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1. Introduction

The paper aims to study the class of equations which is a natural generalization of the classical equation
of diffusion with inertia of A. M. Kolmogorov [1]. This equation and its various generalizations have
been studied by many authors. Linear and nonlinear ultraparabolic equations arise in some problems of
probability theory, in the mathematical modeling of options, in Brownian motion theory, in convective
diffusion theory, in binary electrolytes theory, during the modeling of diffusion with inertia and electron
scattering in age approximation of the slowed-down electrons theory, in the biology, economics and
other fields of science [2–11]. Levi method, including its modifications, is the main information source
and it is a method to construct the Cauchy problem fundamental solution (FSCP) [11, 12]. However,
the application of this method for degenerate equations of Kolmogorov type is significantly complicated
in case when coefficients are dependent on all variables. Besides traditional difficulties, there are serious
ones associated with the equation degeneracy. The Levi stepwise method was used for ultraparabolic
equations of Kolmogorov type with the different numbers of groups of spatial variables, both without
degeneration [13–17], and with degeneration on the initial hyperplane [18]. In particular, FSCP Z
for equations with coefficients that are independent on the variables of degeneration was constructed
in [13,18], in [14,15] it was constructed for equations with one group of spatial variables of degeneration,
and in [16,17] it was done for equations with two groups of spatial variables of degeneration. Estimates
of the function Z and its derivatives, and estimates of the increments of principal derivatives of Z with
respect to spatial variables are also found in these papers.

This work is a continuation of the launched research of ultraparabolic equations of the Kolmogorov
type with two groups of degenerate variables that also have degeneration on the initial hyperplane.
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The main purpose is to obtain additional properties of FSCP and their application for establishing of
the theorems about integral representations of solutions and about correct solvability of the Cauchy
problem for the corresponding homogeneous and inhomogeneous equation. These results are similar
to the results for the same equations in the case without degeneration on the initial hyperplane.

2. Notation, assumptions and supporting information

Let n, n1, n2 and n3 be given positive integers such that n1 > n2 > n3 > 1 and n = n1 + n2 + n3;
Nj := {1, . . . , j}, j ∈ N, Zj := Nj∪{0}, mj = j−1/2, j ∈ N3. We suppose that spatial variable x ∈ R

n

consists of three groups of variables x := (x1, x2, x3), where components xj := (xj1, . . . , xjnj) ∈ R
nj ,

j ∈ N3. Accordingly, the multi-index k ∈ Z
nj

+ we will write in the form k := (k1, k2, k3), where
kj := (kj1, . . . , kjnj ) ∈ Z

nj

+ , |kj | := |kj1| + . . . + |kjnj |, j ∈ N3; M := m1n1 +m2n2 +m3n3; Mk :=
m1|k1|+m2|k2|+m3|k3|; ΠH := {(t, x)|t ∈ H,x ∈ R

n}, if H ⊂ R.
In addition, we will use the following notations:

z(0) := x, z(1) := (z1, x2, x3), z(2) := (x1, z2, x3), z(3) := (x1, x2, z3),

x(1) := (x1, z2, z3), x(2) := (x1, x2, z3),

∆z
xf(·, x, ·) := f(·, x, ·)− f(·, z, ·), ∆zs

xs
f(·, x, ·) := ∆z(s)

x f(·, x, ·), s ∈ N3,

x̂1 := (x11, . . . , x1n2), x′1 := (x11, . . . , x1n3), x′2 := (x21, . . . , x2n3),

X1(t) := x1, X2(t) := x2 + tx̂1, X3(t) := x3 + tx′2 + 2−1t2x′1, t ∈ R,

X(t) := (X1(t),X2(t),X3(t)), Ξ(1)(t, τ) := (ξ1,X2(t, τ),X3(t, τ)), Ξ(2) := (ξ1, ξ2,X3(t, τ)),

ρ(t;x, ξ) :=

3
∑

j=1

t1−2j|Xj(t)− ξj|
2, t ∈ R, {x, ξ} ⊂ R

n,

A(t, τ) :=

∫ t

τ

dθ

α(θ)
, B(t, τ) :=

∫ t

τ

β(θ)dθ

α(θ)
, where α, β are some functions on R,

Ec(t, x; τ, ξ) := exp{−cρ(B(t, τ);x, ξ)}, t > τ, {x, ξ} ⊂ R
n,

Ed(t, τ) := exp{dA(t, τ)}, Ed
c (t, x; τ, ξ) := Ec(t, x; τ, ξ)E

d(t, τ), t > τ, {x, ξ} ⊂ R
n, d ∈ R.

Consider the equation

Lu(t, x) := (S −A(t, x, ∂x1))u(t, x) = f(t, x), (t, x) ∈ Π(0,T ], (1)

with

S := α(t)∂t − β(t)

( n2
∑

j=1

x1j∂x2j +

n3
∑

j=1

x2j∂x3j

)

,

A(t, x, ∂x1) := β(t)

n1
∑

j,l=1

ajl(t, x)∂x1j∂x1l
+ β(t)

n1
∑

j=1

aj(t, x)∂x1j + a0(t, x),

where f is a given function, and u is an unknown function; α and β are continuous on the interval
[0, T ] functions and α(t) > 0, β(t) > 0 for t ∈ (0, T ], α(0)β(0) = 0 and β is a monotonically increasing
function. The degenerations at t = 0 in the equation (1) are generated by the functions α and β
included in the equation.

We will classify the degeneration with the help of values A(T, 0) and B(T, 0). Thus, in the case
of A(T, 0) < ∞ we will say that the equation (1) is weakly degenerate. In the case A(T, 0) = ∞ it
is called strongly degenerate, and very strongly degenerate, if A(T, 0) = ∞ and B(T, 0) = ∞. For
the equation (1) the Cauchy problem with the initial condition as t = 0 isn’t always considered in
the common formulation. But we can say about FSCP as about the following function: Z(t, x; τ, ξ),
0 < τ < t 6 T , which has with respect to variables t and x all derivatives from the equation (1) and
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for any τ ∈ (0, T ) and for arbitrary continuous and bounded function ϕ : Rn → C the formula

u(t, x) :=

∫

Rn

Z(t, x; τ, ξ)ϕ(ξ)dξ, (t, x) ∈ Π(τ,T ], (2)

determines in the layer Π(τ,T ] the solution of the Cauchy problem for the homogeneous equation (1)
with the initial condition

u(t, x)|t=τ = ϕ(x), x ∈ R
n. (3)

In the case of weak degeneration, it can be considered the Cauchy problem for the equation (1)
with the initial condition

u(t, x)|t=0 = ϕ(x), x ∈ R
n; (4)

in the case of strong degeneration, the initial condition is

(u(t, x)Ed(T, t))|t=0 = ϕ(x), x ∈ R
n, (5)

where d is the constant from the estimates of FSCP. In the case of very strong degeneration, the equation
is considered without any initial condition. To combine the cases of weak and strong degeneration let
introduce the following notation

Z0(t, x; ξ) :=

{

Z(t, x; 0, ξ), (t, x) ∈ Π(0,T ], if A(T, 0) <∞;

lim
τ→0

(

Z(t, x; τ, ξ)E−d(T, τ)
)

, (t, x) ∈ Π(0,T ], if A(T, 0) = ∞.

Assume that the coefficients ajl, aj and a0 of the equation (1) are complex-valued functions on
Π[0,T ] satisfying the following conditions:

(i) ajl, aj , a0 are bounded and continuous with respect to t and there exists such constant δ > 0 that
for any (t, x) ∈ Π[0,T ] and σ1 := (σ11, . . . , σ1n1) ∈ R

n1 the inequality Re
∑n1

j,l=1 ajl(t, x)σ1jσ1l > δ|σ1|
2

is valid;
(ii) ajl, aj , a0 are Hölder continuous in spatial variables function in the following sense:

∃H1 > 0 ∃ γ1 ∈ (0, 1] ∀
{

(t, x), (t, z(1))
}

⊂ Π[0,T ] : |∆
z1
x1
a(t, x)| 6 H1|x1 − z1|

γ1 , (6)

∃H2 > 0 ∃ γ2 ∈ (1/3, 2/3] ∀
{

(t, x), (t, z(2))
}

⊂ Π[0,T ], ∀h ∈ [τ, T ] :

|∆z2
x2
a(t, x)| 6 H2

(

(B(h, τ))m2γ2 + |X2(B(h, τ)) − z2|
γ2
)

, (7)

∃H3 > 0 ∃ γ3 ∈ (3/5, 4/5] ∀
{

(t, x), (t, z(3))
}

⊂ Π[0,T ], ∀h ∈ [τ, T ] :

|∆z3
x3
a(t, x)| 6 H3

(

(B(h, τ))m3γ3 + |X3(B(h, τ)) − z3|
γ3
)

, (8)

∃H4 > 0 ∀
{

(t, x), (t, ξ(1)), (t, z(2))
}

⊂ Π[0,T ], ∀h ∈ [τ, T ] :
∣

∣∆ξ1
x1
∆zs

xs
a(t, x)

∣

∣ 6 H4|x1 − ξ1|
γ1
(

(B(h, τ))msγs + |Xs(B(h, τ)) − zs|
γs
)

, s ∈ {2, 3}, (9)

where a defines every coefficients ajl, aj and a0. In the condition (9) the constants γ1, γ2 and γ3 are
the same as in the appropriated conditions (6)–(8);

(iii) the coefficients ajl, aj , a0 of the expression A(t, x, ∂x1) have bounded derivatives of the same
forms as theirs multiplier. The derivatives of these coefficients in the layer Π[0,T ] satisfy the condi-
tion (ii).

Note that for h = τ from the conditions (7), (8) the common Hölder continuous in variables x2 and
x3 conditions follow. The sufficient conditions for (7), (8) are given in the works [2] and [4] respectively.
As it was proved in [18], under the conditions (i)–(ii) for the equation (1), there exists FSCP Z for
which the following estimates hold:

∣

∣∂kxZ(t, x; τ, ξ)
∣

∣ 6 C(B(t, τ))−M−MkEd
c (t, x; τ, ξ), (10)

|SZ(t, x; τ, ξ)| 6 C(B(t, τ))−M−1Ed
c (t, x; τ, ξ), (11)

∣

∣

∣

∣

∫

Rn

∂ksxs
Z(t, x; τ, ξ)dξ

∣

∣

∣

∣

6 C(B(t, τ))−ms(1−αs)Ed(t, τ), ks ∈ Z
ns
+ \{0}, s ∈ N3, (12)
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∣

∣

∣

∣

∆ξl
xl

∫

Rn

∂ksxs
Z(t, x; τ, ξ)dξ

∣

∣

∣

∣

6 C|xl − ξl|
αl(B(t, τ))−ms(1−αs)−mlαlEd(t, τ), ks ∈ Z

ns
+ \{0}, {l, s} ∈ N3,

(13)
∣

∣

∣

∣

∫

Rn2+n3

∂ksxs
Z(t, x; τ, ξ)dξ

∣

∣

∣

∣

6 C(B(t, τ))−m1n1−ms(1−αs)

× E1
c (t, τ, x1 − ξ1)E

d(t, τ), ks ∈ Z
ns
+ \{0}, s ∈ {2, 3}, (14)

∣

∣

∣

∣

∆ξl
xl

∫

Rn2+n3

∂ksxs
Z(t, x; τ, ξ)dξ

∣

∣

∣

∣

6 C|xl − ξl|
αl(B(t, τ))−ms(1−αs)−mlαl

× E1
c (t, τ, x1 − ξ1)E

d(t, τ), ks ∈ Z
ns
+ \{0}, {l, s} ∈ {2, 3}, (15)

∣

∣

∣

∣

∫

Rn3

∂k3x3
Z(t, x; τ, ξ)dξ

∣

∣

∣

∣

6 C(B(t, τ))−m1n1−m2n2−m3(1−α3)

× E1
c (t, τ, x1 − ξ1)E

2
c (t, τ,X2(t, τ)− ξ2)E

d(t, τ), k3 ∈ Z
n3
+ \{0}, |k3| = 1, (16)

∣

∣

∣

∣

∆ξl
xl

∫

Rn2+n3

∂ksxs
Z(t, x; τ, ξ)dξ

∣

∣

∣

∣

6 C|xl − ξl|
αl(B(t, τ))−ms(1−αs)−mlnl

× E1
c (t, τ, x1 − ξ1)E

2
c (t, τ,X2(t, τ)− ξ2)E

d(t, τ), k3 ∈ Z
n3
+ \{0}, |k3| = 1, (17)

where 0 < τ < t 6 T , {x, ξ} ⊂ R
n, k := (k1, k2, k3) ∈ Z

n
+, m1|k1| + |k2| + |k3| 6 1, C is a positive

constant.
Note that the conditions (6)–(8) occur for the Hölder indexes, if we choose α3 = (3 + α1)/5,

α2 = (1 + α1)/3, α1 = α, α ∈ (0, 1]. In this case with the help of special modifying method from the
work [3] for the case of two groups of spatial variables of degeneration we also obtain the following
estimations:

∣

∣∆ξ
x∂

k
xZ(t, x; τ, ξ)

∣

∣ 6 (d(x; ξ))α(B(t, τ))−M−Mk−m1αEd
c (t, x; τ, ξ), (18)

∣

∣∆ξ
xSZ(t, x; τ, ξ)

∣

∣ 6 (d(x; ξ))α(B(t, τ))−M−1−m1αEd
c (t, x; τ, ξ), (19)

where 0 < τ < t 6 T , k := (k1, k2, k3) ∈ Z
n
+, m1|k1| + |k2| + |k3| 6 1, C is a positive constant, and

d(x; ξ) :=
∑3

l=1 |xl − ξl|
1/(2l−1) is the parabolic distance between the points x and ξ, {x, ξ} ⊂ R

n.

3. Definitions of norms and spaces

We introduce function spaces to research correct solvability of the problems with the initial conditions
and the problems without the initial conditions depending on type of the degeneration of the equation.
Since the function Z tends to 0 exponentially as |x| → ∞ then the density of potentials where FSCP is
a kernel can appropriately increase. Really these potentials and, thus, the solutions can exponentially
increase as |x| → ∞. The increasing orders are determined by the orders of equations, and the types
of growth are described by special functions dependent on t.

Consider sets of the functions k(t,a) and s(t), t ∈ [0, T ], which are defined by the following way:

k(t,a) := (k1(t, a1), k2(t, a2), k3(t, a3)), s(t) := (s1(t), s2(t), s3(t)),

where

kj(t, aj) :=











c0aj(c0 − aj(T −B(T, t))2(j−1)+1)−1 for t ∈ (0, T ],

c0aj(c0 − aj(T −B(T, 0))2(j−1)+1)−1, if t = 0, B(T, 0) <∞,

0, if t = 0, B(T, 0) = ∞,

j ∈ N3;

s1(t) := k1(t, a1) + 2(B(t, 0))2k2(t, a2) + 2−23(B(t, 0))4k3(t, a3),

s2(t) := 2k2(t, a2) + 3(B(t, 0))2k3(t, a3), s3(t) := 3k3(t, a3); (20)
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c0 ∈ (0, c), c is the constant from the estimates (10) and (11); a := (a1, a2, a3) is a set of such numbers
that 0 6 aj < c0T

1−2j , j ∈ N3.
Let’s introduce also the following notation:

[k(t,a), ξ] :=

3
∑

j=1

kj(t, aj)|ξj |
2, t > 0, ξj ∈ R

nj , j ∈ N3.

The functions k(t, a) and s(t) have the properties:

kj(t, aj) > kj(0, aj), j ∈ N3, s1(t) > k1(0, a1), sj(t) > kj(0, aj), j ∈ {2, 3}. (21)

Note that functions kj(t, aj), j ∈ N3, and the functions k0j (t, aj), j ∈ N3, in the next form

k0j (t, aj) := c0aj
(

c0 − ajt
2(j−1)+1

)−1
, 0 6 t < (c0/aj)

1/(2j−1), j ∈ N3,

are conducted by relationships

k1(t, a1) = k01
(

B(t, τ), k1(τ, a1)
)

, k0j
(

B(t, τ), kj(τ, aj)
)

6 kj(t, aj), j ∈ {2, 3}.

And since kj(t, aj) := k0j
(

T −B(T, t), aj
)

, t ∈ [0, T ], j ∈ N3, then the inequality

−c0ρ(t, x; 0, ξ) + [k(0,a), ξ] 6 [k(t,a),X(t, 0)], t ∈ (0, T ], {x, ξ} ∈ R
n (22)

holds.
Indeed, using the properties of the functions k0j , j ∈ N3,

− c0
|Xj(t, 0) − ξj|

2

[B(t, 0)]2j−1
+ kj(0, aj)|ξj |

2 = −c0
|Xj(t, 0)− ξj |

2

[T −B(T, t)− (T −B(T, 0))]2j−1

+ k0j (T −B(T, 0), aj)|ξj |
2
6 k0j (T −B(T, t)− (T −B(T, 0)), k0j (T −B(T, 0), aj))|Xj(t, 0)|

2

6 k0j (T −B(T, t), aj)|Xj(t, 0)|
2 = kj(t, aj)|Xj(t, 0)|

2.

(22) follows from these inequalities.
With the help of functions k(t,a) and s(t), t ∈ [0, T ], define the necessary norms and appropriate

spaces. Let p ∈ [1,∞] and u(t, x), (t, x) ∈ Π[0,T ], be given complex-valued measurable for any t ∈ [0, T ]
function. For any t ∈ [0, T ] define the norms:

‖u(t, ·)‖k(t,a)p := ‖u(t, x) exp{−[k(t,a),X(t, 0)]}‖Lp(Rn),

‖u(t, ·)‖s(t)p := ‖u(t, x) exp{−[s(t), x]}‖Lp(Rn).

We will use the following spaces:

• L
k(t,a)
p , t ∈ [0, T ], p ∈ [1,∞], are spaces of measurable functions ϕ : Rn → C, for which the norms

‖ϕ‖
k(t,a)
p are finite;

• Mk(0,a) is space countable-additive functions µ : B → C (generalized Borel measures in R
n) which

satisfy the condition

‖µ‖k(0,a) :=

∫

Rn

exp{−[k(0,a), x]}d|µ|(x) <∞,

where B is a σ-algebra of Borel sets in the space R
n, and |µ| is the total variation of µ;

• L
−s(T )
1 is a space of measurable functions ψ : Rn → C with finite norm

‖ψ‖
−s(T )
1 :=

∥

∥ψ(x) exp{[s(T ), x]}
∥

∥

L1(Rn)
;

• C
−s(T )
0 is a space of continuous function ψ : Rn → C such that for |x| → ∞ we have

|ψ(x)| exp{[s(T ), x]} → 0. A norm in C
−s(T )
0 is defined as

‖ψ‖−s(T )
∞ := sup

x∈Rn

(

|ψ(x)| exp{[s(T ), x]}
)

.

Since, on the base of (20),

‖u(t, ·)‖s(t)p 6 ||u(t, ·)||k(t,a)p , t ∈ [0, T ], p ∈ [1,∞] (23)
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and s(t) > k(0,a), t ∈ [0, T ]. Then for ϕ ∈ L
k(0,a)
p it follows that

‖ϕ‖s(t)p 6 ‖ϕ‖k(0,a)p , t ∈ [0, T ], p ∈ [1,∞]. (24)

Let there exists the expression L∗ which is Lagrange adjoint one to the expression L. Then adjoint
homogeneous equation for (1) is in the form

L∗υ(τ, ξ) :=

(

−α(τ)∂τ +β(τ)

( n2
∑

j=1

ξ1j∂ξ2j +

n3
∑

j=1

ξ2j∂ξ3j

))

υ(τ, ξ)−β(τ)

n1
∑

j,l=1

∂ξ1j∂ξ1l(ajl(τ, ξ)υ(τ, ξ))

+ β(τ)

n1
∑

j=1

∂ξ1j (aj(τ, ξ)υ(τ, ξ)) − aj(τ, ξ)υ(τ, ξ) = 0, (τ, ξ) ∈ Π[0,T ). (25)

Here and further, the bar over the expression means the transition in it to a complex-valued conjugation.

4. Formulation of the main results

The main results of the work are contained in the following theorems.

Theorem 1. Let the coefficients ajl, aj , a0 of the equation (1) fulfill the conditions (i)–(iii). Then
the following assertions hold:

1) (normality of the solution) there exists FSCP Z∗ for the adjoint equation (25) which is related
with Z by the equality

Z∗(τ, ξ; t, x) = Z(t, x; τ, ξ), 0 < τ < t 6 T, {x, ξ} ⊂ R
n. (26)

FSCP Z for which this equality holds is called normal one;
2) (convolution formula) FSCP Z is a solution of the functional equation

Z(t, x; τ, ξ) =

∫

Rn

Z(t, x; θ, λ)Z(θ, λ; τ, ξ)dλ, 0 < τ < θ < t 6 T, {x, ξ} ⊂ R
n; (27)

3) there exists only one normal FSCP Z for which the estimates (10) and (11) hold.

Theorem 2. Let the coefficients of the equation (1) fulfill the conditions (i)–(iii) and p ∈ [1,∞].
Then the following assertions hold:

1) for arbitrary functions ϕ ∈ L
k(0,a)
p , p ∈ (1,∞], and generalized measure µ ∈Mk(0,a) the formulas

ud1(t, x) :=

{

∫

Rn Z0(t, x; ξ)ϕ(ξ)dξ, (t, x) ∈ Π(0,T ], if A(T, 0) <∞,

Ed(T, t)
∫

Rn Z0(t, x; ξ)ϕ(ξ)dξ, (t, x) ∈ Π(0,T ], if A(T, 0) = ∞;
(28)

ud0(t, x) :=

{

∫

Rn Z0(t, x; ξ)dµ(ξ), (t, x) ∈ Π(0,T ], if A(T, 0) <∞,

Ed(T, t)
∫

Rn Z0(t, x; ξ)dµ(ξ), (t, x) ∈ Π(0,T ], if A(T, 0) = ∞
(29)

determine the unique in the layer Π(0,T ] solutions of the homogeneous equation (1);

2) there exists constant C > 0 which doesn’t depend on ϕ ∈ L
k(0,a)
p , p ∈ (1,∞], and µ ∈ Mk(0,a)

such that for any t ∈ (0, T ] the estimates

‖ud1(t, ·)‖
k(t,a)
p 6 C‖ϕ‖k(0,a)p , ‖ud0(t, ·)‖

k(t,a)
1 6 C‖µ‖k(0,a)

hold;

3) for p ∈ (1,∞) the equality lim
t→∞

‖ud1(t, ·) − ϕ(·)‖
s(t)
p = 0 holds, and for p = 1 or p = ∞ the

limit ud0(t, ·)−→
t→0

µ or ud1(t, ·)−→
t→0

ϕ hold respectively in the weak sense, namely for arbitrary functions

ψ : Rn → C from the spaces C
−s(T )
0 or L

−s(T )
1 the relationships

lim
t→0

∫

Rn

ψ(x)ud0(t, x)dx =

∫

Rn

ψ(x)dµ(x) or lim
t→0

∫

Rn

ψ(x)ud1(t, x)dx =

∫

Rn

ψ(x)ϕ(x)dx,

are valid respectively.
The next theorem is in some sense the inverse one of the Theorem 2.

Theorem 3. Let the conditions (i)–(iii) hold and u is the solution in Π(0,T ] of the homogeneous
equation (1) which satisfy the condition
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‖u(t, ·)‖k(t,a)p 6 CE−d(T, t), t ∈ (0, T ] (30)

with some constant C > 0 and p ∈ [1,∞]. Then for p ∈ (1,∞] there exists an unique function

ϕ ∈ L
k(0,a)
p , and for p = 1 there exists an unique generalized measure µ ∈ Mk(0,a) such that the

solution u is presented in the form (28) or (29) respectively.

Let Up, p ∈ [1,∞], be sets of all solutions of the homogeneous equation (1) that for any t ∈ (0, T ]

belong to the spaces L
k(t,a)
p as function of x and the condition (30) holds. From the Theorems 2 and

3 one can formulate the following important corollaries.

Corollary 1. The spaces L
k(0,a)
p , p ∈ (1,∞], and Mk(0,a) and only they are the sets of initial values

of the solutions from the classes Up, p ∈ (1,∞], and U1 correspondently.

Corollary 2. The classes Up, p ∈ (1,∞], and U1 are the sets of values of Poisson operators determined

by the formulas (28) and (29) on the spaces L
k(0,a)
p , p ∈ (1,∞], and Mk(0,a) correspondently, and these

operators are isomorphisms.

Let us present the theorem about the correct solvability of the problem without the initial condition
for the homogeneous equation (1) in the case of very strong degeneration.

Theorem 4. Let the conditions (i)–(iii) be valid and u be the solution in Π(0,T ] of homogeneous
equation (1) for which the inequality

‖u(t, ·)‖k(t,a) := sup
x∈Rn

(|u(t, x)| exp{−[k(t,a),X(t, 0)]}) 6 CE−d(T, t)ε(t), t ∈ (0, T ], (31)

holds, where the function ε : (0, T ] → (0,∞) such that ε(t) → 0 as t → 0. Then the function u is equal
to zero identically.

Note that in a wider class of functions than the class defined by the inequality (31), nontrivial
solutions for the homogeneous equation (1)can exist. For instance, we consider the equation

(

α(t)(∂t − x1∂x2)− β(t)∂2x1
+ 1

)

u(t, x) = 0, t ∈ (0, T ], x = (x1, x2) ∈ R
2,

under assumption that A(T, 0) = ∞, B(T, 0) = ∞.
FSCP for this equation has a form

Z(t, x; τ, ξ) = (2π)−131/2E−1(t, τ)(B(t, τ))−2

×exp
{

−(4B(t, τ))−1|x1−ξ1|
2−3(B(t, τ))−3|x2+2−1B(t, τ)(x1+ξ1)−ξ2|

2
}

, 0 < τ < t 6 T, {x, ξ} ⊂ R
2,

and the functions u1(t, x) := E1(T, t) and u2(t, x) := E1/2(T, t) exp{2−1/2x1}, (t, x) ∈ Π(0,T ], if
β(t) = 1, t ∈ [0, T ], are solutions. The functions u1 and u2 don’t belong to the class determined
by the inequality (31).

5. Proof of the results

We start from proof of the theorem 1 assertions. Note that the equation (25) can be a type of
homogeneous equation (1) if instead of τ substitute a new variable τ ′ = −τ . Thus, under the conditions
(i)–(iii) for the equation (25) there exists FSCP Z∗(τ, ξ; t, x), 0 < τ < t 6 T , {ξ, x} ∈ R

n.
We will use below the following Green–Ostrogradskii formula:
∫ t2

t1

dθ

α(θ)

∫

BR

(

υLu− uL∗υ
)

(θ, y)dy =

∫

BR

(υu)(θ, y)|θ=t2
θ=t1

dy

−

∫ t2

t1

dθ

∫

ΓR

( n2
∑

j=1

y1jµ2j +

n3
∑

j=1

y2jµ3j

)

(υu)(θ, y)dSy −

∫ t2

t1

dθ

∫

ΓR

n1
∑

j=1

Bj[υ, u](θ, y)µ1jdSy, (32)

where 0 < t1 < t2 6 T , L and L∗ are the differential expressions from (1) and (25), BR is
a ball in R

n with radius R and with center in the origin of coordinates, ΓR is its boundary,
(µ11, . . . , µ1n1 , µ21, . . . , µ2n2 , µ31, . . . , µ3n3) is a unit vector of the outer normal to the boundary ΓR,

Bj[υ, u] := −

n1
∑

l=1

(

ajl∂y1luυ − u∂y1l(ajlυ)
)

+ ajuυ, j ∈ Nn1 ,
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u and υ are enough smooth functions. Transition in the Green–Ostrogradskii formula to limit for
suitable functions u and υ gives us the formula

∫ t2

t1

dθ

α(θ)

∫

Rn

(

υLu− uL∗υ
)

(θ, y)dy =

∫

Rn

(υu)(θ, y)|t2θ=t1
dy (33)

Due to the estimations (10) and the similar estimations for Z∗ formula (33) holds, where u(θ, y) =
Z(θ, y; τ, ξ), υ(θ, y) = Z∗(θ, y; t, x), t1 = τ + ε and t2 = t − ε, ε is an enough small positive number.
Thus, one can get the formula

∫

Rn

Z∗(τ + ε, y; t, x)Z(τ + ε, y; τ, ξ)dy =

∫

Rn

Z∗(t− ε, y; t, x)Z(t− ε, y; τ, ξ)dy,

after passing to the limit as ε→ 0, the inequality (26) follows.
In a similar way we obtain the equality

∫

Rn

Z∗(β, y; t, x)Z(β, y; τ, ξ)dy =

∫

Rn

Z∗(t− ε, y; t, x)Z(t− ε, y; τ, ξ)dy. (34)

The equality (27) can be written if in (34) to pass to the limit, as ε→ 0, and to use the (26) and the
property (3) of the FSCP Z.

To prove the assertion 3 of the Theorem 1 let consider Z1 and Z2 be two normal FSCP for the
equation (1). Formula (33)is used where υ(θ, y) = Z1(θ, y; τ, ξ), u(θ, y) = Z2(t, x; θ, y). As result we
get the equality

∫

Rn

Z1(t2, y; τ, ξ)Z2(t, x; t2, y)dy =

∫

Rn

Z1(t1, y; τ, ξ)Z2(t, x; t1, y)dy.

Since t1 and t2 are arbitrary points in the interval (τ, t), the last equality implies that the function
∫

Rn

Z1(θ, y; τ, ξ)Z2(t, x; θ, y)dy, θ ∈ (τ, t), {x, ξ} ⊂ R
n,

is independent on θ. Let us denote this function Φ(t, x; τ, ξ). Thus,

Φ(t, x; τ, ξ) =

∫

Rn

Z1(θ, y; τ, ξ)Z2(t, x; θ, y)dy, θ ∈ (τ, t), {x, ξ} ⊂ R
n. (35)

Tending the variable θ in the equality (35) first to τ , and then to t, we find that

Φ(t, x; τ, ξ) = Z2(t, x; τ, ξ) = Z1(t, x; τ, ξ), 0 < τ < t 6 T, {x, ξ} ⊂ R
n.

The proofs of Theorem 2 and Theorem 3 are quite cumbersome. In the proofs the weight func-
tions (20), their properties (21) and the inequalities (22)–(24) are essential. To prove the Theorem 4
we will use the following lemma.

Lemma 1. Let t0 be arbitrary number from the interval (0, T ) in the case of strong degeneration
and from the semi-interval [0, T ), if the degeneration is weak; let a function u(t, x) : Π[t0,T ] → C be
continued and it satisfies the condition

∃M > 0 ∀ ∈ (t0, T ] : ‖u(t, ·)‖
k(t,a)

6M

and it is on Π[t0,T ] a solution of the homogeneous equation (1). If the coefficients of this equation fulfill
the conditions (i)–(iii), then the formula

u(t, x) =

∫

Rn

Z(t, x; t0, ξ)u(t0, ξ)dξ, (t, x) ∈ Π(t0,T ] (36)
holds.

The proof of Lemma 1 will be preceded by proof of the following inequality.

∃ δ1 ∈ (0, 1) ∃C1 > 0 ∀R > 0 ∀x ∈ BR ∀ ξ ∈ R \B2R ∀h ∈ (0, δ1) : ρ(h, x, ξ) > C1R
2/h. (37)

For h ∈ (0, 1)
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3
∑

j=1

h1−2j |Xj(h)− ξj |
2 > h−1

( 3
∑

j=1

|Xj(h)− ξj|
2

)

> |X(h) − ξ|2 > ||ξ| − |X(h)||2 , (38)

|X(h)| 6 |x|+ |(0, hx̂1, hx
′
1 + 2−1h2x′2)| 6 R+R/2 = 3/2R. (39)

The inequality (37) with C1 = 9/4 follows from (38), (39) and from the fact that ξ ∈ R \ B2R. Now,
let us turn to the proof of Lemma 1.
Proof. Let GR := (t0, T ] × BR; η be a function from the space C∞([0,∞)) such that η(r) = 1 for
r ∈ (0, 1/2], η(r) = 0 for r ∈ [3/4,∞) and η′ 6 0; (t, x) be an arbitrary fixed from GR, where R > 0
is a fixed number. Let put in the formula (32) instead of t1, t2, u(θ, y) and v(θ, y) accordingly t0 + h,

t− ε, u(θ, y) and v(θ, y) := η( |y|R )Z∗(θ, y; t, x), where R > R, 0 < h < 2−1(t− t0), 0 < ε < 2−1(t− t0),
and u is a function satisfying the conditions of the Proposition. Using properties of the function η,
properties of the function Z of the Theorem 1 and a fact that Lu = 0 we obtain

∫

Rn

Z(t, x; t− ε, y)η

(

|y|

R

)

u(t− ε, y)dy =

∫

Rn

Z(t, x; t0 + h, y)η

(

|y|

R

)

u(t0 + h, y)dy

−

∫ t−ε

t0+h

dθ

α(θ)

∫

B3R/4\BR/2

[

L∗(Z∗(t0 + h, y; t, x)η

(

|y|

R

)]

u(θ, y)dy,

and after passing to the limit, as ε→ 0, we get the equation

u(t, x) =

∫

Rn

Z(t, x; t0 + h, y)η

(

|y|

R

)

u(t0 + h, y)dy

−

∫ t

t0+h

dθ

α(θ)

∫

B3R/4\BR/2

[

L∗(Z∗(θ, y; t, x)η

(

|y|

R

)]

u(θ, y)dy =: I
(R)
1 − I

(R)
2 .

Let us pass to the limit as R→ ∞. The integral I
(R)
1 tends to

I1 :=

∫

Rn

Z(t, x; t0 + h, y)u(t0 + h, y)dy.

Indeed, with the help of (10), (22), (37) and definition of the norm from (31),

∣

∣I1 − I
(R)
1

∣

∣ =

∣

∣

∣

∣

∫

Rn

Z(t, x; t0 + h, y)

(

1− η

(

|y|

R

))

u(t0 + h, y)dy

∣

∣

∣

∣

6 C(B(t, t0 + h))−M

∫

Rn\BR/2

Ed
c−c0(t, x; t0 + h, y)Ec0(t, x; t0 + h, y) exp{[k(t0 + h,a), y]}

× u(t0 + h, y) exp{−[k(t0 + h,a), y]}dy 6 C‖u(t0 + h, ·)‖k(t0+h,a)Ed(t, t0 + h)

× exp{[k(t0 + h,a),X(B(t, 0))]}(B(t, t0 + h))−M

∫

Rn

E(c−c0)/2(t, x; t0 + h, y)dy

× exp{−(c− c0)C1R
2/(2/B(t, t0 + h))} 6 CC2‖u(t0 + h, ·)‖k(t0+h,a)Ed(t, t0 + h)

× exp{[k(t0 + h,a),X(B(t, 0))]} exp
{

− (c− c0)C1R
2/(2B(t, t0 + h))

}

→ 0,

as R → ∞. C1 is the constant from the inequality (37), and C2 is a constant from the following
inequality:

(B(t, t0 + h))−M

∫

Rn

E(c−c0)/2(t, x; t0 + h, y)dy 6 C2. (40)

This inequality is proved in a similar way as the corresponding inequalities for the equations without
degenerations on the initial hyperplane.

Let’s prove that lim
R→∞

I
(R)
2 = 0. Since L∗Z∗ = 0, then the expression L∗(Z∗(θ, y; t, x)η

(

|y|
R

)

is a

sum of products of expressions with constant coefficients including derivatives of the functions η
(

|y|
R

)

and function Z∗(θ, y; t, x) with respect to the variable y. Using the property of normality of FSCP and
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the estimations (10), we get the estimation
∣

∣

∣

∣

L∗(Z∗(θ, y; t, x)η

(

|y|

R

)
∣

∣

∣

∣

6 C(B(t, θ))−MEd
c (t, x; θ, y).

With the help of this inequality and (22) similarly it is proved that lim
R→∞

I
(R)
2 = 0.

Let us turn to the proof of the Theorem 4. Let (t, x) be an arbitrary foxed point from Π(0,T ] and
t0 be a fixed number from the interval (0, t/2). The solution under consideration u, obviously, satisfies
the condition

u(t, x)|t=t0 = u(t0, x), x ∈ R
n,

and for it the form (36) takes place. Since this form holds for any t0 ∈ (0, t/2), we can pass to the
limit as t0 → 0 in it. Limit of the right part (36) is equal to zero. Really, with the help of the
inequalities (10), (22), (31) and (40).

∣

∣

∣

∣

∫

Rn

Z(t, x; t0, ξ)u(t0, ξ)dξ

∣

∣

∣

∣

6 Cε(t0)

∫

Rn

Ed
c−c0(t, x; t0, ξ)

(

Ec0(t, x; t0, ξ)

× exp{[k(t0,a), ξ]}
)

E−d(T, t0)(B(t, t0))
−Mdξ

6 Cε(t0) exp{[k(t,a),X(B(t, 0))]}E−d(T, t)

∫

Rn

Ed
c−c0(t, x; t0, ξ)(B(t, t0))

−Mdξ

6 CC2ε(t0) exp{[k(t,a),X(B(t, 0))]}E−d(T, t) → 0, if t0 → 0.

Thus, after passing in (36) to the limit as t0 → 0, we receive that u(t, x) = 0. A necessary fact follows
because (t, x) is an arbitrary point from Π(0,T ]. The theorem is proved. �

6. Conclusions

In the paper for homogeneous ultraparabolic equation of the Kolmogorov type with three groups of
spatial variables including two groups of degeneration and with degeneration on the initial hyperplane,
there are established conditions for the coefficients of the equation under which there exists FSCP for
the adjoint equation. The following properties of FSCP for the adjoint equation are proved: normality
of the FSCP, the convolution formula, uniqueness of the normal FSCP. Also we presented the theorems
about integral representations of the solutions for all types of degeneration and the theorems about
correct solvability of the Cauchy problem in the case of weak and strong degenerations, and for the
problems without initial condition, if the degeneration of the equation is very strong. For such class
of equations these results are new.
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Властивостi фундаментальних розв’язкiв, коректна розв’язнiсть
задачi Кошi та iнтегральнi зображення розв’язкiв для

ультрапараболiчних рiвнянь типу Колмогорова з трьома групами
просторових змiнних та виродженням на початковiй гiперплощинi
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Для однорiдного ультрапараболiчного рiвняння типу Колмогорова з трьома групами
просторових змiнних (в т.ч. двома групами просторових змiнних виродження) i вирод-
женням на початковiй гiперплощинi встановлено деякi властивостi фундаментально-
го розв’язку задачi Кошi. Для всiх випадкiв виродження на початковiй гiперплощинi
доведено теореми про iнтегральнi зображення розв’язкiв i коректну розв’язнiсть за-
дачi Кошi в класах вагових функцiй. Для рiвнянь з указаного класу цi результати є
новими.

Ключовi слова: ультрапараболiчне рiвняння типу Колмогорова, виродження на

початковiй гiперплощинi, фундаментальний розв’язок задачi Кошi, ваговi простори,

iнтегральнi зображення розв’язкiв, коректна розв’язнiсть задачi Кошi.
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