOFTWARE SYSTEM FOR MONITORING SITUATION
IN THE SETTLEMENT

Serhii Kundys1, Bohdan Havano1, Mykola Morozov2
1Lviv Polytechnic National University, 12, Bandera Str., Lviv, 79013, Ukraine.

2Technical University of Munich, Boltzmannstr. 3, Garching b. Munich, 85748, Germany
Authors’ e-mail: serhii.kundys.ki.2018@lpnu.ua; bohdan.i.havano@lpnu.ua;

mcmikecreations@gmail.com
https://doi.org/10.23939/acps2022.__.___

Submitted on 23.05.2022

© Kundys S., Havano B., Morozov M., 2022

Abstract: The goal of the work is to develop the software
system of monitoring of a situation in the settlement. It consists
of the user interface which is presented as a mobile application
and the server. This paper describes the process of developing a
client-server software system in stages using the latest
technologies which will be relevant and easy to maintain in the
future. The technologies used in the development process, the
systems and modules which were integrated into the project,
the main approaches to software development, as well as an
explanation of why this particular stack of technologies was
preferred for the implementation of this software system have
been described. To make sure that developed mobile
application meets common optimization requirements it has
been tested for resources usage.

Index Terms: client-server architecture, mobile
development, software system, database, JavaScript, Node
JS, React Native, Firebase.

INTRODUCTION
Today, as it has been never before, our society

must take care of the organization of its security, the
security of its locality, because the health and even the
lives of its inhabitants depend on it. It is the most
important component of the life of each individual,
because without it everything else is impossible.

The urgency of the topic of security of the
settlement is to take certain steps, some progress in
ensuring safe living conditions in a certain area, within a
certain settlement. To inform and protect anyone who is
at risk of becoming a participant or victim of an
emergency in their locality when any threat to human
health or life is identified. And to improve this process,
to allow ordinary residents of a settlement to participate
directly in the process of protecting security and
improving the well-being of their region, it was planned
to create a system for monitoring the situation in the
settlement. This is the main goal, the primary problem
which is solved in the software system of this work.

A software system [1] is a group of specific
software integrated tools and components that meet the
needs of a specific group of users of a given software
system, which are in common using database. Today's
software systems due to their flexibility in
implementation are able to meet any needs of users.

Mobile application [2] is a software that runs on
platforms that use mobile operating systems. At the
beginning of its existence, mobile applications had a
narrow range of applications, as they were intended for
everyday use. Examples of such applications are alarm
clock, calculator, stopwatch, timer, calendar and others.
Typically, such applications do not even require access
to the World Wide Web [3]. Later, more sophisticated
applications appeared that allowed the user to check e-
mail, search for information on the Internet, use the
browser, listen to music, etc. A major breakthrough in
this area were Google applications such as Google
Chrome, Gmail, Google Calendar, Google Drive, Google
Maps and more.

To date, the leader of the most common mobile
applications in Ukraine is Google Chrome, it is installed
on 98.2 % of mobile devices running the Android
operating system. YouTube ranks second with 97.2 %,
Viber (96.8 %), Gmail (95.8 %) and Google Maps with
86.0 %.

Mobile operating system [4] is an operating
system designed for use on mobile platforms. The most
common devices on this platform are smartphones, less
often - tablets and some other mobile devices. Such
systems combine all the necessary functionality of a
mobile phone, some functionality of personal computer
operating systems, as well as various additional
functions for everyday use such as Bluetooth, the ability
to connect to a Wifi network and others.

The most common mobile operating systems
today are Android and iOS. As of the first quarter of
2018, 383 million smartphones were sold worldwide.
Most of them, namely 86.2 % use the Android operating
system. The second place is occupied by iOS with a rate
of 12.9 %. An important achievement of Android is that
it is the most popular operating system in the world
regardless of platforms. As of April 2020, Android
occupies 39.77 % of all operating systems that currently
exist. The second is Windows with a rate of 32.31 %,
and the third is iOS, whose share is 17.66 percent.
Looking at these statistics, we can safely say that Mobile
Operating Systems play a huge role in the life of each of
us.

Software System for Monitoring the Situation in the Settlement 39

Client-Server Architecture [5] is a software
systems architecture in which, as you might guess, two
parties are involved: the client side and the server side.
Part of the resources in this architecture is focused on the
server part, which usually serves the client part. Today,
this approach to software development is one of the most
common, because with the development of World Wide
Web [3], more and more systems in some form
communicate with each other or any other third-party
services using the Internet. So, in today's reality, the
communication of client and server parts plays a key role
in the execution of software.

From the point of view of software development,
this architecture is considered very convenient to
implement, that is the reason why more and more
software developers are using this approach for
development purpose.

Server [6] is one of the components of the client-
server architecture, which is usually responsible for
processing data received from the client and also serves
to host various services which a system interacts with. It
often happens that to unload the client part of the system,
a part of its functionality is transferred to the server side.
This significantly improves the performance of the client
part, which has a good effect on the experience of using
this system by users, as well as the quality of user
interaction with it.

Each server located on the Internet has its own
address. Inquiries from the client part are usually made
to this address. In response to these requests, the server
"provides a service" to the objects that access it.

Client [7] is one of the two main components of
the Client-Server Architecture [5], which provides the
user interface to interact with a service, as well as uses
server resources. The Client side of the system is usually
presented as a web, mobile or desktop application.
Usually this application is the only way for the end user
to communicate with the system. There are also
combined Client applications that allow the user to
interact with the service on multiple platforms
simultaneously. For example, Google services, which
typically provide the user with a web interface for using
services in the browser, as well as mobile applications
for using them on mobile platforms.

An important aspect in the development of the
Client part of the Software System [1] is the
development of the software interface. It is important
that the end user can easily understand the program,
navigate the basic functions of the program, as well as
efficiently, without difficulty navigate it. Such interface
is called User-friendly interface.

JavaScript [8] is a dynamic, weakly typed
programming language that is most often used to
develop browser applications as well as Client-Server
systems. JavaScript was created to work in a browser
environment, and interact with HTML markup through
scripts, but over time, due to its convenience, its
capabilities have greatly increased, and now it is a full-
fledged programming language for different code

environments. In order for JavaScript code to be
executed, the platform on which the code is directly
executed must contain a JavaScript engine. The most
common of these engines is the V8. It is used in
browsers such as Google Chrome, Opera, Edge, as well
as the Node.JS platform. In addition, we can highlight
"SpiderMonkey", which is used in Firefox, as well as
"Chakra" in Internet Explorer.

The JavaScript engine works in the following
way: firstly, it parses the code, then converts it into
machine code, after finally this machine code is started.

Node.JS [9] is one of the platforms for executing
JavaScript [8] code. Usually it is used to implement the
server side [6] of the software system [1]. Server code
written on this platform is able to meet all the needs of
server development, such as: interaction with databases,
work with the file system (which is prohibited in the
JavaScript browser environment), interception and
sending requests, and more. To improve the speed and
quality of code execution, Node.JS [9] uses asynchrony
which allows to process a large number of requests in
parallel without blocking the flow.

React Native [10] is a framework designed for
developing mobile applications based on Android and
iOS operating systems [4]. This is one of the most
popular technologies for developing mobile applications
as well as the most popular based on JavaScript [8]. The
peculiarity of this technology is that one code base can
be used to develop applications on different platforms.
This saves a lot of time and resources for development.

The React Native [10] framework is based on the
React.JS library, which is used to develop user interfaces
in the JavaScript [8] programming language. This means
that developers with experience with the React.JS library
can start using React Native for a specific purpose in a
short period of time. Also, a great advantage of React
Native over other analogues is a large developer’s
community. This means significantly fewer problems
that may arise during software development using this
framework.

MongoDB [11] is a non-relational, document-
oriented, open source, easily scalable database
management system. Its peculiarity is that unlike
relational databases, its storage is based on documents
namely in JSON (JavaScript Object Notation) objects in
the form of key-values. "Under the hood of MongoDB"
JSON objects are transformed into BSON objects.
Binary JSON (BSON) is a way to represent data
structures in binary form.

Mongoose ODM [12] is an Object Document
Mapper that provides a user-friendly interface for
working with the non-relational MongoDB database. It
provides many methods for reading, modifying and
creating new data in the context of a specific database.

Firebase is a platform for easy development of
both web and mobile applications. Firebase provides
developers with various services for the development of
a particular functionality, providing the ability to
integrate the desired Firebase service (module) into the

Serhii Kundys, Bohdan Havano, Mykola Morozov 40

project for further use. Examples of such services are
described next. Firebase Analytics is used to analyze the
use of the application by users, as well as provide
various statistics of the application.

Firebase Cloud Messaging is used to implement
the Real-time messages and notifications.

Firebase Auth - provides a user-friendly interface
for authorization, allowing email and password
authentication, Google authorization, anonymous
authorization, and other types of authorization.

The feature of Firebase is that all listed services
can be used in serverless [13] systems. It means that
implementation of the server is not required.

Firebase also provides a user-friendly interface
for interacting with Server side [6] data. This
implementation of the functionality of servers based on
the Node.JS [9] platform uses the "firebase-admin"
module which is present in npm (Node Package
Manager).

Express.JS [14] is a Node.JS [9] open source
framework designed for use on the Server [6] side of
client-server software system. To some extent, this is an
add-on to Node.JS [9] that uses the features of the
platform itself. It is not difficult to guess that Express.JS
uses JavaScript [8] to function, but its context is different
from the browser because it is intended for use outside
the browser, namely, as it has been already mentioned,
on a server with the Node.JS [9] platform. A good
quality of Express.JS is its performance, as it has been
optimized to work on the Server side. The main
functionality of Express.JS is minimalist, but it is more a
plus than a minus because its functionality can be easily
expanded thanks to npm modules and plug-ins which can
be connected.

Android Studio is IDE (Integrated Development
Environment) for development of Android applications.
It is Google’s technology that was released on December
8 2014. Before Android Studio release there was a
necessity of plugins for mobile development. One of
such plugins was ADT plugin for the Eclipse platform. It
wasn’t really convenient so Android Studio became a
great decision for easy development of mobile
applications.

The last but not least part of application
development is its testing. It allows to intercept common
bugs and fix them right on the development stage.
Usually this kind of work is performed by testers.
Testers are people who are responsible for the
application testing. They should reproduce all the
possible scenarios of user workflow. It allows to go
through all the functions that application provides thus
testing all of them.

There are 2 (two) types of testing: manual and
automation. The advantage of automation tests is that
they are run independently from human participation so
they can be run even at the night, on weekends, in one
word – all the time without exceptions. But the
disadvantage is that writing automation tests takes pretty
a lot of time and development resources.

Manual testing is another type of testing which
means that all the testing process is performed by
human. It is more reliable and safer than automation
testing as it is more flexible. Manual testing is often
performed during the process of development. When a
part of functionality is implemented by developers, it can
be immediately tested manually.

The performance testing of the developed
application should be performed with special
instruments. One of such instruments is Android Studio
Profiler. It allows to monitor how the Android
application use the CPU resources, RAM, network and
how it affects battery condition.

PROBLEM STATEMENT
Nowadays there are many solutions that would

allow the users to monitor the overall situation in their
city, district or region by watching local television,
monitoring news or local communities on social
networks and more. However, there is still no common
solution that would automate this whole process.

The peculiarity of the system described in this
paper is that in order to become a participant in the
action you only need to have a smartphone connected to
the global Internet, as well as a mobile application, the
functionality of which will be described in this article. In
case of emergencies users receive appropriate
notifications. It is very important to receive such
notifications in time because they can not only save
someone's life, but also allow the user to change plans in
advance if they have anything to do with the scene of an
emergency and so on.

It should also be noted that the above-described
functionality does not end the capabilities of this
monitoring system. Of course, health and life are one of
the main, if not the most important factors in human
well-being, but emergencies are not the only thing that
can interest modern society. Society is also interested in
entertainment like attending interesting events in an area
of interest to the individual. There are also sports and
watching various sporting events, as well as direct
participation in them. The user has the ability to view all
the events available in his (and not only his) region,
track them, as well as receive notifications about them.
This allows to be aware of all the events that in theory
may interest you.

In addition, each user of this system has the
opportunity to create their own events. To do this, he
needs to go to the event creation section, select the event
category (e.g., emergency, sport event, music show, etc.)
then select the event address and click the Create Event
button. After performing these steps, the event will be
created and all participants who are subscribed to this
category of events in this location will be notified.

The feature of current software system and the
difference from its analogs is a fully customizable
system of user events and notifications. It means that
user can create its own event category and add custom
events to it. Then other users who are using current

Software System for Monitoring the Situation in the Settlement 41

system can configure the notification system and logic of
showing notifications on their own. This feature makes
the system useful for all the segments of the population
as unnecessary or not interesting to user events which
will not be annoying. Such events will not be shown on
the map as well as on events list and will not trigger the
user notification.

All these features together give users of the
system a global understanding of the situation in their
locality allowing them to be aware of all events both
emergency and secondary which may to some extent
affect the life of a person.

PURPOSE OF THE WORK
The purpose of this work is to create a software

system for monitoring the situation in the settlement
using the latest technologies to develop this type of
system, namely the Client side in the form of a mobile
application for Android and the Server side in the form
of Node.JS server using Express.JS framework and
connected MongoDB database. Apart from that – adding
integration of Firebase services for authorization and
implementation of real-time notifications. It also should
implement the idea of fully customizable system for user
events and notifications. It means that end users should
be able to configure the events and notifications system
on their own. This is really important aspect of system
functionality.

Another important requirement for the system is
application optimization. As the mobile application uses
the map rendering, there are often problems with RAM
usage. Current application should meet the requirements
for standard Android applications. The RAM usage for
standard Android applications is between 130 MB and
400 MB.

The resulting program should be a working
system for monitoring the situation in the settlement that
meets all the requirements described above and allows
users to monitor the situation in their settlement and
directly participate in the security of their locality.

ALGORITHM FOR CREATING
THE SOFTWARE SYSTEM

One of the main requirements and ideas for the
implementation of this software system was the use of
modern technologies which today are preferred for the
implementation of such types of systems. The
programming language which is used for the entire
system development is JavaScript, the development
environment – WebStorm Code Editor.

As a result of the comparison of advantages and
disadvantages of technologies (described below), it was
decided to use the following technology stack for Client-
side implementation: React Native, Firebase, Mapbox
maps, Mapbox API.

The main technology for developing a mobile
application that will be supported by the Android
operating system is React Native as it is one of the most
popular, most convenient and most developed
frameworks for developing mobile applications using
JavaScript. The peculiarity of the React Native is that the
application written for the Android operating system can
be easily implemented for iOS in the future. The cross-
platform nature of the React Native allows to use in the
project one code base that can be used for different
operating systems.

The Firebase Auth service is used to authorize
users using a Google Account. It has no obvious
analogues due to the speed of development, ease of use
and the huge opportunities provided by the service.

The npm module "@rnmapbox/maps" is used to
display maps with events marked in the appendix. For
location search implementation Mapbox API service is
used. The main advantage over Google Maps and other
similar technologies is the pricing policy, as these
services are almost free for small and medium software
systems.

As a result of the advantages and disadvantages
of server-side technologies (described below), it was
decided to use the following technology stack: Node.JS,
MongoDB, Mongoose ODM, Firebase Services.

First of all, server uses the Node.JS platform as
well as the Express.JS framework as they both are the
most convenient technologies to work with the REST
API. With the help of Mongoose ODM the MongoDB
database is connected where the basic data of the system
is stored. Their main advantage is speed and ease of
development and they are better optimized to work with
large amounts of data than relational databases.

The npm "firebase-admin" module, namely its
Messaging service, is used to send real-time notifications
to users. It can easily communicate with applications
using Firebase on the Client side. For using appropriate
Firebase services, it is needed to create Firebase account
and then create appropriate project which will be used
for Firebase services setup.

There is a model of Client-Server Architecture
(see Fig. 1) where the application data transfers and its
components are described.

Fig. 1. Client-Server Architecture

The last but not least part of application
development is its testing. Moreover, testing part is one
of the most important in the development process as it
allows to intercept common bugs and fix them right on
the development stage. The performance test is used.

Serhii Kundys, Bohdan Havano, Mykola Morozov 42

DEVELOPMENT OF THE CLIENT-SIDE
MOBILE APPLICATION

Work on the client part of the system begins with
the creation of the project. To start working with React
Native [10] you must first have installed Node.js [9] and
Android Studio in the operating system as well as
configure the operating system to work with React
Native. Then in the console (or in the code editor
terminal) enter the command "npx react-native init
project-name" in order to create a React Native project.
Once the project is created, we can run it. To do this, run
the "npx react-native start" command to run the
JavaScript Bundle, and "npx react-native run-android" to
run the Android Emulator. Once the Android Emulator is
run, successfully the smartphone with opened
application will appear on the desktop. After completing
these steps, the client part of the software system can be
directly started to be implemented.

The first stage of development of this software
system is the implementation of user authorization.
There are two types of authorization available: Google
and anonymous authorization. The first opens up much
more opportunities to use the application and it is
believed that the user will use this type of authorization
when working with the system. A user authorized by
Google will be able to filter and track events, receive
relevant notifications and create their own events. An
anonymous user can only view and filter events by
category and location. However, when users run the
application and they have not previously been logged in
with Google, they are automatically logged in as
anonymous users.

In order to start working on the software
implementation of authorization, you must first create a
Firebase project and activate two types of authorization:
Google and anonymous.

Next, install the modules "@react-native-
firebase/auth" and "@ react-native-google-
signin/google-signin" using npm, which provide
authorization functionality using the Firebase services.
You also need to add the ability to sign out for a user
who is logged in through Google Authorization. To do
this, use the method auth().SignOut().

The next step is to implement the display of maps
on the application screen. There are various services for
working with maps such as Google Maps, Mapbox,
OpenStreetMap. However, after analyzing their
capabilities and pricing policy it was decided to use
Mapbox.

Setting up Mapbox service is pretty simple and
can be performed in few minutes. In order to start using
Mapbox first of all install the "@ rnmapbox/maps".
Next, you need to register the Mapbox Account and
create a token to access the use of this service in your
application. Then in the project code using the method
MapboxGL.setAccessToken("your-token") to initialize
the Mapbox instance. See Fig. 2 where running Mapbox
maps service is presented on Android Emulator’s screen.

Fig. 2. Mapbox maps rendered
on the Android Emulator screen

First of all, the Mapbox services are almost free
for usage. It allows to make up to 50000 loads of maps
for the application per month that is quite enough for
maintaining such kind of applications with pretty small
number of users at the beginning. After the application
becomes more popular and achieves a large auditory it is
important to use better plan which can be accessed by
buying it and setting new configuration token to the
project

And last but not least is the implementation of
real-time notifications. The "@react-native-
firebase/messaging" module is used to implement real-
time notifications to user’s device. This module allows
to monitor notifications coming from the server in real
time as well as display them even if the application has
not been launched or when the smartphone screen is
locked. Notifications are sent to users on special tokens
that are automatically provided to each user of the
system when he logs in with Google authorization. Then,
using Firebase Messaging hooks user can be subscribed
to incoming notifications. After the notification’s setup
process given module will perform Foreground,
Background and Quit notification.

Foreground notification is a type of notification
that is executed in case the user is currently using the

Software System for Monitoring the Situation in the Settlement 43

application namely the current application is active.
Foreground notification is not directly displayed on the
smartphone screen like other types of notifications. It
receives a signal that notification has come and gives
developer an opportunity to manage notification
behavior by itself. It is really useful as in common cases
if the application is currently active then notifications
should not be shown.

Background notification is a type of notification
that is executed in case the application is working in
background namely running but not active.

Quit notification is a type of notification that is
executed in case the application is not event running.

The received notification is presented in Fig. 3.

Fig. 3. Real-time notification

DEVELOPMENT OF THE SERVER-SIDE
APPLICATION

As in the client part, to start working on the
Server side the operating system program Node.JS is
needed to be installed. For npm project initialization,
enter the "npm init" command in the console or terminal
and follow the NPM (Node Package Manager)
instructions to setup the project. Then, for a more
convenient development process the Express.JS
framework is preferred to be installed. It can also be
installed using NPM. The next package that should be
installed is "nodemon". This module is the best decision
for tracking local changes on the server. In case any
changes were permitted, nodemon will automatically
restart the server application making Server API stay up
to date.

To implement one of the main functions of this
server, namely real-time notifications, install the npm
module "firebase-admin". It allows to initialize the
Firebase service. Given module provides developer with
a dozen of Firebase methods and classes designed for
working with Firebase services on the Server side. In
that case, Firebase messaging class with its functionality
provide us with methods for working with real-time
notifications service like sending notifications to the
Client side of program system. However, before that you
need to configure the Firebase service by creating a
Firebase Service Account. After performing that step
developer gets a special application credentials in JSON
format which can be downloaded and then located into

the server project directory. Use their credentials to
initialize server Firebase application calling the
appropriate admin.initializeApp({credential:
admin.credential.cert(serviceAccount)}) method.

This server, as it has been already mentioned,
serves the client part. So, to process all the client
requests it must have a set of the following endpoints:

POST /event/create – used for creating new event.
POST /event/update – used for event

modification.
POST /event/delete/{event_id} – used for

deleting event.
POST /location/subscribe – used for subscription

for the location.
POST /event/subscribe – used for subscription for

the event.
POST /event-type/create – used for creating new

event type (event category).
POST /event-type/subscribe – used for

subscription for the event type (event category).
POST /user/create – used for creating new user.
POST /user/update – used for user modification.
The logic of notifications is the following: after

user registration, the user receives a special token that
identifies the user's device. This will allow to send
notifications to this device in the future. Later, when an
event is created, a sample is selected from all users who
are subscribed to this category of events, as well as those
who are subscribed to the location where the event takes
place. Notifications are sent to these users using the
admin.messaging().send(message) method.

DATABASE DEVELOPMENT
This software system uses the non-relational

MongoDB database as well as the Mongoose ODM
(Object Modeling Tool). Our system data will be stored
in the cloud using the MongoDB Cloud service. The
MongoDB Atlas service is used to work with MongoDB
Cloud. This is a technology that allows to manage
MongoDB databases located on the cloud, and greatly
simplifies the process of deploying databases. So, the
first step is to create a MongoDB Atlas account and
create a new project for our application.

The next step is to model the database. This is
one of the most important steps in creating a database.
Database modeling is performed taking into account all
the requirements for the developed system. The
simulated database allows to clearly see all the
connections between the collections and the data types
which are used.

See Fig. 4 where the database model of current
software system is shown.

The database contains of 6 (six) collections:
User - saves user data.
UserConfig - saves user application settings (such

as color theme, localization, etc.).
Location - saves the location unit.
EventType - saves all available event types (event

categories).

Serhii Kundys, Bohdan Havano, Mykola Morozov 44

Event - saves events.
Subscription - saves the user's subscriptions to

certain events.

Fig. 4. Database model

APPLICATION TESTING
To test current system, it was decided to use

manual testing as it is more flexible and reliable. And, as
result of testing, all the found bugs and problems were
fixed.

In the process of performance testing it was
decided to use Android Studio Profiled instrument as it
is built into the IDE, so there is no need to use any
another external tools.

There are requirements for mobile applications
memory usage which applications should meet. The
“Standard” applications should use up to 400 MB of
Random-access memory (RAM), the “Media-intensive”
– from 400 MB to 700 MB and the “Huge” – from 800
MB and up to 1200 MB.

To test the application performance, it is
important to make it work at full strength. This type of
testing is called stress testing. Stress testing is used to get
the stability of the tested system or application. During
the test there are performed operations that bring the use
of resources by the application to the maximum. In our

case, the most resource-intensive operations are working
with maps like intensive map viewing, zoom in and out,
focus on locations, etc. So, during the testing in stress
mode there was a maximal value of CPU load of 57 %
and the maximal RAM usage of 299.3 MB. The battery
expenditure is heavy but it is okay for this kind of test
(see Fig. 5).

Fig. 5. Performance test in stress mode

CONCLUSION
As a result of this work, a software system for

monitoring the situation in the settlement using the latest
technologies (which will be relevant and easy to
maintain in the future) to develop this type of system,
namely the Client side in the form of a mobile
application for Android and the Server side in the form
of Node.JS server using Express.JS framework and
connected MongoDB database, was created. Apart from
that, there were integrated Firebase services for
authorization and implemented real-time notifications.
The idea of fully customizable system for user events
and notifications was also implemented. It means that
end users are able to configure the events and
notifications system on their own. This is really
important aspect of system functionality. Another one
important requirement for the system was application
optimization. As the mobile application uses the map
rendering, there are often problems with RAM usage.
Current application meets the requirements for standard
Android applications. The RAM usage for standard
Android applications is between 130 MB and 400 MB
namely up to 299.3 MB in the stress mode. The resulting
program is a working system that allows users to
monitor the situation in their settlement and directly
participate in the security of their locality.

REFERENCES
[1] Czibula, G. et al. (2018). “An aggregated coupling measure for

the analysis of object-oriented software systems”, Journal of
Systems and Software, 148, pp. 1–20. doi:
10.1016/j.jss.2018.10.052.

[2] Jabangwe, R. et al. (2019). “Software engineering process
models for mobile app development: A systematic literature
review”, Journal of Systems and Software, 145, pp. 98–111. doi:
10.1016/j.jss.2018.08.028.

[3] Craig A. Knoblock (1997). “Searching the World Wide Web”,
Computer Conference, 12, pp. 8–14. doi:
10.1109/MIS.1997.10004.

Software System for Monitoring the Situation in the Settlement 45

[4] Cotroneo D. et al. (2016). “Software Aging Analysis of the
Android Mobile OS”, International Symposium on Software
Reliability Engineering, pp. 478–489. doi:
10.1109/ISSRE.2016.25.

[5] Bharat S. Rawal et al. (2012). “Split protocol client/server
architecture”, IEEE Symposium on Computers and
Communications, pp. 348–353. doi:
10.1109/ISCC.2012.6249320.

[6] Holliday M. A. and Scott A. S. (2016). “A software development
course based on server-side Javascript”, IEEE Frontiers in
Education Conference, pp. 1–5. doi:
10.1109/FIE.2016.7757650.

[7] Alvarez M. et al. (2004). “Client-Side Deep Web Data
Extraction”, E-Commerce Technology for Dynamic E-Business,
IEEE International Conference on, pp. 158–161. doi:
10.1109/CEC-EAST.2004.30.

[8] The Modern JavaScript Tutorial (2022). [Electronic resource]. –
Access mode: https://javascript.info/. (Accessed: May 10 2022).

[9] Liang L. et al. (2017). “Express supervision system based on
NodeJS and MongoDB”, International Conference on Computer

and Information Science, pp. 158–161. doi: 10.1109/CEC-
EAST.2004.30.

[10] React Native Tutorial (2022). [Electronic resource]. – Access
mode: https://reactnative.dev/docs/tutorial. (Accessed: May 10
2022).

[11] Taylor D. (2022). “What is MongoDB? Introduction,
Architecture, Features & Example“. [Electronic resource]. –
Access mode: https://www.guru99.com/what-is-mongodb.html.
(Accessed: May 10 2022).

[12] Mundo J. (2017). “An Introduction to Mongoose for MongoDB
and Node.js“. [Electronic resource]. – Access mode:
https://code.tutsplus.com/articles/an-introduction-to-mongoose-
for-mongodb-and-nodejs--cms-29527. (Accessed: May 10
2022).

[13] Lakhai, V. and Bachynskyy, R. (2021). “Investigation of
Serverless Architecture”, Advances in Cyber-Physical Systems,
6(2), pp. 134–139. doi: 10.23939/acps2021.02.134.

[14] What Is Express JS In Node JS (2022). [Electronic resource]. –
Access mode: https://www.besanttechnologies.com/what-is-
expressjs. (Accessed: May 10 2022).

 Serhii Kundys is a student who is
currently receiving B.S. degree in
computer engineering at Lviv
Polytechnic National University. His
research interests include web front-end
development using Vue.js and React.js
technologies, back-end development
using Node.js and mobile development
using React Native framework.

Bohdan Havano received the B.S.

degree in computer engineering at Lviv
Polytechnic National University in 2015
and M.S degree in system programming
at Lviv Polytechnic National University
in 2016. He has been doing scientific and
research work since 2017. His research
interests include architecture and data
protection in cyber-physical systems.

Mykola Morozov received the B.S.

degree in software department at Lviv
Polytechnic National University in 2021.
Currently, he is a Postgraduate student of
Informatics Department at Technical
University of Munich. His research
interests include pathfinding algorithms.

	6_Kundys_Havano_Morozov.doc

