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1. Introduction

The two-scale homogenization method is considered among the preferred tools for modeling wave
propagation in periodic microstructures [1, 2]. However, classical homogenization methods are not
efficient when considering media composed of micro-structured interfaces [3–5]: the behavior of the
fields is dominated by boundary layer effects which are not taken into account by the theories of volume
effective medium. To recover their efficiency, these methods must then be combined with matched
asymptotic expansions, giving effective jump conditions on an equivalent interface. These methods
have been used in static elasticity [6, 7]. For the propagation of waves, they have been adapted in
elasticity, studies have focused on rows of non-resonant inclusions [8,9] then on resonant inclusions [10].
For the propagation of waves in electromagnetism [11–13], and in acoustics [5, 14]. We also note that
similar methods can also be used to obtain effective jump conditions for stratified media [15–17],
metallic structures [18, 19], adhesive layers [20–22], bubble screens [9], Helmholtz resonators [23, 24]
and for the latter, the results are equivalent to those obtained with the energy-based methods [25–27].
The case of non-periodic layers has also been studied for seismic waves [28].

In this article, we used the asymptotic analysis and the same homogenization approach that was
applied in the case of shear wave scattering by a periodic row of elastic inclusions embedded in elastic
matrix [8, 10]. We have noticed that in the case of viscoelastic linear media, the wave equation of the
real problem in the harmonic regime takes the same form as that in elasticity, except that in our case
the coefficients of the physical parameters entering the equation are complex, which does not change the
homogenization procedure and even the form of the homogenized wave equations obtained at different
orders. We also show that the diffusion parameters of the effective model accurately describe those
of the real structure, and in general, the homogenized solution associated with the jump condition is
even more meaningful than the classical homogenization.
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The paper is organized as follows. In Section 2, we summarize the result of the asymptotic analysis
in the case of a row of linear viscoelastic inclusions inserted periodically in a linear viscoelastic matrix,
the main derivation steps of which are given in the Appendix Ann.4. The resulting system (7) represents
the homogenized problem associated with the jump conditions of displacement and normal stress
through an equivalent interface. In Section 3, the accuracy of the actual model is verified by comparison
with numerical values based on the multimodal method [17] for an incident shear wave. Transmission
coefficients as a function of frequency KRh, inclusion thickness e/h and as a function of reciprocal
quality factor Q−1 are illustrated and the agreement between real and actual problems is discussed.

2. The real problem and the effective problem

We summarize below the main results of the asymptotic analysis in Appendix Ann.4, and which
provides the so-called “effective problem” where the row of linear viscoelastic inclusions is replaced by
an equivalent interface associated with jump conditions for displacement and normal stress (Figure 1).

Fig. 1. A row of inclusions in the matrix of thickness e and width h, are replaced by a layer of thickness a
through which the jump conditions are applied.

2.1. The physical problem

We consider the shear wave propagating in a viscoelastic matrix Ωm containing a row of periodically
located viscoelastic inclusions, (Ωr = ∪Ωi, i = 1, 2, . . . , Nr) with spacing h and thickness e = O(h) of
each inclusion Ωi (Figure 1). The scalar displacement field U(X) written in the harmonic regime wave
case, with X ∈ Ω the spatial coordinates (Ω = Ωm ∪Ωr) and Ω = {(X1,X2) ∈ R× (−H/2,H/2)}.

div(M∇U) + ρω2U = 0, (1)

with M and ρ being respectively the complex shear modulus and the mass density, and ω the frequency.
The equation (1) can be written using the dimensionless parameters.

α∗(X) ≡ M(X, ω)

Mm
and β(X) ≡ ρ(X)

ρm
,

with Mm the complex shear modulus and ρm the mass density of the viscoelastic matrix occupying
the Ω/Ωr region; with K∗ = ω

√

ρm/Mm the complex wave number in the matrix, we obtain:

div(α∗∇U) + βK∗2U = 0, (2)

allowing us to write the Helmholtz equation in the matrix as follows:

∆U +K∗2U = 0.

In the harmonic regime, we consider viscoelastic waves with a wavelength 2π/KR very large com-
pared to the periodicity of the inclusions h (KR being the real part of the complex shear wave num-
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ber K∗), such that:

ε = KRh ≪ 1.

Fig. 2. Real problem in adimensional coordinates with (x1 = KRX1, x2 = KRX2). The usual continuity
conditions for (uε, σε

2) apply to the Γ boundaries between the inclusions and the substrate.

To be consistent, we will work in dimensionless coordinates with (x1 = KRX1, x2 = KRX2). We
consider the real problem for x = (x1, x2) ∈ R× (−KRH/2,KRH/2) (Figure 2). We note

a∗ε(x) ≡ α∗(X), b∗ε(x) ≡ β(X)

(

K∗

KR

)2

;

uε(x) ≡ U(X), σε(x) ≡ KR
−1α∗(X)∇U(X),

where the functions a∗ and b∗ are 1-periodic and complex, such that:

a∗ε(x) = a∗
(x2
ε

)

and b∗ε(x) = b∗
(x2
ε

)

. (3)

Moreover, we have explicitly stated the dependence of (uε, σε) on ε, being the periodicity of inclusions
in dimensionless form. Now (2) reads:











div σε(x) + b∗ε(x)uε(x) = 0, x ∈ Ω;

σε(x) = a∗ε(x)∇uε(x);

uε and σε · n continuous x ∈ ∂Ωi, i = 1, 2, . . . , Nr,

(4)

where in this case, the functions a∗ and b∗ are 1-periodic and piecewise complex constant, such that:

a∗ε(x) =

{

1, Ω/Ωr,
a∗
(

x2

ε

)

, Ωr;
b∗ε(x) =

{
(

K∗

KR

)2
, Ω/Ωr,

b∗
(

x2

ε

)

, Ωr.
(5)

The boundary conditions at |x1| → +∞ and x2 = ±KRH/2, are called radiation conditions, apply
once the wave source has been defined. For the moment, we do not need to specify their form.

2.2. Effective interface and classical effective medium models

In the effective interface model [8], this is done by imposing the jump conditions between x = −e/2
and x = e/2. In the classical effective mean model [29], this is done by replacing the row of inclusions
by a homogeneous and anisotropic slab. Both models are based on an asymptotic method and are
valid in the limit kh ≪ 1, we will see the predictions hold up to kh ∼ 1 with reasonable errors.

2.2.1. Effective interface model

The homogenized problem of the real problem (4), is done by defining the fields (uh, σh) satisfying the
Helmholtz equation in the matrix and the associated jump conditions (see Ann.4), and is written as

Mathematical Modeling and Computing, Vol. 10, No. 3, pp. 899–917 (2023)



902 Belemou R., Sbitti A., Jaouahri M., Marigo J.-J.

follows:






























∆uh + uh = 0,

JuhK = εB∂uh

∂x1
+ εB2

∂uh

∂x2
,

Jσh
1 K = ε

[

Sdiv σh − C1
∂σ1h

∂x2
− C ∂σ2

h

∂x2

]

,

(6)

where the jump conditions and associated mean value for any field are defined as follows:

JfK ≡ f+ − f−, f̄ ≡ 1

2

[

f− + f+
]

,

with

f± = f

(

±eKR

2
, x2

)

,

and

B ≡ e

h
+ B1, C ≡ e

h
+

eϕ

h

(

Mi

Mm
− 1

)

+ C2, S ≡ e

h
+

eϕ

h

(

ρi
ρm

− 1

)

,

with (Bi, Ci, i = 1, 2) the interface parameters (32)–(43), and ϕ is the filling fraction of each inclusion
in the row. Mi is the complex shear modulus and ρi is the mass density of the viscoelastic inclusions
occupying the Ωr region.

Finally, from (6) and return to real space to obtain the final homogenized problem, which will be
defined outside the interface occupying X ∈ (−e/2, e/2)× (−∞,+∞), and is written as follows:



































∆Uh +K∗2Uh = 0, |X1| >
e

2
,

JUhKe = hB∂Uh

∂x1
+ hB2

∂Uh

∂x2
,

JΣh
1Ke = h

[

SdivΣh − C1
∂Σ1

h

∂x2
− C ∂Σ2

h

∂x2

]

,

(7)

with JF K ≡ F (e/2,X2)− F (−e/2,X2) and F ≡ 1/2 [F (e/2,X2) + F (−e/2,X2)].

2.2.2. Classic effective medium model

Classical homogenization tells us that a medium composed of inclusions can be replaced by an equiv-
alent homogeneous and anisotropic medium described by the wave equation, as follows:























div

((

〈a∗〉 0
0 〈1/a∗〉−1

)

∇Uh

)

+ 〈b∗〉KR
2Uh = 0, |X1| <

e

2
,

∆Uh +K∗2Uh = 0, |X1| >
e

2
,

Uh and Σh · n continuous X1 = −e/2, e/2,

(8)

involving effective parameters
(

〈a∗〉, 〈1/a∗〉−1
)

and 〈b∗〉 defined by:


















〈a∗〉 = ϕ
Mi

Mm
+ 1− ϕ, 〈1/a∗〉−1 =

[

ϕ
Mm

Mi
+ 1− ϕ

]−1

,

〈b∗〉 =
(

K∗

KR

)2(

ϕ
ρi
ρm

+ 1− ϕ

)

.

(9)

Mathematical Modeling and Computing, Vol. 10, No. 3, pp. 899–917 (2023)



Homogenization of the Helmholtz problem in the presence of a row of viscoelastic inclusions 903

3. Numerical validation of the actual problem

In this section, we discuss the error of the homogenized solution with respect to the solution of the
real problem, we consider the particular diffusion problem of a row of square, or rectangular inclusions.
Note that for rectangular inclusions, being symmetric about y2, V

(1) is symmetric and V (2) is anti-
symmetric about y2; it follows that B2 = C1 = 0 in (32) and (43), and only (S, B, C) are needed in
the jump conditions. These effective parameters are determined numerically by using a multi-modals
method (see [8]).

3.1. Solutions of the physical problem

Fig. 3. Left: Real problem of plane wave scattering at oblique incidence
θ by a row of rectangular voids, with a degree of heterogeneity γ. Right:
The homogenized problem involves an interface of equal thickness e,

which is associated with jump conditions applying to X1 = ±e/2.

We numerically solve the real
problem of an incident shear wave
of type SII [30], which coming
from X1 < −e/2 and hitting
the inclusion row at oblique inci-
dence θ with heterogeneity degree
γ (Figure 3). To do this, the mul-
timodal method is used (see [31]).

We will work with complex
fields (because the physical fields
are the real parts of the calcu-
lated complex fields); in the har-
monic regime, the complex fields
(and we will consider the displacement field U(X)) have a time dependence in e−iωt and it will be
omitted in the following. This type of shear wave is defined as a SII type wave [30], of the following
form:

U inc(X) = e−iωteiK·r = e−iωte−A·reiP ·r, (10)

where r = (X1,X2) is the position vector, and K the complex wave vector is given by

K = P + iA = KS x̂1 +Kincx̂2

and the corresponding propagation and attenuation vectors, are given by

P = |P | cos(θ)x̂2 + |P | sin(θ)x̂2 = Re[KS ]x̂1 +Re[Kinc]x̂2,

A = |A| cos(θ − γ)x̂1 + |A| sin(θ − γ)x̂2 = Im[KS ]x̂1 + Im[Kinc]x̂2,

with (x̂1, x̂2) are orthogonal real unit vectors for a Cartesian coordinate system, kinc is the complex

wave number for the assumed general SII wave, and KS =
√

K∗2 −Kinc
2, where “

√
” is understood

to indicate the principal value of the square root of a complex number z = zR + i zI defined in terms
of the positive square root of real numbers by

√
z =

√

|z|+ zR
2

+ i sign[zI ]

√

|z| − zR
2

with

sign[zI ] ≡
{

1 if zI > 0
−1 if zI < 0

}

hence, the complex wave numbers Kinc and KS reads

Kinc = |P | sin(θ) + i|A| sin(θ − γ),

KS = |P | cos(θ) + i|A| cos(θ − γ),

where the magnitudes of the propagation and attenuation are specified in terms of the given material
parameters, the complex wave number K∗ or wave speed (vm = ω/KR) and the reciprocal quality
factors (Qm

−1 = MmI/MmR), and the given degree of inhomogeneity γ [30].
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The reference numerical solution Unum is searched in the matrix where the Helmholtz equation
applies and U and Σ ·n being continuous at each interface between the matrix and the inclusion. The
current problem is placed in Ωm being the region occupied by the matrix and we denote Ωr = ∪Ωi,
(i = 1, 2, . . . , Nr) the row occupied by each inclusion Ωi, with K∗

i = ω
√

ρi/Mi the complex wavenumber
in the inclusions,



































































∆U +K∗2U = 0, X ∈ Ωm,

∆U +Ki
∗2U = 0, X ∈ Ωi, i = 1, 2, . . . , Nr,

U and Σ · n continuous on X1 ∈ ∂Ωi, i = 1, 2, . . . , Nr,

lim
X→±∞

[

∂

∂X1

(

U − U inc
)

± iKS

(

U − U inc
)

]

= 0,

U

(

X1,
H

2

)

= eiKincU

(

X1,−
H

2

)

, X1 ∈ R,

∂U

∂X2

(

X1,
H

2

)

= eiKinc
∂U

∂X2

(

X1,−
H

2

)

, X1 ∈ R,

(11)

where the scattered waves (U − U inc) at X1 → ±∞ satisfy the radiation condition [32], and are
considered in the low frequency regime [5]. The last condition represents the pseudo-periodicity [33],
which applies in the case where H = nh, with n an integer, for the incident wave and for the total
field.

3.2. Homogenized problem solutions

We will check the accuracy of the homogenized solution of the effective interface problem (12) and
the classical effective model (8). To do this, we treat two particular problems of diffusion by a row of
rectangular inclusions. Thus, the matrix is considered a linear viscoelastic medium with a reciprocal
quality factor Q−1

m , which is different from the reciprocal quality factor Q−1
in of linear viscoelastic

inclusions.

3.2.1. Solutions of the effective interface model

Solutions of the effective interface model (7) with (10) is of the form:


























































































∆Uh +K∗2Uh = 0, |X1| >
e

2
,

JUhKe = hB∂Uh

∂x1
,

JΣh
1Ke = h

[

SdivΣh − C ∂Σ2
h

∂x2

]

,

lim
X1→±∞

[

∂

∂X1

(

Uh − U inc
)

∓ iKS

(

Uh − U inc
)

]

= 0,

Uh

(

X1,
H

2

)

= eiKincUh

(

X1,−
H

2

)

, X1 ∈ R

∂Uh

∂X2

(

X1,
H

2

)

= eiKinc
∂Uh

∂X2

(

X1,−
H

2

)

, X1 ∈ R

(12)

The solution of (12) is written






U(X) =
[

eiKS(X1+e/2) +Re−iKS(X1+e/2)
]

eiKincX2 , X1 < −e/2,

U(X) =
[

TeiKS(X1−e/2)
]

eiKincX2 , X1 > e/2,
(13)
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with (R,T ) are given using jump conditions (12) with (13). The transmission coefficient T and reflection
coefficient R is read:















R =
1

2

[

z∗4
z3

− z∗2
z1

]

,

T =
1

2

[

z∗4
z3

+
z∗2
z1

]

,

(14)

with














































z1 ≡ 1− i
h

2
BKS,

z1 ≡ 1 + i
h

2
BKS,

z2 ≡ KS − i
h

2

(

S
(

K2
S +K2

inc

)

− CK2
inc

)

,

z2 ≡ KS + i
h

2

(

S
(

K2
S +K2

inc

)

− CK2
inc

)

.

(15)

3.2.2. Solutions of the classical effective medium

The homogenized classical problem (8) with the incident (10) takes the following form:














































































div

((

〈a∗〉 0
0 〈1/a∗〉−1

)

∇Uh

)

+ 〈b∗〉KR
2Uh = 0, |X1| <

e

2
,

∆Uh +K∗2Uh = 0, |X1| >
e

2
,

Uh and Σh · n continuous on X1 = −e/2, e/2,

lim
X1→±∞

[

∂

∂X1

(

Uh − U inc
)

∓ iKS

(

Uh − U inc
)

]

= 0,

Uh

(

X1,
H

2

)

= eiKincUh

(

X1,−
H

2

)

, X1 ∈ R,

∂Uh

∂X2

(

X1,
H

2

)

= eiKinc
∂Uh

∂X2

(

X1,−
H

2

)

, X1 ∈ R.

(16)

The solution of (16) is written:






















U(X) =
[

eiKS(X1+e/2) +Re−iKS(X1+e/2)
]

eiKincX2 , X1 < −e

2
,

U(X) =
[

aeiKX1 + be−iKX1

]

eiKincX2 , |X1| <
e

2
,

U(X) = TeiKS(X1−e/2)+iKincX2 , X1 >
e

2
,

(17)

on X1 = −e/2, e/2, using the continuities of Uh and Σh · n, we obtain the diffusion coefficients (R,T )
of the form



















R =
2i
(

K2
S −K2ξ

2
)

sinKe

(KS −Kξ)2eiKe − (KS +Kξ)2e−iKe
,

T = − 4KKSξ

(KS −Kξ)2eiKe − (KS +Kξ)2e−iKe
,

(18)

with

K =

√

〈b∗〉
〈a∗〉K

2
R − 〈1/a∗〉−1

〈a∗〉 K2
inc, ξ = φ

Mi

Mm
+ 1− φ.

Mathematical Modeling and Computing, Vol. 10, No. 3, pp. 899–917 (2023)



906 Belemou R., Sbitti A., Jaouahri M., Marigo J.-J.

3.3. Accuracy of the homogenized solution compared to the real solution

We will check the validity of the homogenized solution for an oblique incident wave. We first introduce
the fields Unum numerically calculated (11) and the Uh fields of classical homogenized solutions (8)
and interface (13), this is done for low-loss viscoelastic media Q−1 ≪ 1 and for no Low-loss media
Q−1 > 0.2) (Figure 4). We will also present numerical and homogenized solutions for the case of
(Q−1 > 0.2), but this time varying e/h the geometric shape of the inclusions (Figure 5).

Fig. 4. (a) The numerical solution Unum in the real problem of low-loss viscoelastic media Q−1

m
= 0.05 and

Q−1

in
= 0.1, for an oblique incident plane wave θ = π/3 with a degree of heterogeneity γ = π/6 and KRh = 1.

Reflected by a slab of rectangular voids (h = 1, e/h = 0.5 and ϕ = 0.5); (b) Same representation as (a) with
Q−1

m
= 0.2 and Q−1

in
= 0.3 in the case of viscoelastic media (no low-loss media).

Fig. 5. (a) Same representation as (Figure 4) with the reciprocal quality factor Q−1

m = 0.1 and Q−1

in
= 0.2.

(b) Same representation as (a) with e/h = 1.

Mathematical Modeling and Computing, Vol. 10, No. 3, pp. 899–917 (2023)



Homogenization of the Helmholtz problem in the presence of a row of viscoelastic inclusions 907

Defining ∆U ≡ |U − Unum|/|Unum| (for |X1| > e/2 with ‖ · ‖ the norm L2), we obtain, on average,
the results indicated in the table (Table 1). It is interesting to note that a small error was found even
at a relatively high value kh = 1.

Table 1. Error ∆Uh
1

of the homogenized interface solution and error ∆Uh
2

of the classical
homogenization solution compared to the real solutions represented in the figures (Figures 4 and 5).

Error ∆Uh
1 Error ∆Uh

2

Q−1
m = 0.05, Q−1

in = 0.1 and e/h = 0.5 (a-Fig.4) 0.4 % 0.6 %

Q−1
m = 0.2, Q−1

in = 0.3 and e/h = 0.5 (b-Fig.4) 0.5% 0.7%

Q−1
m = 0.1, Q−1

in = 0.2 and e/h = 0.5 (a-Fig.5) 0.5 % 0.7%

Q−1
m = 0.1, Q−1

in = 0.2 and e/h = 1 (b-Fig.5) 0.5% 0.7%

3.3.1. Transmission error as a function of frequencies

We first perform a validation for Q−1
m = 0.2 and Q−1

in = 0.3 (no Low loss media), for which we report
the transmission spectra as a function of KRh ∈ [0.1] and e/h ∈ [0.4], as well as the corresponding
errors ∆T ≡ |T num − T |/|T num| (Figure 6).

Fig. 6. Above: Transmission coefficients in the real |T num| and homogenized |T | problem at the classical
homogenization, and at the homogenized interface as a function of e/h and frequency KRh; (Q−1

m
= 0.2,

Q−1

in
= 0.3, ϕ = 0.5, θ = π/3 and γ = π/6) were considered. Below: Errors ∆T on the transmission coefficient,

which are calculated numerically. Errors less than 1% appear in dark blue, and errors greater than 100% appear
in dark red.

In Figure 6 and for Q−1
m = 0.2 and Q−1

in = 0.3, the error in the transmission coefficient at the
homogenized interface is less than 1% in the whole range of e/h, and it is 10% on average at classical
homogenization. On the other hand, classical homogenization wrongly predicts the transmission co-
efficients for negligible thicknesses e/h, but by including the jump conditions (7) at the homogenized
interface it restores the real scattering properties of a row of rectangular inclusions. This is consistent
with the result of [34], in which the effective permittivity of electromagnetic waves must depend on
thickness (the effective shear modulus parameter in our case).
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Fig. 7. Left: Transmission coefficients |T num| and |T | as a function of KRh for e/h = 0.05 and e/h = 1 (C1, C2

profiles of Figure 6), with |T num|: blue symbols and |T |: black lines the classic homogenization and red lines the
homogenized interface. Right: The corresponding error ∆T of homogenized predictions, which are indicated as

a percentage (black lines the classical homogenization and red lines the homogenized interface).
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Fig. 8. Transmission coefficients |T num| and |T | and errors ∆T as a function of e/h, for KRh = 1. Same
representation as in (Figure 7).

Specifically, we inspect (i) |T num| and its homogenized counterparts |T |, with the corresponding
errors ∆T as a function of KRh for e/h = 0.05 and e/h = 1 (Figure 7). For a thin thickness (C1 profile
of Figure 6), the homogenized interface covers the actual transmission of the row of inclusions, while
classical homogenization overestimates the transmission; for a row of thickness e/h = 1 (C2 profile),
the classical homogenization is valid for small values of KRh; and applying the jump conditions allows
us to increase the validity domain of the homogenized solution. (ii) Changes in |T num| and |T | (and
the corresponding errors ∆T ) as a function of e/h for KRh = 1 are reported in Figure 8. We notice
that the grand error in classical homogenization seems to be a direct consequence of the disappearance
of e/h.
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3.3.2. Transmission error as a function of reciprocal quality factor

Finally, we show the variations of |T num| and its homogenized counterparts |T |, with the corresponding
error ∆T based on Q−1

in and Q−1
m (Figure 9). In both cases and for KRh = 1, the homogenized interface

solution is valid by noting that the error of ∆T is less than 2% in the set of intervals of Q−1
in or Q−1

m .

0 1
0

1

Q−1

in

|T
|

 

 

0 1

0.01

1

100

Q−1

in

∆
T

(%
)

 

 

0 1
0

1

Q−1

m

|T
|

 

 

0 1

0.01

1

100

Q−1

m

∆
T

(%
)

 

 

Tnum

Th Homo. interface

Th Classical homo.

Tnum

Th Homo. interface

Th Classical homo.
Error Homo. interface
Error Classical homo.

Error Homo. interface
Error Classical homo.

Q−1

m
= 0.2

Q−1

in
= 0.3

Tnum
Th Classical homo.

Th Homo. interface

Th Classical homo.
Th Homo. interfaceTnum

Error Homo. interface

Error Classical homo.

Error Homo. interface

Error Classical homo.

Fig. 9. Top: Transmission Coefficients |T num| (blue symbol), |T | (black lines the classic homogenization and
red lines the homogenized interface) and errors ∆T (black lines classical homogenization and red lines the
homogenized interface) as a function of Q−1

in
for inclusions, with (Q−1

m
= 0, KRh = 1, e/h = 0.5, ϕ = 0.1,

θ = π/3, γ = π/6). Bottom: Same representation as a function of Q−1
m for the viscoelastic matrix, with

Q−1

in
= 0.3.

4. Concluding remarks

In this article, we have presented a homogenized interface which can replace the physique problem of
the scattering of shear waves at a periodic row of linear viscoelastic inclusions embedded in a linear
viscoelastic matrix. Parameters effective of an equivalent interface enter in jump conditions for the
displacement and the normal stress at the interface. They are obtained by the resolution of elementary
problems written in the static limit, and they are therefore wave independent by construction. We
have validated this model in the simple case of a rectangular inclusion and for a plane wave at oblique
incidence on the row of linear viscoelastic inclusions. Note that this simplicity would be lost in the case
of periodic media with a more complex unit cell. Finally, the explicit expressions of the transmission
coefficients deduced from the effective interface parameters have been shown to be accurate for the
Low–Loss viscoelastic media and no Low–Loss media, with a range of validity being KRh 6 1. On
the other hand, classical homogenization wrongly predicts the transmission coefficients for negligible
thicknesses e/h, but by including the jump conditions at the homogenized interface it restores the real
scattering properties of a row of rectangular inclusions. The present model can be extended to a large
class of wave problems, in acoustics and in electromagnetism.
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Appendix A. Effective harmonic problem of a row of inclusions

Let us derive in this appendix the effective model. From the physical problems position (4), we noticed
that the wave equation is identical to the one homogenized in [4,5,8–10,13,17–19,23,24,31,33], except
that in our case, the coefficients of the physical parameters entering the wave equation are complex.
Therefore, we obtained by analogy the same form of the homogenized wave equations at different
orders.

We will apply the same asymptotic expansion technique as in [8] by dividing the space into two
regions.

Fig. 10. Left: In the coordinate configuration x; the periodicity along x2 is ε ≡ KRh; the inner region is
the neighborhood of the row of inclusions −e/2 < (x1 < e/2). Right: the unitary cell (inner region) in the

coordinate y, with y = x/ε, and y ∈ R× Y , with Y = (−1/2, 1/2).

A.1. The matching asymptotic expansion

A.1.1. Inner and outer expansions

We consider the inner region (|x1| ≪ 1) and the outer region (|x1| ≫ ε), corresponding in terms of
wave field to the near field and the far field, respectively (Figure 10). The outer regions are far enough
from the row of inclusions that the evanescent field can be neglected. Then, the inner region and the
outer regions are connected using so-called matching conditions, which will be the boundary conditions
for the outer solutions. With this approach, the expansions read:























outer region, |x1| ≫ ε, uε = u0(x) + ε u1(x) + . . . ,

σε = σ0(x) + ε σ1(x) + . . . ,

inner region, |x1| ≪ 1, uε = v0(x2,y) + ε v1(x2,y) + . . . ,

σε = τ0(x2,y) + ε τ1(x2,y) + . . . ,

(19)

with the outer terms (un, σn) for x1 < 0 and the inner terms (vn, τn) being Y periodic with Y =
(−1/2, 1/2); and now the second real problem (4) can be written in the inner and outer regions,
thanks to the expansion of the following differential operator:







outer region, ∇ → ∇x,

inner region, ∇ → ∂

∂x2
e2 +

1

ε
∇y,

(20)

where ∇x and ∇y means the gradient with respect to x and y, as a macroscopic coordinate x associated
with slow variations of the fields (with the particular scale 1/KR of the wave) and a microscopic
coordinate y, associated with the fast variations (the particular h scale of the inclusions), and in the
inner region, we keep the coordinates x2 that are relevant to describe the variations of the field.

In the following, we will use the domain coordinate Ω = (−ym1 , ym1 )×Y containing a single inclusion
(Figure 10). Ωi and Ωm are the subdomains occupied respectively by the inclusion and by the matrix

Mathematical Modeling and Computing, Vol. 10, No. 3, pp. 899–917 (2023)



Homogenization of the Helmholtz problem in the presence of a row of viscoelastic inclusions 911

(Ω = Ωi ∪Ωm); the continuities of the displacement and the normal stress apply on ∂Ωi. We will also
use Ω∞ = limym

1
→+∞Ω.

Finally, from (5), (a∗ε, b∗ε) can be specified in the outer regions (|x1| ≫ ε) as:










a∗ε(x) = 1,

b∗ε(x) =

(

K∗

KR

)2

,
(21)

and in the inner region a∗ε(x) = ã∗(x/ε) and b∗ε(x) = b̃∗(x/ε) with

ã∗(y) =











a∗(y2), y ∈ Ωi,
1, y ∈ Ωm,

b̃∗(y) =











b∗(y2), y ∈ Ωi,
(

K∗

KR

)2

, y ∈ Ωm,
(22)

with a∗(y2), b
∗(y2) 1-periodic and piecewise complex constant.

A.1.2. Matching conditions

Because of the separation of the space into two regions, it is necessary to specify the boundary condi-
tions at |y1| → +∞ and for x1 → 0±, which are unknown a priori. These conditions are provided by
the matching conditions; they ensure the continuity of the displacement and the normal stress in an
intermediate region where the evanescent field can be considered as negligible.

According to [35] the matching is written for x1 → 0± corresponding to y1 → ±∞. Due to the
Taylor expansion of

u0(x1, x2) = u0(0±, x2) + x1∂x1
u0(0±, x2) + . . .

= u0(0±, x2) + εy1∂x1
u0(0±, x2) + . . . ,

even for σ0; we obtain for n = 0:






u0(0±, x2) = lim
y1→±∞

v0(x2,y), (23a)

σ0(0±, x2) = lim
y1→±∞

τ0(x2,y), (23b)

and for n = 1:


















u1(0±, x2) = lim
y1→±∞

[

v1(x2,y)− y1
∂u0

∂x1
(0±, x2)

]

, (24a)

σ1(0±, x2) = lim
y1→±∞

[

τ1(x2,y)− y1
∂σ0

∂x1
(0±, x2)

]

. (24b)

A.2. Jump conditions and effective parameters

We start with the jump conditions Jv0K0 and Jσ0
1K0 at first order through an interface of zero thickness

at x1 = 0, with:

JfK0 ≡ f(0+, x2)− f(0−, x2). (25)

A.2.1. Jump conditions at order 0

The real wave equations (4) for inner problem at first-order in ε−1 give:

∇yv
0 = 0, divyτ

0 = 0,

we deduce that v0 does not depend on y, so

u0(0−, x2) = u0(0+, x2) = v0(x2). (26)
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Then, integrating divyτ
0 = 0 over R × Y (Figure 11), and using (i) the continuity of τ0 · n between

inclusions along y2, and (ii) the periodicity of τ0 with respect to y2, we obtain:
∫

Y

[

τ01 (x2,+∞, y2)− τ01 (x2,−∞, y2)
]

dy2 = 0.

Fig. 11. The elementary cell in coordinates y

with y ∈ R × Y (Y = (−1/2, 1/2)). In co-
ordinates y, we define Ω = (−ym1 , ym1 ) × Y ,
with ym

1
> e/h (In coordinates y, we define

ym
1

→ +∞ will be taken into consideration);
Ω = Ωi, with Ωi and Ωm the domains occupied
by the inclusion and the matrix, respectively.

Finally, by integrating the matching conditions (23a)
and (23b) on Y , we obtain

∫

Y
τ01 (x2,±∞, y2) dy2 = σ0

1(0
±, x2). (27)

Using (25), we deduce from (26)–(27) the jump condi-
tions to the first order

Ju0K0 = Jσ0
1K0 = 0. (28)

From (28), we find that the displacement and normal
stress are continuous, which forces us to go to the next
order to obtain the effect of the row of inclusions.

In order to obtain the second order jump conditions,
we need to find the solutions of the elementary problems.

A.2.2. Jump conditions at order 1

Elementary problems and the jump condition on u
1. From the first equation in (4) at order ε−1

and the second equation in (4) at order ε0, the matching conditions (23b), it follows that the system
satisfies by v1(x2,y) can be written:



























divy τ
0 = 0 with τ0 = ã∗(y)

[

∂u0

∂x2
(0, x2)e2 +∇yv

1(x2,y)

]

,

v1 and τ0 · n continu on ∂Ωi,

lim
y1→±∞

∇yv
1(x2,y) =

∂u0

∂x1
(0, x2)e1,

(29)

with v1 and τ0 periodic with respect to y2. (29) is linear with respect to ∂x1
u0(0, x2) and ∂x2

u0(0, x2).
Thus, we define V (1)(y) and V (2)(y) as

v1(x2,y) =
∂u0

∂x1
(0, x2)

[

V (1)(y) + y1

]

+
∂u0

∂x2
(0, x2)V

(2)(y) + v̂(x2), (30)

and for i = 1, 2,

T(i)(y) ≡ ã∗(y)∇
[

V (i)(y) + yi

]

.

We see that the field v1 in (29) is defined up to a function of x2, and it is denoted v̂(x2) in (30); we
will see that the determination of v̂(x2) is not necessary. It is easy to see that if (V (i),T(i)) satisfy the
elementary problems:



















divT(i) = 0 with T(i)(y) ≡ ã∗(y)∇
[

V (i)(y) + yi

]

,

V (i) and T(i) · n continuous on ∂Ωi,

lim
y1→±∞

∇V (i)(y) = 0.

(31)

then v1(x2,y) satisfied (29).
From (31), V (i) for i = 1, 2, being defined up to a constant, can be chosen as:

V (i)(y) =

{

V
(i)
ev (y), y1 < 0,

Bi + V
(i)
ev (y), y1 > 0,
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where V
(i)
ev (y), i = 1, 2 are evanescent fields, vanishing at y1 → ±∞. Thus,

Bi ≡ V (i)(+∞, y2)− V (i)(−∞, y2) (32)

with Bi being constant values (i = 1, 2), and are called the first interface parameters. It is now enough
to use the matching condition (24a) to obtain:

Ju1K0 = B1
∂u0

∂x1
(0, x2) + B2

∂u0

∂x2
(0, x2), (33)

which provides the first jump condition written here for u1 across an interface of zero thickness at
x1 = 0.

The jump condition on σ
1
1. The derivation of the jump condition on σ1

1 is more demanding and
requires integrating more than Ω the first equation of (4) to order ε0 for the inner solution, which reads
as follows:

v0(0, x2)

∫

Ω
b̃∗(y) dy +

∫

Ω

[

divy τ
1 +

dτ02
∂x2

]

dy = 0, (34)

where we used (26). After doing this, we inspect the τ02 term that is needed in the above equation.
From (31) and (30), we have:

τ2
0 = ã∗(y)

[

∂u0

∂x1
(0, x2)

∂V (1)

∂y2
+

∂u0

∂x2
(0, x2)

(

∂V (2)

∂y2
+ 1

)]

.

It is now enough to use the second equation of (4) for the problem outside the order ε0 to obtain:

σ1
0 =

∂u0

∂x1
, σ2

0 =
∂u0

∂x2
,

and therefore:

τ02 = ã∗(y)

[

σ0
1(0, x2)

∂V (1)

∂y2
+ σ0

2(0, x2)

(

∂V (2)

∂y2
+ 1

)]

. (35)

We can return to the equation (34), which involves three integrals. The first integral is:

u0(0, x2)

∫

Ω
b̃∗(y) dy =

(

K∗

KR

)2

u0(0, x2)

[

2ym1 +
eϕ

h

(

ρi
ρm

− 1

)]

, (36)

with eϕ/h the surface of the inclusion in coordinates y (ϕ is the filling fraction of the inclusion for
y1 ∈ (0, e/h)) (Figure 11). The second integral, of divy, is obtained thanks to the continuity of τ1 · n
and its periodicity with respect to y2, and we obtain

∫

Ω
divyτ1 dy =

∫

Y

[

τ11 (+ym1 , y2, x2)− τ11 (−ym1 , y2, x2)
]

dy2 (37)

for the third integral, with ∂x2
τ02 given by (35), we have

∫

Ω

∂τ02
∂x2

dy =
∂σ0

1

∂x2
(0, x2)

∫

Ω
ã∗(y)

∂V (1)

∂y2

∂σ0
2

∂x2
(0, x2)

[

∫

Ω
ã∗(y)

∂V (2)

∂y2
+ 2ym1 +

eϕ

h

(

Mi

Mm
− 1

)

]

.

(38)

Two terms in (36) and in (38), are linear in ym1 . They are added together to obtain:

2ym1

[

(

K∗

KR

)2

u0(0, x2) +
∂σ0

2

∂x2
(0, x2)

]

= −2ym1
∂σ0

1

∂x1
(0, x2), (39)

where we used the second equation of (4) for the inner problem of order ε0, in particular:

∂σ0
1

∂x1
+

∂σ0
2

∂x2
+

(

K∗

KR

)2

u0 = 0. (40)
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We now add two terms of (37) and (39) using the matching conditions (24b) written in another form:


















σ1
1(0

−, x2) = lim
ym
1
→+∞

[

τ11 (−ym1 , y2, x2) + ym1
∂σ0

1

∂x1
(0−, x2)

]

,

σ1
1(0

+, x2) = lim
ym
1
→+∞

[

τ11 (y
m
1 , y2, x2)− ym1

∂σ0
1

∂x1
(0+, x2)

]

,

(41)

and because of the continuity of σ0
1 at y1 = 0, we get

Jσ1
1K0 = lim

ym
1
→∞

[

τ11 (y
m
1 , y2, x2)− τ11 (−ym1 , y2, x2)− 2ym1

∂σ0
1

∂x1
(0, x2)

]

,

including equations (36) to (39) in (34) for ym1 → +∞, and using the above equation, we get:

Jσ1
1K0 = −

(

K∗

KR

)2

u0(0, x2)
eϕ

h

(

ρi
ρm

− 1

)

− ∂σ0
1

∂x2
(0, x2)

∫

Ω∞

ã∗(y)
∂V (1)

∂y2

− ∂σ0
2

∂x2
(0, x2)

[

∫

Ω∞

ã∗(y)
∂V (2)

∂y2
+

eϕ

h

(

Mi

Mm
− 1

)

]

.

Finally, with (40), the jump of σ1
1 through an interface of zero thickness at x1 = 0 is written:

Jσ1
1K0 =

eϕ

h

(

ρi
ρm

− 1

)

∂σ0
1

∂x1
(0, x2)− C1

∂σ0
1

∂x2
(0, x2)−

[

C2 +
eϕ

h

(

Mi

Mm
− ρi

ρm

)]

∂σ0
2

∂x2
(0, x2), (42)

where we have defined the parameters of the second interface, for i = 1, 2,

Ci ≡
∫

Ω∞

ã∗(y)
∂V (i)

∂y2
dy. (43)

A.3. The homogenized problem and the associated final jump conditions

The final jump conditions will be written, from (33) and (42), in a different form and equivalent up to
O(ε2) to those obtained for u0 + εu1 and for σ0

1 + εσ1
1 . From (4), u and σ1 up to O(ε2) satisfies the

Helmholtz equation in the matrix and jump conditions through a zero thickness interface at x1 = 0,
which reads as follows:















































∆u+ u = 0,

JuK0 = εB1
∂u0

∂x1
(0, x2) + εB2

∂u0

∂x2
(0, x2) +O(ε2),

Jσ1K0 = ε
eϕ

h

(

ρi
ρm

− 1

)

∂σ0
1

∂x1
(0, x2)− ε C1

∂σ0
1

∂x2
(0, x2)

− ε

[

C2 +
eϕ

h

(

Mi

Mm
− ρi

ρm

)]

∂σ0
2

∂x2
(0, x2) +O(ε2).

(44)

It has been shown in [4,5,11,36] that it is better to express the jump conditions through an extended
version of the interface. First, we define an enlarged version of the jumps and associated mean value
for any field f(x1, x2),

JfK ≡ f+ − f−, f̄ ≡ 1

2

[

f− + f+
]

, with f± = f

(

±eKR

2
, x2

)

.

We now use the Taylor expansion

u0
(

±eKR

2
, x2

)

= u0
(

0±, x2
)

± ε
e

2h

∂u0

∂x1

(

±eKR

2
, x2

)

+O(ε2),

where we used e/h = O(1), and with (44), we obtain the jump condition:

JuK = ε
(

B1 +
e

h

) ∂u

∂x1
+ εB2

∂u

∂x2
+O(ε2),
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(and the same thing to get the jump from Jσ1K). Now, after [7], we define the new homogenized
problem in rescaled coordinates:































∆uh + uh = 0,

JuhK = εB∂uh

∂x1
+ εB2

∂uh

∂x2
,

Jσh
1 K = ε

[

Sdiv σh − C1
∂σ1h

∂x2
− C ∂σ2

h

∂x2

]

,

(45)

with

B ≡ e

h
+ B1, C ≡ e

h
+

eϕ

h

(

Mi

Mm
− 1

)

+ C2, S ≡ e

h
+

eϕ

h

(

ρi
ρm

− 1

)

.

It is easy to see that
(

vh, σh
)

has the same expansions as (v, σ) up to O(ε2).
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Comptes Rendus de l’Académie des Sciences – Series IIB – Mechanics-Physics-Chemistry-Astronomy. 326

(4), 237–242 (1998).

[21] Rizzoni R., Dumont S., Lebon F., Sacco E. Higher order model for soft and hard elastic interfaces. Inter-
national Journal of Solids and Structures. 51 (23–24), 4137–4148 (2014).

[22] Rizzoni R., Dumont S., Lebon F. On Saint Venant–Kirchhoff Imperfect Interfaces. International Journal
of Non-Linear Mechanics. 89, 101–115 (2017).

[23] Mercier J.-F., Marigo J.-J., Maurel A. Influence of the neck shape for Helmholtz resonators. The Journal
of the Acoustical Society of America. 142 (6), 3703–3714 (2017).

[24] Maurel A., Marigo J.-J., Mercier J.-F., Pham K. Modelling resonant arrays of the Helmholtz type in the
time domain. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 474

(2210), 20170894 (2018).

[25] Lebon F., Rizzoni R. Asymptotic Behavior of a Hard Thin Linear Elastic Interphase: An Energy Approach.
International Journal of Solids and Structures. 48 (3), 441–449 (2011).

[26] Dumont S., Rizzoni R., Lebon F., Sacco E. Soft and hard interface models for bonded elements. Composites
Part B: Engineering. 153, 480–490 (2018).

[27] Lebon F., Rizzoni R. Higher Order Interfacial Effects for Elastic Waves in One Dimensional Phononic
Crystals via the Lagrange–Hamilton’s Principle. European Journal of Mechanics – A/Solids. 67, 58–70
(2018).

[28] Capdeville Y., Marigo J.-J. A Non-periodic two scale asymptotic method to take account of rough topogra-
phies for 2-D elastic wave propagation. Geophysical Journal International. 192 (1), 163–189 (2013).

[29] Cioranescu D., Donato P. An Introduction to Homogenization. Oxford Lecture Series in Mathematics and
Its Applications. Vol. 17, Oxford University Press, Oxford, New York (1999).

[30] Borcherdt R. D. Viscoelastic Waves in Layered Media. Cambridge University Press, Cambridge (2009).

[31] Pham K., Maurel A., Mercier J.-F., Félix S., Cordero M. L., Horvath C. Perfect Brewster transmission
through ultrathin perforated films. Wave Motion. 93, 102485 (2020).

[32] Gumerov N., Duraiswami R. Fast Multipole Methods for the Helmholtz Equation in Three Dimensions.
Elsevier (2004).

[33] Petit R. Electromagnetic Theory of Gratings. Topics in Current Physics. Springer-Verlag, Berlin, Heidel-
berg (1980).

[34] Lalanne P., Lemercier-Lalanne D. Depth dependence of the effective properties of subwavelength gratings.
Journal of the Optical Society of America A. 14 (2), 450–459 (1997).

[35] Abdelmoula R. The effective behavior of a fiber bridged crack. Journal of the Mechanics and Physics of
Solids. 48 (11), 2419–2444 (2000).

[36] Delourme B. High-order asymptotics for the electromagnetic scattering by thin periodic layers. Mathe-
matical Methods in the Applied Sciences. 38 (5), 811–833 (2015).

Mathematical Modeling and Computing, Vol. 10, No. 3, pp. 899–917 (2023)



Homogenization of the Helmholtz problem in the presence of a row of viscoelastic inclusions 917

Гомогенiзацiя задачi Гельмгольца за наявностi ряду
в’язкопружних включень

Белемоу Р.1, Сбiттi А.2, Джауахрi М.1, Марiго Ж.-Ж.3

1Унiверситет Хасана II, Енс,

вул. Ель Джадiда Км 9, Гандi, 50069, Касабланка, Марокко
2Унiверситет Мохаммеда V, Енсам,

вул. Об’єднаних Нацiй, Агдал, 8007.N.U, Рабат, Марокко
3Лабораторiя механiки твердого тiла, Полiтехнiчна школа,

91128, Палезо, Францiя

Запропоновано метод гомогенiзацiї, який заснований на технiцi узгодженого асимпто-
тичного розвинення, щоб отримати ефективну поведiнку перiодичного масиву лiнiй-
них в’язкопружних включень, якi вбудованi у лiнiйну в’язкопружну матрицю. Роз-
глянуто задачу для зсувних хвиль i хвильове рiвняння в гармонiчному режимi. От-
римана ефективна поведiнка вiдповiдає еквiвалентнiй межi подiлу, яка пов’язана з
умовами стрибка, для змiщення та нормального напруження на межi подiлу. Коефi-
цiєнти пропускання та поля змiщень отриманi в замкнених формах i перевiрена їх
справедливiсть шляхом порiвняння з числовими результатами у випадку прямокут-
них включень.

Ключовi слова: гомогенiзацiя; узгоджене асимптотичне розкладання; субхвильо-

ва шкала; передача хвиль; в’язкопружний; гомогенiзацiя межi подiлу; ефективнi

умови стрибка.
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