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Abstract: Methods for early detection of sensitive 
information leakage by data transmission in open (public) 
communication systems have been of special interest. 
Reliable detection of modified (stego) cover files, like digital 
images, requires usage of computation-intensive methods of 
statistical steganalysis, namely covering rich models and 
deep convolutional neural networks. Necessity of fine-
tuning parameters of such methods to minimize detection 
accuracy for each embedding methods has made fast re-
train of stegdetectors in real cases impossible. Therefore, 
development of low-complexity methods for detection of 
weak alterations of cover image parameters under limited 
prior information about used embedding methods has been 
required. For solving this task, we have proposed to use 
special architectures of artificial neural networks, such as 
denoising autoencoder. Ability of such networks to estimate 
parameters of original (cover) image from the noisy ones 
under limited prior information about introduced 
alterations has made them an attractive alternative to state-
of-the-art solutions. The results of performance evaluation 
for shallow denoising autoencoders showed increasing of 
detection accuracy (up to 0.1 for Matthews correlation 
coefficient) in comparison with the state-of-the-art 
stegdetectors by preserving low-computation complexity of 
network retraining.  

 
Index Terms: adaptive embedding methods, digital image 

steganalysis, denoising autoencoders. 

INTRODUCTION 
Feature of modern critical information 

infrastructures (CII) of state as well as private 
organization is tight integration with local and global 
high-speed communication systems [1]. This 
considerably improves performance of CII in scenarios 
related to remote control, load balancing, fast resources 
re-allocation in case of failure to name a few. On the 
other hand, connection of CII elements to local and/or 
global communication systems increases risk of sensitive 
information leakage. Therefore, reliable protection of 
such information during message transmission between 
elements of CII is topical task today. 

In most cases, unauthorized transmission of 
sensitive information related to CII elements is 
performed with the usage of advanced steganographic 
systems [2, 3]. They allow hiding even the fact of 
sensitive data transmission by its embedding into 

innocuous files, like digital images (DI). Appearance of 
adaptive embedding methods (AEM) in the last years 
makes it possible to considerably decrease alterations of 
cover image statistical parameters. Detection of formed 
stego images required usage of computation-intensive 
methods of statistical steganalysis, such as cover rich 
models [4] and convolutional neural networks (CNN) 
[5]. In spite of high detection accuracy, such 
stegdetectors (SD) requires time-consuming adjusting of 
parameters that makes fast re-training of used SD for 
detection of unknown embedding methods (zero-day 
problem) impossible. 

The modern approach to improve detection 
accuracy for stego images formed by AEM is image pre-
processing (calibration). Proposed methods allow to 
detect and extract weak alterations of CI parameters 
caused by message hiding [5]. However, this is achieved 
by corresponding increase of method’s computation 
complexity as well as limited ability to fast re-tune 
unknown embedding methods. Therefore, of special 
interest there are low-complexity methods for detecting 
weak perturbations of pixels brightness for DI, such as 
image denoising algorithms.  

To solve this task, we propose to apply advanced 
types of artificial neural networks, namely denoising 
autoencoder (DAE), for improving performance of 
image calibration by preserving low-complexity as well 
as ability to fast re-tune new embedding methods. The 
paper is aimed at performance analysis of shallow DAE 
for calibration of stego images formed by adaptive 
embedding methods. 

RELATED WORKS 
State-of-the-art approach for stego image 

detection is based on applying extensive set of high-pass 
filters (HPF), and further analysis of statistical 
parameters for obtained residuals [6, 7]. The approach 
was widely used for development of modern SD for 
reliable detection of stego images formed by widespread 
steganographic methods. Nevertheless, practical usage of 
such SD requires time-consuming estimation of optimal 
parameters for HPF for minimization of detection error 
PE. This makes SD impractical for fast re-tuning by 
appearance of new steganographic methods that is a 
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common situation for modern intrusion detection 
systems. 

One of the proposed approaches for overcoming 
mentioned limitations of modern SD is based on 
applying additional image pre-processing (calibration) 
methods [8]. Proposed solutions for fast estimation of 
optimal parameters under criteria of minimization the PE 
are based on applying artificial neural networks, namely 
CNN [5, 9]. Ability to fast adjustment of network’s 
parameters to new inputted samples (cover and stego 
images) by backpropagation procedure makes CNN a 
promising candidate for advanced SD. Still, providing 
high detection accuracy (more than 95%) with the usage 
of CNN requires utilization of deep networks that 
complicates their training and increases requirements to 
volume of the used datasets. The proposed solutions for 
decreasing computation-complexity of CNN-based SD 
re-tuning are based on applying pre-trained networks and 
theirs tuning to target dataset [10]. However, limited 
quantity of publicly available pre-trained CNN for 
steganalysis-related tasks requires further time-
consuming optimization of CNN for target dataset. 

Alternative approach for improving performance 
of SD is based on applying special types of image 
calibration methods, such as those based on cover and 
stego estimations [8, 11, 12]. A distinct feature of these 
methods is estimation parameters of either cover image 
from current noisy DI, or expected distortions by 
message re-embedding. Results of performance 
evaluation of such methods proved their effectiveness in 
the case of stego image formation by AEM [11-13]. 
However, their practical usage requires analysis of prior 
information about used AEM for selection of appropriate 
calibration methods. In most cases, steganalytics has 
limited opportunities to give this information. This 
causes necessity of development of calibration methods 
that can be adjusted to minimize PE values under 
available prior information about AEM. 

Mentioned task can be reformulated as an 
optimization problem of anisotropic image denoising 
under limited prior information about statistical and 
spectral parameters of noising. Therefore, we may apply 
of advanced architectures of artificial neural networks, 
namely DAE, for solving this problem. Despite wide 
range of the proposed SD based on CNN and DAE, their 
performance for AEM remains unclear. We aimed at 
filling this gap by performance analysis of shallow DAE 
for calibration of stego images formed by novel S-
UNIWARD and MG embedding methods. 

ADAPTIVE EMBEDDING METHODS FOR 
DIGITAL IMAGES 

The state-of-the-art paradigm of DI 
steganography is based on minimization of CI alteration 
during message hiding [14]. This leads to considerable 
decrease of stego images unmasking features (e.g., 
changes of statistical features) that decrease performance 
of modern stegdetectors.  

Mentioned breakthrough of novel steganography 
methods is achieved by representation of message hiding 
procedure as the optimization problem with constraints 
[15]: 
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stego images of size MxN pixels correspondingly; 
Nk Î  is color bit-depth; D(∙,∙) is empirical function for 

estimation of CI distortion during stego data hiding; 
ρi,j(∙,∙) is empirical function for estimating cover image’s 
statistical feature alteration by changes of (i,j)th pixel; M 
is a binary representation of stego data m-bits.  

In the general case, the function ρ(∙) in (1) allows 
to estimate changes of CI statistical parameters caused 
by a single pixel alteration as well as non-linear 
dependencies between these changes by embedding 
series of bits [15]. The former alteration can be 
performed using common statistical models of DI [4, 
16]. The latter highly depends on mutual influence of 
altered pixels that requires utilization of computationally 
intensive methods for such dependency estimation. In 
most cases, mentioned dependencies may be estimated 
only for small (short) message (up to 100 bits) [15]. 
Therefore, majority of modern embedding methods 
includes “simplified” functions ρ(∙) that provide tractable 
estimation on single pixel alterations only. 

The selection of CI pixels to be used for stego bits 
hiding is usually made by analysis of statistical 
parameters of current pixel neighborhood (clique) [15]. 
This allows to provide low cover image alteration during 
message hiding by preserving tractable complexity of the 
embedding algorithm. 

The advance adaptive embedding methods S-
UNIWARD [17] and MG [18] were considered in the 
work. The S-UNIWARD embedding method is based on 
spectral transformation for estimation CI distortions 
caused by embedding of individual stegobits. The S-
UNIWARD method takes additive empirical distortion 
estimation function [17]: 
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where Wuv(X, k), Wuv(Y, k) – coefficients of two-
dimensional discrete wavelet transform (2D-DWT) of 
the cover  X and stego Y images with coordinates (u, v) 
in the kth sub-band; σ>0 – stabilizing constant.  

Variation of 2D-DWT basis functions in (2) 
allows to analyze specific distortions of CI caused by 
message hiding. Also, usage of empirical distortion 
estimation function (6) makes it possible to message 
hiding in spatial (alteration of CI pixels brightness) and 
transformation (by changing of a CI decomposition 
coefficients) domains in the uniform way. 

The feature of MG method is minimization of 
both the CI distortion, and SD performance (detection 
accuracy) during stego data embedding [18, 19]. This is 
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achieved through the usage of Gaussian mixture models 
(GMM) for estimation cover image’s noises parameters 
[19].  

The cover image processing pipeline is similar for 
MG [18] method. At the first stage, the CI is pre-
processed (filtered) for suppressing the influence of 
cover image context using a filter Fdn: 

( ).dnF= -r X X   

Then, variance 2
ls  of pixels brightness for 

computed residuals r is calculated using next linear 
model: 

[ ], 1; .l l l M N= + Î ×r Ga ξ  (3) 
Sedighi et al proposed to use Maximum 

Likelihood for estimation of the mentioned model 
parameters [19]: 
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where ^
GP  is a projection operator for residuals rl (3) on 

sub-space with (p2-q) dimensionality, created from 
eigenvectors of matrix G; F×  is Frobenius norm. 
Residuals rl are computed within neighborhood of pxp 
pixels for current lth pixel. 

At the third stage, the magnitude βl, 1≤l≤M∙N, of 
pixel brightness changes that minimizes the deflection 
coefficient ς2 between cover and stego image 
distributions is estimated: 
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where H4(z) is ternary entropy function. The deflection 
coefficient ς2 (4) provides statistical measurement of 
divergence between cover and stego images distribution 
that reflects expected performance of statistical SD [18, 
19]. 

The mentioned optimization task for coefficient ς2 
(4) can be solved using Lagrange multipliers method 
[19]. Then, optimal values of βl and Lagrange multipliers 
λL can be calculated by numerical solving of next 
equations: 
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Estimated optimal values of βl are used for 
calculating corresponding values of ρl function during 
embedding stegobit into lth pixel of CI: 

( ) [ ]ln 2 , 1; .l l l M Nr b= - - Î ×  (5) 
At the last stage, message M bits are embedded 

into CI using trellis-code along with magnitudes of pixel 
brightness alteration estimated with ρl  (5). 

It should be noted that the GMM used in MG 
method allows to accurately estimate local alterations of 

pixel brightness during stego image formation [19]. This 
provides high robustness of formed stego images to 
known statistical steganalsis methods without involving 
of computationally intensive methods for image 
modeling, such as Random Markov Fields [20]. 

DIGITAL IMAGE CALIBRATION USING 
DENOISING AUTOENCODERS 

The feature of modern DI denoising methods is 
adjustment of method’s parameters by taking into 
account image’s local statistical parameters. One of 
widespread approaches to solving this task is usage of 
anisotropic filtering methods [21] that takes into account 
parameters of textures and objects within current 
position of sliding window (SW). Examples of such 
denoising methods are bilateral filtering (BF) and non-
local means (NLM) algorithms [21]. 

The bilateral filter is a non-linear, edge-
preserving, and noise-reducing smoothing filter [22]. It 
is based on applying composition of two filters to reduce 
impact of additive noise on image quality [22]: 
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where h(·,·) – smoothing filter with size of hkxhn  
(pixels) that is used for suppression of additive noises; 
g(·) – stop-functions that limits impact of filter h(k, n) by 
processing image areas near contours; NBF(i, j) – 
normalizing factor for the current position of SW. 

The stop-function g(·) is adjusted to preserve 
fixed impact of smoothing filter h(k, n) in the image’s 
areas where variation of pixel brightness is below of 
predefined threshold, for example, textured objects, 
sand, grass etc. On the other hand, values of function 
g(·) tends to zero in case of processing areas with sharp 
changes of pixel brightness (for example, near contours) 
that suppress influence of smoothing filter h(k, n). In 
most cases, the considered functions h(k, n) and g(·) are 
based on Gaussian function that decreases computation 
complexity of their usage in image processing tools [18]: 
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where μ, σ – respectively, the mean and variance 
of the pixel brightness for a current position of SW. 
Estimation of these parameters can be performed in a 
manner similar to Wiener filter [23]: 
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where U – a grayscale image with size NxM (pixels);  
h -  the current position of SW with size wWxwW  

(pixels); 2,h hm s -  estimations of the mean and 
variance value of the pixels brightness for current 
position of SW respectively. The value σ2 in eq. (7) is 
estimated by averaging of 2

hs  values obtained for all 
positions of the SW for Wiener filter. 

The bilateral filter allows to adaptively decrease 
impact of additive noise including influence of 
alterations caused by message hiding. This makes BF a 
promising candidate for stego image calibration tasks in 
steganalysis. On the other hand, usage of smoothing 
filters in the bilateral filter (6) may negatively impact on 
image calibration performance due to influence on the 
whole image region instead of processing of an 
individual pixels only. Therefore, of special interest 
there are methods of image denoising that takes into 
account variability of local pixel brightness like NLM-
filter [24]. The filter is based on minimizing the variance 
of pixel brightness by analyzing deviation of current 
pixel brightness from the mean brightness for current 
position of SW [24]: 
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where wn – current position of SW; w(x, y) – is a 
function that scales the brightness value of the current 
pixel depending on its deviation from the mean 
brightness for current position of the SW; NNLM(i, j) –  
normalization factor for current position of SW. Similar 
to BF, the Gaussian function (7) is widely used as 
function w(x, y) for NLM-filter to reduce the impact of 
small objects on an image of processing results. 

Performance of considered bilateral and NLM 
filters is theoretically established for additive noises with 
predefined statistical or spectral parameters, like color 
noise, shot noise, speckle noise to name a few. 
Therefore, effectiveness of their usage for stego image 
calibration tasks may reduce due to non-local character 
of CI pixel brightness modifications. This is proved by 
performance evaluation of image calibration with the 
usage of novel image denoising techniques for stego 
images formed according to AEM [11, 12]. The reason 
of this is "aggressively" suppression of noises 
(interferences) that lead to significantly decrease of 
differences between cover and stego images processing 
results. Therefore, application of specific image 
denoising methods for detection weak perturbation of 
pixels brightness is of special interest 

One of promising methods for solving mentioned 
task is usage of СNN. The important feature of СNN is 
ability to adjust their parameters during training to 

minimize predefined objective function, for example, 
total variation of image’s pixel brightness [25]. Results 
of performance evaluation of state-of-the-art 
architectures for CNN proved effectiveness of this 
approach for improving SD detection accuracy in case of 
processing widespread embedding methods [26, 27]. 
However, performance of CNN-based image calibration 
highly depends on either prior information of used 
embedding methods, or samples of stego images that can 
be used for CNN tuning [27]. This requires often 
retraining of CNN-based SD to preserve fixed detection 
accuracy for new set of images that is computation-
intensive operations even by usage of pre-trained models 
[10]. This limits practical usage of CNN in real cases. 

One of approaches for overcoming mentioned 
limitations is usage of special types of artificial neural 
networks such as autoencoder networks (AEN) [25]. The 
feature of AEN is estimation of image’s features that can 
be sensitive to changes of image parameters. This is 
achieved by usage of bottleneck-like architecture with 
encoder and decoder parts (Fig. 1). 

The first part of the AEN is encoder network that 
is aimed at projection of a given multidimensional signal 
(feature vector of an image) into lower-dimensional 
space, while maintaining its statistical features (Fig. 1). 
Restoration of initial image is performed by the decoder 
network according to the obtained representation h. 

Imposing additional restrictions on parameters of 
encoder/decoder networks (Fig. 1) allows to obtain 
specific properties of AEN, for example, adaptive image 
denoising, image inpainting [25]. This feature makes 
AEN an attractive candidate for image calibration related 
tasks when parameters of image alterations cannot be 
estimated in advance. Therefore, image calibration task 
can be solved with the usage of the DAE by solving the 
following optimization task [13, 25]: 

 
 

Fig. 1. General architecture of an autoencoder network for 
digital image processing 
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probabilistic distribution of DI used to DAE training; 
pdecoder(·) – probabilistic distribution of images at the 
output of the DAE’s decoder network; h –encoder 
network output (latent representation of the feature 
vector of inputted image U in a lower-dimension space). 

In most cases, the shallow DAE (up to a dozen of 
hidden layers) is considered due to high computation 
complexity of its training procedure. The autoencoder 
part of ASSAF model [13] can be mentioned as an 
example of DAE used for image steganalysis. The 
architecture of this autoencoder is represented in Fig. 2. 

 

 
 

Fig. 2. The architecture of the denoising autoencoder for the 
ASSAF model. According to [13] 

 
The feature of considered DAE is usage of 

convolutional layers to obtain an intermediate (latent) 
representation of the given image feature vector in a 
lower-dimension space. This allows to significantly 
reduce the requirements for the size of the test dataset, as 
well as the complexity of DAE training in comparison 
with the usage of fully connected layers [25].  

Note that DAE is used as a key element part of 
stego image processing pipelines for CNN-based 
stegdetectors [13]. Therefore, the autoencoder is trained 
with either a whole model, or pre-trained on predefined 
(standard) dataset of stego images formed by widespread 
embedding methods. This makes its performance for 
image calibration tasks unclear. We aimed at filling this 
gap by performance evaluation of DAE pre-trained with 
the usage of advanced embedding methods, such as MG 
and UNIWARD group of methods. 

EXPERIMENTS 
The performance analysis of DAE and adaptive 

image denoising methods was done on a subset of 
10,000 randomly sampled from a standard data package 
ALASKA [28]. These images were converted to 
grayscale mode and resized to fixed size of 512x512 
pixels  

Stego images were formed according to advance 
adaptive methods S-UNIWARD and MG. The CI 
payload was varied in the following range – 3%, 5%, 
10%, 20%, 30%, 40% and 50%.  

The cover and stego image pre-processing with 
bilateral and NLM filter was performed with 
recommended parameters for image denoising 
applications. Namely, size of sliding windows was 
chosen equal to 5x5 pixels, the mean and standard 
deviation values for pixel brightness were estimated 
according to eq. (8)-(9).  

The DAE (Fig. 2) was trained with the usage of 
additional subset of 10,000 images from the standard 
ALASKA dataset [28]. The new subset was used for 
forming of stego images according to S-UNIWARD and 

MG methods by uniform sampling of CI payload from 
5% to 50%. The size of the input image of used 
autoencoder (Fig. 2) is chosen equal to 512x512 pixels, 
which allows to process test images from standard image 
datasets without having to rescale these images. The 
DAE was trained for 200 epochs with Adam optimizer, 
by decreasing of learning rate from 0.01 on each 25 
epochs with scaler 0.1. 

The stegdetector was based on using the 
mentioned image calibration methods as well as standard 
SPAM model [29] for estimating statistical parameters 
of the processed images. The classification of extracted 
features to the classes of cover or stego images was 
performed with the usage of ensemble classifier, namely 
Random Forest [30]. The classifier was tuned by 
minimization of total error PE [30]: 

( )( ) 2,E FA MD FAP P P P= +   
where PFA and PMD are probabilities of false alarm (type 
I error) and missed detection (type II error) 
correspondingly. Validation of SD was performed 10 
times by pseudo random splitting of image dataset into 
train (70%) and test (30%) samples. 

Note that image pre-processing (calibration) leads 
to extension of the number of features that can be used 
for stego image detection. According to the results of 
research [11, 12], the following features were used for 
SD tuning: 

Linearly transformed features of the calibrated 
image – correspond to the difference between the 
features of calibrated and original images: 

.DF calib nc= -F F F  (10) 
Cartesian product of the features for calibrated 

and original images: 
{ }; .CC calib nc=F F F   

where Fnc and Fcalib are features for initial (non-
processed) and calibrated images respectively. 

Also, performance of SD considerably depends 
on prior information about used embedding methods. 
Estimation of stegdetectors accuracy in this case can be 
done with the usage of the following index Fα  [31]: 

( ) ( ){ }, : , , 100%,
ii train trainF i S Sa = Î ×XX Y X Y  

where Strain is a set of digital images used during training 
of stegdetector; 

iXY  is stego images formed from cover 
Xi. The Fα parameter varies from 0% (absent from 
cover-stego images pairs in training set) to 100% 
(training set consists only from cover-stego image pairs). 
The former case corresponds to a situation when 
steganalytics can use only captured stego images. The 
latter relate to the situation when steganalytics can cover 
ones for stego images from arbitrary, but analytics 
limited in knowledge about features of embedding 
process. The most interesting case of SD evaluation 
under absence of prior information about used 
embedding method (Fα =0%) was considered in the 
research. 
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The stegdetectors based on standard SPAM [29] 
(without image calibration) as well as state-of-the-art 
maxSRMd2 [16] models were considered for 
comparison. The maxSRMd2 model is based on image 
calibration by usage of extensive set of HPF. This allows 
to considerably reduce impact of image content on image 
calibration results. On the other hand, this leads to 
enormous set of 12,753 features that complicates fast 
tuning of SD for detection of new embedding methods. 

The detection accuracy of trained SD was 
evaluated with the usage of Matthews Correlation 
Coefficient MCC. The coefficient is used to estimate the 
degree of correlation of the (true) labels of the classes of 
the studied images with the output of SD [32]:  

( ) ,TP TN FP FN MCCMCC P P P P N= × - ×  

( ) ( )
( ) ( ) ,

MCC TP FP TP FN

TN FP TN FN

N P P P P

P P P P

= + × + ×

× + × +
 

where PTP, PTN – the probabilities of correct 
classification of stego and cover images respectively; 
PFP – the probability of incorrect classification of cover 
images as stego ones; PFN – the probability of incorrect 
classification of stego images as cover ones. 

The value of the MCC varies from (-1) that 
corresponds to the case of classification of stego images 
as cover ones and vice versa, to (+1) that relates to 
correct classification of both cover and stego images. 
The special case is MCC=0 that corresponds to the case 
of assigning analyzed image to the classes of cover or 
stego images randomly (PFN=PFP). 

Performance evaluation of considered image 
denoising methods and DAE was done in two stages. 
Firstly, the detection accuracy was estimated for the case 
of applying the state-of-the-art image denoising methods 
to stego images formed according to S-UNIWARD and 
MG embedding methods. The dependencies of Matthews 
Correlation Coefficient MCC on the cover image 
payload by usage of maxSRMd2 and SPAM models as 
well as considered image denoising methods for the S-
UNIWARD steganographic method by Fα=0% are 
shown in Fig. 3. 

Note that usage of standard SPAM model allows 
to considerably (ΔMCC=0.15) improve values of MCC 
in comparison with advanced maxSRMd2 model (Fig. 
3). This is achieved for most difficult cases of low (less 
than 10%) and medium (less than 20%) cover image 
payload. Obtained results can be explained by negative 
impact of huge ensemble of HPF that complicates tuning 
of SD.  

On the other hand, application of considered 
denoising methods led to decrease of MCC values in 
comparison with corresponding results for SPAM model 
(Fig. 3). This can be explained by insufficient 
“selectivity” of the mentioned methods to detect and 
suppress local perturbation of pixel brightness caused by 
stego bits embedding. Note that usage of FDF features 
(Fig. 3a) leads to improvement of MCC values in 
comparison with widely used FCC features (Fig. 3b). This 

is caused by doubling FCC feature dimensionality that 
decreases SD performance by training on fixed size 
training set. In comparison, dependencies of Matthews 
Correlation Coefficient MCC on the cover image 
payload by usage of maxSRMd2 and SPAM models as 
well as considered image denoising methods for the MG 
steganographic method by Fα=0% are shown in Fig. 4. 

 
a)

 
b)

 

Fig. 3.  Dependencies of Matthews correlation coefficient on 
the cover image payload by usage of FDF (a) and FCC (b) 

features for the adaptive steganographic methods 
S-UNIWARD by applying of advanced methods for image 

denoising and  Fα=0% 
 
In contrast to S-UNIWARD embedding method 

(Fig. 3), usage of SPAM model for stego images formed 
by MG method (Fig. 4) allows to improve MCC values 
only for low CI payload range (less than 10%). Further 
increase of CI payload leads to drastic increase in 
detection accuracy for SD based on maxSRMd2 model 
(Fig. 4). This can be explained by message embedding 
with the usage of Gaussian like noises for MG method 
that can be effectively suppressed by ensemble of HPF 
for maxSRMd2 model. The S-UNIWARD method is 
based on usage of two-dimensional discrete wavelet 
transformation [17]. Therefore, embedding of a single 
stego bit for this method is achieved by alteration of CI 
pixels without perturbance of intrinsic noises parameters. 

Usage of FDF (Fig. 4a) and FCC (Fig. 4b) features 
leads to similar values of MCC for MG embedding 
method. Therefore, we may conclude that difference 
between results of application of considered denoising 
methods are also similar. Thus, of interest there is usage 
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of DAE-based image calibration methods for improving 
detection accuracy in comparison with novel denoising 
methods.  

 
a)

 
b)

 

Fig. 4.  Dependencies of Matthews correlation coefficient on 
the cover image payload by usage of FDF (a) and FCC (b) 
features for the adaptive steganographic methods MG by 
application of advanced methods for image denoising and 

Fα=0%. 

The analysis of SD performance by the usage of 
DAE-based image calibration was node on the second 
stage of research. The dependencies of Matthews 
Correlation Coefficient MCC on the cover image 
payload by the usage of SPAM models and trained DAE 
network for the S-UNIWARD steganographic method by 
Fα=0% are shown in Fig. 5. 

Applying DAE for stego image calibration leads 
to considerable improvement of MCC values 
(ΔMCC=0.10) in comparison with the case of SPAM 
model usage (Fig. 5). Still, the improvement is achieved 
for FDF features (Fig. 5a) and high CI payload (more than 
20%), where SD based on maxSRMd2 model achieves 
even better results (Fig. 3). On the other hand, 
application of FCC features (Fig. 5b) makes detection 
accuracy improvement possible in the whole cover 
image payload range. However, an increase of MCC in 
this case is much smaller (ΔMCC=0.5) in comparison of 
the usage of FDF features (Fig. 5a). This can be explained 
by negligible differences between features of initial 
(non-processed) and calibrated images for low CI 
payload (less than 10%) that negatively impact SD 
training with the usage of FDF features (10).  

a) 

 
b)

 

Fig. 5.  Dependencies of Matthews correlation coefficient on 
the cover image payload by usage of FDF (a) and FCC (b) 

features for the adaptive steganographic methods S-UNIWARD 
by application of DAE and  Fα=0%. 

We also note that increasing image’s tiles used 
for DAE does not lead to increase of MCC values (Fig. 
5). Therefore, we may conclude that training of 
denoising autoencoders with the size of inputted image 
bigger than 32x32 (pixels) is redundant due to 
unnecessary overhead of computation complexity. 

For comparison, dependencies of Matthews 
Correlation Coefficient MCC on the cover image 
payload by the usage of SPAM models and trained DAE 
network for the MG steganographic method by Fα=0% 
are shown in Fig. 6. 

Note that application of DAE to stego images 
formed according to MG method leads to changes of 
MCC values (Fig. 6) similar to those obtained earlier for 
S-UNIWARD method (Fig. 5). The usage of FCC featu-
res (Fig. 6b) allows to improve Matthews correlation 
coefficient even higher – up to ΔMCC=0.10 for the 
whole range of cover image payload. This makes DAE-
based image calibration an attractive candidate for im-
proving performance of modern SD in the most difficult 
case of low cover image payload (less than 10%). 

DISCUSSIONS 
Estimated values of Matthews correlation 

coefficient for modern image denoising methods proved 
obtained earlier conclusion about low effectiveness of 
such methods for image calibration related task. Appli-
cation of novel DAE allows to improve detection accu-
racy in comparison with the mentioned case (Table 1).  
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a) 

 
b)

 

Fig. 6.  Dependencies of Matthews correlation coefficient on 
the cover image payload by usage of FDF (a) and FCC (b) 
features for the adaptive steganographic methods MG  by 

application of DAE and  Fα=0%. 

Table 1 
Mean and standard deviation of the Matthews 

correlation coefficients by the usage of bilateral filter 
(BF), non-local mean filter (NLM) and considered 
denoising autoencoder (DAE) with the image’s tile 
size of 32x32 (pixels) by variation of cover image 
payload ΔP. The case of FDF and FCC features and 

ratio FΑ=0% is considered. 
 

Cover image payload 
ΔP=5% ΔP=20% ΔP=50% 

Stego images 
detection 
method mean std mean std mean std 

S-UNIWARD embedding method 
SPAM model -0.130 0.021 -0.056 0.013 0.138 0.013 
maxSRMd2 

model -0.289 0.088 -0.178 0.109 0.235 0.021 

FDF -0.138 0.015 -0.095 0.018 0.069 0.022 BF FCC -0.160 0.031 -0.105 0.026 0.069 0.016 
FDF -0.120 0.018 -0.070 0.018 0.113 0.017 NLM FCC -0.162 0.028 -0.097 0.031 0.123 0.013 
FDF -0.128 0.009 -0.064 0.013 0.120 0.018 DAE FCC -0.158 0.043 -0.109 0.013 0.110 0.016 

MG embedding method 
SPAM model -0.125 0.024 -0.072 0.018 0.089 0.015 
maxSRMd2 

model -0.295 0.151 -0.314 0.052 0.334 0.028 

FDF -0.138 0.015 -0.095 0.018 0.069 0.022 BF FCC -0.160 0.031 -0.105 0.026 0.069 0.013 
FDF -0.122 0.019 -0.120 0.011 -0.016 0.014 NLM FCC -0.158 0.035 -0.111 0.033 0.069 0.027 
FDF -0.126 0.021 -0.088 0.011 0.086 0.018 DAE FCC -0.165 0.037 -0.107 0.025 0.065 0.023 

 
Image calibration with considered BF and NLM 

filters leads to decrease of MCC values in the whole 
range of cover image calibration. The decrease achieves 

up to ΔMCC=0.05 for both considered embedding 
methods in comparison with the standard SPAM model 
(Tab. 1) that makes these image denoising methods 
inappropriate for steganalysis related task. On the other 
hand, usage of DAE allows to improve MCC values in 
comparison with the case of SPAM model usage. Still, 
achieved improvement may be insufficient for practical 
usage (ΔMCC=0.10) that requires usage of deeper 
denoising autoencoder model. 

CONCLUSION 
Development of the advanced methods for image 

calibration is topical task in digital image steganalysis 
domain today. The proposed methods for solving this 
task were based on the application of the novel methods 
for the advanced image denoising methods. Based on the 
results of performance analysis for bilateral and non-
local mean filtering, we may conclude limitations of 
practical usage of these methods for stego image 
calibrations. This can be explained by insufficient 
“selectivity” of the mentioned methods to detect and 
suppress local perturbation of pixel brightness caused by 
stego bits embedding. 

We proposed to use denoising autoencoder for 
overcoming the mentioned limitations. Feature of DAE 
is ability to learn an appropriate transformation of 
inputted (noisy) image for restoration of initial (cover) 
image for a wide range of distortions. However, results 
of performance evaluation of SD with the usage of such 
networks showed limited increase of detection accuracy 
(up to 0.1 for Matthews correlation coefficient). This can 
be explained by the usage of shallow autoencoder (only 
4 hidden layers), so application of deeper network may 
improve detection accuracy. 

Also, it was revealed that an increase was 
obtained in the whole range of cover image payload that 
allowed to improve performance of stegdetector without 
necessity to use a set of calibration methods for each CI 
payload range.  
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