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Abstract. In the article a methodology for researching wave processes in weakly nonlinear 
homogeneous one-dimensional systems – elements of machine and building structures is proposed. It 
is based on D'Alembert's method of constructing solutions of wave equations and the asymptotic 
method of nonlinear mechanics. Resonant and non-resonant cases are considered. In the non-resonant 
case, the influence of viscoelastic forces and small periodic disturbances on the oscillatory process is 
taken into account. In the resonant case, the influence of the disturbing force and the phase difference 
of natural oscillations is considered. Numerical methods for linear differential equations were used to 
analyze the obtained differential equations.  

Keywords: wave process, elastic body, mathematical modeling, nonlinear homogeneous one-
dimensional system 

Introduction and Problem Statement 

Various researchers have developed methods for constructing solutions to homogeneous boundary 
value problems for some classes of weakly nonlinear differential equations with partial derivatives that 
describe wave processes in one-dimensional systems (thread, string, rope, shaft, rod). It is based on:  

a) the idea of presenting the solution of the corresponding undisturbing problem in the form of a wave, 
the frequency of which is related to the wave number, or the method of separating variables; 

b) the principle of single-frequency oscillations of nonlinear systems with many degrees of freedom 
and distributed parameters [1];  

c) the application of asymptotic methods of nonlinear mechanics [1, 2] for new classes of nonlinear 
systems.  

A similar approach for describing wave processes in linear homogeneous as well as nonlinear elastic 
one-dimensional systems was considered, for example, in [1, 3–5]. In these works, the profile of the wave is 
described, as well as the influence of different natures of forces (including small nonlinear ones) on its main 
characteristics: amplitude, local frequency, and local wave number.  

However, such important issues from the point of view of dynamics, as the influence of the contact of 
the medium with the source of disturbance of oscillations (boundary conditions), the initial state of the system 
(initial conditions of the corresponding differential equations) on the wave profile were not considered in 
works [3, 4].  

Solving some of the issues of this complex problem about homogeneous boundary value problems for 
the nonlinear wave equation, which have an important applied value in the mathematical modeling of 
technological processes, for example, vibration volumetric processing, vibration transportation of products; 
dynamic processes in the elements of building structures and mechanisms are the subject of this work. 
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The purpose of the article is: 
a) to use D'Alembert's method of constructing solutions of linear wave equations, to generalize the 

asymptotic Krylov–Bogolyubov–Mitropolsky method to a quasi-linear analog of the specified equation;  
b) to show that in the case of wave processes close to the sinusoidal (cosinusoidal) form, the method 

based on the Fourier representation and the developed method are equivalent. 
 

Main Material Presentation  

A one-dimensional homogeneous elastic body, as an element of machine and structure structures, has 
a wide range of applications – in lifting and transport mechanisms, drilling rigs, power lines, etc. It is known 
[7] that the mathematical model of longitudinal oscillations of a one-dimensional homogeneous elastic body, 
the material of which satisfies a close to linear law of elasticity, is a differential equation: 

( )χε=α− ,u,u,ufuu txxxtt
2 , (1) 

where ( )txu ,  – movement along the OX axis of the section with the coordinate x  at any moment of time t ; 

α  – constant, which is expressed through the physical and mechanical parameters of the body; ( )χε ,u,u,uf tx  – 

analytical, π2  – periodical by tμ=χ  function that characterizes the deviation of the elastic properties of the 

body material from the linear law, as well as the action of small compared to the restoring force of periodic 
external forces; μ  – frequency of external periodic disturbance; ε  – small parameter. This function can also 

take into account the influence of resistance forces and other dissipative forces on the dynamics of the 
process. Differential equation (1) also describes nonlinear torsional vibrations of shafts, transverse vibrations 
of a nonlinearly elastic string (rope). The methods of construction and research of its single- and multi-
frequency solutions under homogeneous and disturbed boundary conditions are known and considered 
sufficiently for practical purposes, for example, in [1]. Below, we will consider a slightly different approach 
to the construction of asymptotic solutions of boundary value problems for the differential equation (1). It is 
based on D'Alembert's method of finding solutions of homogeneous wave equations and a physically based 
assumption: in the investigated homogeneous undisturbed medium, waves have a sinusoidal shape. This 
approach to the study of wave processes has received a new momentum of development in recent decades 
(see, for example, works [3–5]) and for many cases it is still one of the possible analytical methods for the 
study of dynamic processes in nonlinear systems. 

Unperturbed equation. Such a case occurs when considering the above-mentioned problems in a linear 
formulation (without taking into account nonlinear forces) and it does not always adequately reflect the dynamics 
of the process. According to the general principles of constructing asymptotic solutions of nonlinear differential 
equations, solutions of the unperturbed ( 0=ε ) equation corresponding to (1), that is, equation: 

0020 =− xxtt uu α . (2) 

Depending on the method of fastening a one-dimensional homogeneous elastic body (for example, 
different types of fastening of power transmission lines on supports), equation (1), and therefore also (2), 
will be considered under boundary conditions: 

( ) ( )0 0

0
, , 0

x x l
u x t u x t

= =
= = , (3) 

( ) ( )0 0

0
, , 0x xx x l

u x t u x t
= =

= = , (4) 

( ) ( )0 0

0
, , 0xx x l

u x t u x t
= =

= = , (5) 

which correspond to both fixed (boundary conditions (3)), both free (boundary conditions (4)), or a fixed 
beginning and a free (boundary conditions (5)) end of the environment. The solution of the formulated boundary 
value problems for equation (2) can be written in the form of superposition of direct and reflected waves: 

( ) ( ) ( )1 2, cos cosu x t C x t C x tκ ω φ κ ω ψ= + + + − + , (6) 

where φ , ψ , ,κ ω , 1C , 2C  – constants, the content and appearance of which will be set below. 
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Note. In principle, from the mathematical point of view, it is not important to represent the wave in 
the form of a combination of sinusoidal or cosine components. 

As follows from (2), relation (6) will transform the unperturbed equation (2) into the identity if the 
wavenumber and frequency are related by the dispersion relation: 

2 2 2 0ω α κ− = . (7) 
Satisfying one of the boundary conditions (3) – (5), in order to find the relationship between the initial 

phases of the direct and reflected waves and the wave number, i.e. the parameters , ,φ ψ κ , we obtain a system 
of trigonometric equations: 

( ) ( )1 2cos cos 0C t C tω φ ω ψ+ + − + = , 

( ) ( )1 2sin sin 0C t C tω φ ω ψ+ + − + =  
(8) 

( ) ( )1 2cos cos 0C l t C l tκ ω φ κ ω ψ+ + + − + = , 

( ) ( )1 2sin sin 0C l t C l tκ ω φ κ ω ψ+ + + − + =  
(9) 

( ) ( )1 2cos cos 0C t C tω φ ω ψ+ + − + = , 

( ) ( )1 2sin sin 0C l t C l tκ ω φ κ ω ψ+ + + − + =  
(10) 

Parameters 1 2, , ,C C φ ψ  are constant, therefore each of the obtained systems of equations must be 
fulfilled for an arbitrary value of t . The latter will take place if the phases of the direct and reflected waves 
are related by ratios:  

1 2cos cos 0C Cφ ψ+ = , 1 2cos cos 0C Cφ ψ− = ; 

( ) ( )1 2cos cos 0C l C lκ φ κ ψ+ + + = , ( ) ( )1 2sin sin 0C l C lκ φ κ ψ+ + + = ; 
(11) 

1 2sin sin 0C Cφ ψ− = , 1 2sin sin 0;С Cφ ψ+ =  

( ) ( )1 2sin sin 0C l C lκ φ κ ψ+ − + = , ( ) ( )1 2cos cos 0С l C lκ φ κ ψ+ − + = ; 
(12) 

1 2cos cos 0C Cφ ψ+ = , 1 2sin sin 0C Cφ ψ− = ; 

( ) ( )1 2cos cos 0C l C lκ φ κ ψ+ − + = , ( ) ( )1 2sin sin 0C l C lκ φ κ ψ+ + + = . 
(13) 

As follows from (11)–(13), the obtained systems of equations have different from trivial ( 1 2 0C C= = ) 
solutions in the case when there are relationships of the form between the phases of the direct and reflected 
waves and the wave number: 

( )sin 0φ ψ+ = , ( ) 02 =ψ+ϕ+κlsin . (14)
From (7), (11)–(13) and (14), it follows: a) direct and reflected waves in the considered homogeneous 

medium move in opposite phases ( 0φ ψ+ = ) or the phases of the direct and reflected waves are shifted 
relative to each other by a constant amount (φ ψ π+ = ); b) the wave numbers for the considered boundary 

conditions take values 
k

l

πκ = , 
k

l

πκ = , 
( )2 1

2

k

l

π
κ

+
= , 1,2,...k = ; c) the natural frequencies of wave 

packets in a medium with fixed and free ends are equal 
k

l

πω α= , and in the case of fixing only its beginning – 

( )2 1k

l

π
ω α

+
= ; d) the amplitudes of direct and reflected waves in a homogeneous medium are the same. 

Thus, single-frequency wave processes in homogeneous one-dimensional structures, which are 
described by the differential equation (2) and satisfy the boundary conditions (3)–(5) can be written in the form: 

,ݔ)௞଴ݑ (ݐ = ܽ௞
۔ۖۖەۖۖ
ۓ cos ൬݈݇ߨ ݔ) + (ݐߙ + ߶௞൰ − cos ൬݈݇ߨ ݔ) − (ݐߙ − ߶௞൰ ,cos ൬݈݇ߨ ݔ) + (ݐߙ + ߶௞൰ + cos ൬݈݇ߨ ݔ) − (ݐߙ − ߶௞൰ ,cos ቆ(2݇ + 2݈ߨ(1 ݔ) + (ݐߙ + ߶௞ቇ − cos ቆ(2݇ + 2݈ߨ(1 ݔ) − (ݐߙ − ߶௞ቇ , (15) 

where ka  – amplitude parameter; kφ  – initial phase of direct and reflected waves. 
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It should be noted that the resulting expressions are easy to convert to the form: 

,ݔ)෤௞଴ݑ (ݐ = 2ܽ௞ ۔ۖەۖ
−ۓ sin ௞గ௟ ݔ sin ቀߙ ௞గ௟ ݐ + ߶௞ቁ ,cos ௞గ௟ ݔ cos ቀߙ ௞గ௟ ݐ + ߶௞ቁ ,sin ଶ(௞ାଵ)గଶ௟ ݔ sin ቀߙ ଶ(௞ାଵ)గଶ௟ ݐ + ߶௞ቁ, (16) 

and they, as expected, coincide with the known results [1,6], which can be found by the Fourier method for 
the corresponding boundary value problems for the unperturbed wave equation. 

For the differential equation (2), additional initial conditions are considered (a mixed problem is 
posed): ݑ଴(ݔ, ݐ|(ݐ = 0 =   ,(ݔ)߮

డ௨బ(௫,௧)డ௧ ݐ| = 0 =  (17) ,(ݔ)ߴ

where ߮(ݔ) and (ݔ)ߴ – known smooth functions that determine the initial state of the environment), then 
the solution of such a problem can be obtained in the form of a linear combination of its single-frequency 
solutions, i.e. ݑ଴(ݔ, (ݐ = ∑ ,ݔ)௡଴ݑ௡ܦ ௡(ݐ , (18) 
and the values of the integration constants are from the initial conditions (17). We will not consider the 
mixed problem for the perturbed equation (1) below, but will construct only the solution of the perturbed 
equation that satisfies one of the homogeneous boundary conditions in a form close to the k-th form of 
the unperturbed equation, and therefore, in the corresponding formulas, we will omit the index k  for 

ease of writing. 
The perturbed equation. This case takes place in the refined statement of the researched problem: in 

the case when nonlinear-elastic characteristics of the body are taken into account; viscoelastic forces that 
occur during oscillatory processes in solid bodies; small periodic disturbances. Developing the general idea 
of the asymptotic representation of the solution of quasi-linear differential equations, we will look for the 
solution of the perturbed equation (1) under homogeneous boundary conditions (3)–(5) in the form of an 
asymptotic series: ݔ)ݑ, (ݐ = ,ܽ)଴ݑ̄ ,ݔ (ߠ + ,ܽ)ଵݑߝ ,ݔ ,ߠ ߯) + ,ܽ)ଶݑଶߝ ,ݔ ,ߠ ߯)+. .., (19)

in which ߠ = ߙ ௞గ௟ ݐ + ߶ for boundary conditions (3) and (4) and ߠ = ߙ ଶ(௞ାଵ)గଶ௟ ݐ + ߶ for boundary 

conditions (5), ̄ݑ଴(ܽ, ,ݔ (ߠ = ,ݔ)଴௞ݑ  with the only difference that for the perturbed case the parameters (ݐ

a and ߶ are not constant but unknown slowly changing functions. To find the law of change of the 

latter for the perturbed equation (1), it is necessary to consider two cases: a) non-resonant – for which 
the frequency of natural oscillations of the undisturbed system ߱௞ is related to the frequency of the 

external disturbance by the aspect ratio ݉߱௞ ≠ ,݉ ,ߤ݊ ݊ = 1, 2, … and resonant – for which there is a 

place ݉߱௞ ≈  .ߤ݊
A non-resonant case. It is known [1] that in the non-resonant case the amplitude of oscillations of 

nonlinear systems does not depend on the frequency of the external periodic disturbance, therefore, as in [4], 
the laws of change of the slowly changing functions ܽ(ݔ, ,ݔ)߶ and (ݐ  will be specified in the form of (ݐ
differential equations: ܽ௧ = (ܽ)ଵܣߝ + (ܽ)ଶܣଶߝ + ⋯, ܽ௫ = (ܽ)ଵܤߝ + (ܽ)ଶܤଶߝ + ⋯, ߶௧ = (ܽ)ଵܥߝ + (ܽ)ଶܥଶߝ + ⋯, ߶௫ = (ܽ)ଵܦߝ + (ܽ)ଶܦଶߝ + ⋯, 

(20) 

the right parts of which are still unknown functions and are found so that the asymptotic representation (19) 
satisfies the perturbed boundary value problem with the necessary accuracy. 
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As for the unknown functions ݑଵ(ܽ, ,ݔ ,ߠ ,ܽ)ଶݑ ,(߯ ,ݔ ,ߠ ߯) –  they must: a) be defined so  
that the asymptotic representation of the solution (19) satisfies the original equation (1) with the 
required accuracy; b) be 2ߨ – periodic relative to ߠ, ߯; c) satisfy the boundary conditions resulting 
from (3), (4) or (5). Below, without reducing the generality, we will consider only the boundary 
conditions (3) for the perturbed equation (1). For this purpose, by differentiating (19) with respect to 
time, we obtain: 

( ) ( )1, sin sin cos cost

k k k k k
u x t a x x A a x x

l l l l l

α π π π π πθ θ ε θ θ
          = − + − − + + − −                    

( ) 21 1
1 sin sin ...;

u uk k k
C a x x

l l l

π π α πθ θ μ ε
θ χ

∂ ∂    − + + − + + +     ∂ ∂     
 

( ) ( )
2

1, cos cos 2tt

k k k k
u x t a x x A a

l l l l

α π π π α πθ θ ε       = − + − − + − ×             
 

( )1sin sin 2 cos cos
k k k k k

x x a C a x x
l l l l l

π π α π π πθ θ θ θ          × + + − − + − − +                    
 

+ ൬݈ߨ݇ߙ ൰ଶ ߲ଶݑଵ߲ߠଶ + 2 ݈ߨ݇ߙ ߤ ߲ଶݑଵ߲߲߯ߠ + ଶߤ ߲ଶݑଵ߲߯ଶ ቋ + ଶߝ … 

(21) 

Similarly, by differentiating with respect to the second independent variable x , we have: 

( ) ( )1, sin sin cos cosx

k k k k k
u x t a x x B a x x

l l l l l

π π π π πθ θ ε θ θ
          = − + − − + + − − −                    −ܦଵ(ܽ) ቂsin ቀ௞గ௟ ݔ + ቁߠ − sin ቀ௞గ௟ ݔ − ቁቃߠ + డ௨భడ௫ ቅ + ଶߝ …; 

( ) ( )
2

1, cos cos 2xx

k k k k
u x t a x x B a

l l l l

π π π πθ θ ε       = − + − − + − ×             
 

( )
22

21
1 2

sin sin 2 cos cos
uk k k k k

x x a D a x x
l l l l l x

π π π π πθ θ θ θ ε
∂           + + − + − − + +           ∂           

. 

(22) 

The asymptotic representation of the solution (19), (20) will satisfy the original equation (1), if the 
coefficients at the same powers of the small parameter of its right and left parts, taking into account (21), 
(22), will be the same. The latter serves as a condition for determining unknown functions ݑଵ(ܽ, ,ݔ ,ܽ)ଶݑ ,(ߠ ,ݔ ,ܽ)ଵݑ in particular, for finding ,(ߠ ,ݔ we obtain a linear differential equation: ߱௞ଶ ,(ߠ ߲ଶݑଵ߲ߠଶ + 2߱௞ߤ ߲ଶݑଵ߲߲߯ߠ + ଶߤ ߲ଶݑଵ߲߯ଶ − ଶߙ ߲ଶݑଵ߲ݔଶ = ,ܽ)ଵܨ ,ݔ (ߠ + 4߱௞ sin ߨ݈݇ × × ሼሾܣଵ(ܽ) + ଵ(ܽ)ሿܤଵିߙ cos ߠ + ܽሾܥଵ(ܽ) + ଵ(ܽ)ሿܦଵିߙ sin  ,ሽߠ

(23)

where ܨଵ(ܽ, ,ݔ ,ߠ ߯) = ݂ሾݑ, ,௫ݑ ,௧ݑ ߯ሿ, and ݂ሾݑ, ,௫ݑ ,௧ݑ ߯ሿ is function ݂ሾݑ, ,௫ݑ ,௧ݑ ߯ሿ value when: ݑ = ܽ ቀݏ݋ ቀ௞గ௟ ݔ + ቁߠ − cos ቀ௞గ௟ ݔ − ݑ ,ቁቁߠ = ܽ ቀݏ݋ ቀ௞గ௟ ݔ + ቁߠ − cos ቀ௞గ௟ ݔ − ௧ݑ ,ቁቁߠ = ߙ− ௞గ௟ ቀsin ቀ௞గ௟ ݔ + ቁߠ + sin ቀ௞గ௟ ݔ −  .ቁቁߠ

 

Differential equations of a similar form are obtained for the second and subsequent 
approximations, only for them the functions ࡲ૛(ࢇ, ,࢞ ,࣒ ,(࣑ ,ࢇ)૜ࡲ ,࢞ ,࣒ ,(࣑ … have a slightly more 
complicated form. Let's proceed to the solution of equation (23), that is, to finding the function ࢛૚(ࢇ, ,࢞ ,ࣂ ,࢞)࢛ The function .(࣑ ,ࢇ)࢏࢛ will satisfy the boundary conditions (3) if (࢚ ,࢞ ,ࣂ  presented (࣑
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in the form of series on the system of orthogonal functions ሼ(࢞)࢔ࢄሽ = ቄܖܑܛ ࢒࣊࢔  ቅ, in particular for the࢞

first approximation: ݑଵ(ܽ, ,ݔ ,ߠ ߯) = ∑ ,ܽ)ଵ௡ݑ (ߠ sin ௡గ௟ ௡ୀ଴ݔ . (24) 

Then the unknown 2ߨ – periodic by ߠcoefficients ݑଵ௡(ܽ,  are determined, as follows from (23), by (ߠ
a system of differential equations: ߱௞ଶ ቆ߲ଶݑଵ௞߲ߠଶ + ଵ௞ቇݑ + 2߱௞ߤ ߲ଶݑଵ௞߲߲߯ߠ = ,ܽ)ଵ௞ܨ ,ߠ ߯) + 4߱௞ × × ሼሾܣଵ(ܽ) + ଵ(ܽ)ሿܤଵିߙ cos ߠ + ܽሾܥଵ(ܽ) + ଵ(ܽ)ሿܦଵିߙ sin  ,ሽߠ

when kn =  

( )χθ
θχ

μω
θ

ω ,,2 1
1

2

12

2

2
1

2
2 aF

u
u

k

nu
n

k
kn

n
k =

∂
∂+








+

∂
∂

, 

when kn ≠ , 

(25) 

where ܨଵ௡(ܽ, ,ߠ ߯) = ଶ௟ ׬ ,ܽ)ଵܨ ,ݔ ,ߠ ߯)௟଴ sin ௡గ௟  .ݔ݀ݔ

To determine the influence of nonlinear forces on the laws of change of the amplitude and phase of 
the wave process, that is, the functions ܣଵ(ܽ), ,(ܽ)ଵܤ ,(ܽ)ଵܥ ,ܽ)ଵ௞ݑ ଵ(ܽ), let's impose on the coefficientܦ ,ߠ ߯), in addition to the condition of its π2 -periodicity by θ , an additional condition – the condition 
of the absence of proportional terms θcos and θsin . This condition is equivalent to the condition of the 
absence of secular terms in the coefficients ݑଵ௞(ܽ, ,ߠ ߯). The latter allows obtaining a system of two algebraic 
equations with respect to four unknown functions ܣଵ(ܽ), ,(ܽ)ଵܤ ,(ܽ)ଵܥ (ܽ)ଵܣ :(ܽ)ଵܦ + (ܽ)ଵܤଵିߙ = − ఈସగమఠೖ௟ × ׬ ׬ ׬ ,ܽ)ଵܨ ,ݔ ,ߠ ߯) sin ௞గ௟ ݔ cos ݀ ଶగ଴ଶగ଴௟଴ݔ݀ߠ݀ߠ߯ (ܽ)ଵܥ , , + (ܽ)ଵܦଵିߙ = − ଶܽ߱௞݈ߨ4ߙ × න න න ,ܽ)ଵܨ ,ݔ ,ߠ ߯) sin ߨ݈݇ ݔ sin ݀ ଶగ.ݔ݀ߠ݀ߠ߯

଴
ଶగ

଴
௟

଴  
(26) 

Additional conditions connecting the above unknown functions can be obtained, for example, from 
the compatibility conditions for the functions ( )tx,ϕ  (or ( )t,xψ ) and ( )txa , , that is, from the conditions డమథడ௫డ௧ = డమథడ௧డ௫, 

డమ௔డ௫డ௧ = డమ௔డ௧డ௫. They, as follows from the equations of walking approximation for the specified 

functions, are transformed into the form: ܣଵ(ܽ) ௗ஽భ(௔)ௗ௔ = (ܽ)ଵܤ ௗ஼భ(௔)ௗ௔ (ܽ)ଵܣ  , ௗ஻భ(௔)ௗ௔ = (ܽ)ଵܤ ௗ஺భ(௔)ௗ௔ . 
(27) 

By direct integration of the second equation of the obtained ratios, we find: ܣଵ(ܽ) =   (ܽ)ଵܤߛ
(γ  – some constant), and from the first equation (27) taking into account the latter, it follows that ܦଵ(ܽ) =  .(ܽ)ଵܥߛ

The coefficients themselves ݑଵ௡(ܽ, ߰), as follows from (23), are represented by Fourier series in the 
form: ݑଵ௞(ܽ, ,ߠ ߯) = ଶ݈ߨ14 ෍ 1(1 − ݉ଶ)߱௞ଶ − ௠,௦ߤ௞߱ݏ2݉ ݌ݔ݁ ݅ ߠ݉) + (߯ݏ ×

× න න න ,ܽ)ଵܨ ,ݔ ,ߠ ߯) sin ߨ݈݇ ݔ ݌ݔ݁ − ߠ݉)݅ + ଶగߠ݀(߯ݏ
଴

ଶగ
଴

௟
଴  (28)  ,ݔ݀߯݀

when  (1 − ݉ଶ)߱௞ଶ − ߤ௞߱ݏ2݉ ≠ 0. 
A resonant case. In contrast to the non-resonant case, in the resonant case the amplitude of the 

process significantly depends on the phase difference of the natural oscillations and the forcing force, 
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i.e. on  ߭ = ߠ − ߯. Below we consider only the case of the main resonance, i.e. ߱௞ =  for which the ,ߤ
amplitude and phase difference are given by differential equations: 

( ) ( ) ...,aA,aAat +υε+υε= 2
2

1 , ܽ௫ = ,ܽ)ଵܤߝ ߭) + ,ܽ)ଶܤଶߝ ߭) + ⋯; ߭௧ = ߱௞ − ߤ + ,ܽ)ଵܥߝ ߭) + ,ܽ)ଶܥଶߝ ߭)+. .., ( ) ( ) ...,aD,aDx +υε+υε=υ 2
2

1  
(29) 

Representing the solution of equation (1) in the resonant case in the form (19) with the only 
difference that the parameters ܽ and ߠ = ߭ + ߯ are connected by the relations that follow from (29), 
we obtain: 

( ), sin sint

k k k
u x t a x x

l l l

α π π πθ θ    = − + − − +        

( )1 , cos cos
k k

A a x x
l l

π πε υ θ θ
     + − − −         

 

( )1 , sin sin
k k

C a x x
l l

π πυ θ θ    − + + − +        
21 1 ...;

u uk

l

α π μ ε
θ χ

∂ ∂+ +∂ ∂ 
 

( )
2

, cos costt

k k k
u x t a x x

l l l

α π π πθ θ      = − + − − +            
( ) ( ) ( )1

1

,
2 ,k

C a k
A a

l

υ α πε ω μ υ
υ

  ∂ − − + ×  ∂  
 

sin sin
k k

x x
l l

π πθ θ    × + + − +        
( ) ( ) ( )1

1

,
2 ,k

A a k
a C a

l

υ α πω μ υ
υ

 ∂ 
− − × ∂ 

 

cos cos
k k

x x
l l

π πθ θ    × + − − +        

2 2 2 2
2 21 1 1

2 2
2 ...

u u uk k

l l

α π α π μ μ ε
θ θ χ χ

∂ ∂ ∂  + + +  ∂ ∂ ∂ ∂  
. 

,ݔ)௫௫ݑ (ݐ = −ܽ ൬݈݇ߨ൰ଶ ൤cos ൬݈݇ߨ ݔ + ൰ߠ − cos ൬݈݇ߨ ݔ − ൰൨ߠ
+ ( )12 , sin sin

k k k
B a x x

l l l

π π πε υ θ θ     − + + − −          
 

( )12 , cos cos
k k k

a D a x x
l l l

π π πυ θ θ    − + − − +        

22
21

2
...

u

x
ε

∂  +∂ 
 

(30) 

Thus, in the resonant case, the required functions are connected by a differential equation: ߱௞ଶ ቆ߲ଶݑଵ௞߲ߠଶ + ଵ௞ቇݑ + 2߱௞ߤ ߲ଶݑଵ௞߲߲߯ߠ = 

= ,ܽ)ଵ௞ܨ ,ߠ ߯) + 4߱௞ ቊቈ߱௞ − 2߱௞ߤ ,ܽ)ଵܥ߲ ߭)߲߭ + (ܽ)ଵܣ + ଵ(ܽ)቉ܤଵିߙ ݏ݋ܿ ߠ + 

+ܽ ቈܥଵ(ܽ) + (ܽ)ଵܦଵିߙ − ߱௞ − 2߱௞ܽߤ ,ܽ)ଵܣ߲ ߭)߲߭ ቉ ݊݅ݏ ቋߠ , 
when kn = , 

, 

when kn ≠ . 

(31) 

Proceeding in the same way as for the non-resonant case, with the only difference that in relations (31) ߠ is expressed through the phase difference ߭ and the phase of the external disturbance ߯ in the form of 

( )χθ=
θχ∂

∂μω+









+

θ∂
∂ω ,,aF

u
u

k

nu
n

k
kn

n
k 1

1
2

12

2

2
1

2
2 2
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ߠ = ߭ + ߯, we obtain a system of linear differential equations for determining the unknown functions ܣଵ(ܽ, ߭), ,ܽ)ଵܤ ,ܽ)ଵܥ ,(߭ ߭), ,ܽ)ଵܦ ߭): ቈ1 − 2߱௞ߤ ,ܽ)ଵܥ߲ ߭)߲߭ + (ܽ)ଵܣ + ଵ(ܽ)቉ܤଵିߙ cos ߭ + 
+ܽ ቈܥଵ(ܽ) + (ܽ)ଵܦଵିߙ − ߱௞ − 2߱௞ܽߤ ,ܽ)ଵܣ߲ ߭)߲߭ ቉ sin ߭ = 
= − ௞݈߱ߨ2ߙ න න ,ܽ)ଵܨ ,ݔ ߯ + ߭, ߯) sin ߨ݈݇ ݔ cos ߯ ଶగ:ݔ݀߯݀

଴
௟

଴  

ቈ߱௞ − 2߱௞ߤ ,ܽ)ଵܣ߲ ߭)߲߭ − (ܽ)ଵܥ − ଵ(ܽ)቉ܦଵିߙ sin ߭ − 
−ܽ ቈܥଵ(ܽ) + (ܽ)ଵܦଵିߙ − ߱௞ − 2߱௞ܽߤ ,ܽ)ଵܣ߲ ߭)߲߭ ቉ cos ߭ = 
= ௞݈߱ߨ2ߙ න න ,ܽ)ଵܨ ,ݔ ߯ + ߭, ߯) sin ߨ݈݇ ݔ sin ߯ ଶగݔ݀߯݀

଴
௟

଴ . 

(32) 

A system of differential equations (32) is obtained together with the compatibility conditions, which 

take the form: ܣଵ(ܽ, ߭) ,ܽ)ଵܤ߲ ߭)߲ܽ + (߱௞ − (ߤ ,ܽ)ଵܤ߲ ߭)߲߭ = ,ܽ)ଵܤ ߭) ,ܽ)ଵܣ߲ ߭)߲ܽ + (߱௞ − (ߤ ,ܽ)ଵܣ߲ ߭)߲߭ ,ܽ)ଵܣ , ߭) ,ܽ)ଵܦ߲ ߭)߲ܽ + (߱௞ − (ߤ ,ܽ)ଵܦ߲ ߭)߲߭ = ,ܽ)ଵܣ ߭) ,ܽ)ଵܥ߲ ߭)߲ܽ + (߱௞ − (ߤ ,ܽ)ଵܥ߲ ߭)߲߭ . (33) 

This determines the main characteristics of the wave in the medium. Note that the technique 

itself can be transferred to the case of boundary conditions (4) and (5). For the analysis of the resulting 

differential equations, in the general case, it is possible to use, for example, qualitative or numerical 

methods for linear differential equations. As for specific problems, for many cases it is significantly 

simplified, for example, in the case when the elastic forces satisfy the nonlinear technical law of 

elasticity [8], then ܣଵ(ܽ) = 0 and ܤଵ(ܽ) = 0; if only nonlinear resistance forces are taken into account, 

then ܥଵ(ܽ) = 0 and ܦଵ(ܽ) = 0. 

As an example, consider the longitudinal oscillations of a hinged rod, the material of which satisfies 

the nonlinear technical law of elasticity [8] under the assumption that the resistance forces (internal friction 

forces) are small and proportional to the speed. The differential equation that describes the motion of such a 

one-dimensional system takes the form: ݑ௧௧ − ௫௫ݑଶߙ = ௫௫ݑଶ(௫ݑ)ߝ −  ௧, (34)ݑߚ

where ߙ, ,ߚ  are expressed through the physical and mechanical characteristics of the rod. Boundary – ߝ

conditions for the differential equation (34), which correspond to the specified method of fixing, take the 

form (3). In the first approximation, in the regime of single-frequency oscillations close to the cosine form, 

the dynamic process is described in the rod by the dependence ݔ)ݑ, (ݐ = ܽ ቀcos ቀ݈ߨ ݔ) + (ݐߙ + ߶ቁ − cos ቀ݈ߨ ݔ) − (ݐߙ − ߶ቁቁ (35) 

in which the amplitude parameter and phase of oscillations are determined by differential equations: ܽ௧ = ߚ− ௔ସ; ܽ௫ = 0; ߶௧ = ଷଵଶ଼ ఌఈ ܽଶ;  ߶௫ = 0. (36) 

Below, Fig. 1 shows the laws of change in frequency of oscillations over time. 

The obtained dependencies show that in the first approximation of the solution of the given problem, 
the constant resistance force leads to the establishment of an isochronous dynamic process in the system. 
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As for the nonlinear restoring force, the latter can lead to either an increase in the frequency of natural 
oscillations (for rigid systems) or a decrease in it (for soft systems). In the case of neglecting the resistance 
force, the frequency of natural oscillations depends significantly on the amplitude of the initial disturbance. 

 

 

Fig. 1. Graphs of the dependence of the frequency  
of natural oscillations of the rod on time: 1 – linear case (ࢼ = ૙, ࢿ = ૙);  

2, 3 – nonlinear case without taking into account the resistance force 
(2 – hard, 3 – soft nonlinear-elastic system); 4, 5 – non-linear case taking  

into account the resistance force (4 – for the case of a rigid system, 5 – for a soft system) 

Conclusions 

The proposed technique allows to investigate a wide range of important practical problems by 
mathematical modeling of the motion of one-dimensional bodies using boundary value problems for 
equation (1). Its main idea can be generalized to the case of more complex boundary conditions, as well as 
to some more complex mechanical systems, in particular to mechanical systems characterized by 
longitudinal motion, and such mechanical systems are much more difficult to analyze analytically. 
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