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We propose a homogenization method based on a matched asymptotic expansion tech-
nique to obtain the effective behavior of a periodic array of linear viscoelastic inclusions
embedded in a linear viscoelastic matrix. The problem is considered for shear waves and
the wave equation in the harmonic regime is considered. The obtained effective behavior is
that of an equivalent interface associated to jump conditions, for the displacement and the
normal stress at the interface. The transmission coefficients and the displacement fields
are obtained in closed forms and their validity is inspected by comparison with direct
numerics in the case of a rectangular inclusions.
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1. Introduction

The two-scale homogenization method is considered among the preferred tools for modeling wave
propagation in periodic microstructures [1,2]. However, classical homogenization methods are not
efficient when considering media composed of micro-structured interfaces [3-5]: the behavior of the
fields is dominated by boundary layer effects which are not taken into account by the theories of volume
effective medium. To recover their efficiency, these methods must then be combined with matched
asymptotic expansions, giving effective jump conditions on an equivalent interface. These methods
have been used in static elasticity [6,7]. For the propagation of waves, they have been adapted in
elasticity, studies have focused on rows of non-resonant inclusions [8,9] then on resonant inclusions [10].
For the propagation of waves in electromagnetism [11-13|, and in acoustics [5,14]. We also note that
similar methods can also be used to obtain effective jump conditions for stratified media [15-17],
metallic structures [18,19], adhesive layers [20-22|, bubble screens [9], Helmholtz resonators [23, 24|
and for the latter, the results are equivalent to those obtained with the energy-based methods [25-27].
The case of non-periodic layers has also been studied for seismic waves [28].

In this article, we used the asymptotic analysis and the same homogenization approach that was
applied in the case of shear wave scattering by a periodic row of elastic inclusions embedded in elastic
matrix [8,10]. We have noticed that in the case of viscoelastic linear media, the wave equation of the
real problem in the harmonic regime takes the same form as that in elasticity, except that in our case
the coefficients of the physical parameters entering the equation are complex, which does not change the
homogenization procedure and even the form of the homogenized wave equations obtained at different
orders. We also show that the diffusion parameters of the effective model accurately describe those
of the real structure, and in general, the homogenized solution associated with the jump condition is
even more meaningful than the classical homogenization.
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The paper is organized as follows. In Section 2, we summarize the result of the asymptotic analysis
in the case of a row of linear viscoelastic inclusions inserted periodically in a linear viscoelastic matrix,
the main derivation steps of which are given in the Appendix Ann.4. The resulting system (7) represents
the homogenized problem associated with the jump conditions of displacement and normal stress
through an equivalent interface. In Section 3, the accuracy of the actual model is verified by comparison
with numerical values based on the multimodal method [17] for an incident shear wave. Transmission
coefficients as a function of frequency Kprh, inclusion thickness e/h and as a function of reciprocal
quality factor Q! are illustrated and the agreement between real and actual problems is discussed.

2. The real problem and the effective problem

We summarize below the main results of the asymptotic analysis in Appendix Ann.4, and which
provides the so-called “effective problem” where the row of linear viscoelastic inclusions is replaced by
an equivalent interface associated with jump conditions for displacement and normal stress (Figure 1).

¥ h Jump conditions

==
: I
Xo ‘ Homogenization Xo ‘
—_—
R o X,

i N —
% ) (pi, M) a

Fig.1. A row of inclusions in the matrix of thickness e and width h, are replaced by a layer of thickness a
through which the jump conditions are applied.

2.1. The physical problem

We consider the shear wave propagating in a viscoelastic matrix €2, containing a row of periodically
located viscoelastic inclusions, (2, = UQ;, i = 1,2,..., N,) with spacing h and thickness e = O(h) of
each inclusion ; (Figure 1). The scalar displacement field U(X) written in the harmonic regime wave

case, with X € € the spatial coordinates (2 = Q,, U,) and Q = {(X;,X»2) e R x (-H/2,H/2)}.
div(MVU) + pw?U = 0, (1)

with M and p being respectively the complex shear modulus and the mass density, and w the frequency.
The equation (1) can be written using the dimensionless parameters.

M(X,w) p(X)
of(X)=——"< and X)=——=,
(X) =20 sx) =22
with M, the complex shear modulus and p,, the mass density of the viscoelastic matrix occupying

the Q/Q, region; with K* = w+/py, /M, the complex wave number in the matrix, we obtain:

div(a*VU) + BK**U =0, (2)
allowing us to write the Helmholtz equation in the matrix as follows:
AU + K**U = 0.

In the harmonic regime, we consider viscoelastic waves with a wavelength 27 /Kp very large com-
pared to the periodicity of the inclusions h (Kg being the real part of the complex shear wave num-
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ber K*), such that:
g = KRh < 1.

(uf, 0%) continuous on I'

| | R
vl e i

Fig.2. Real problem in adimensional coordinates with (1 = KrXi, o = KrXs). The usual continuity
conditions for (u®, 05) apply to the I' boundaries between the inclusions and the substrate.

To be consistent, we will work in dimensionless coordinates with (1 = KrXy, 9 = KrXs). We
consider the real problem for x = (z1,22) € R x (~-KrH/2, KrH/2) (Figure 2). We note

) =’ 10 =500 (- ) ;

Kpr
ui(x) = UX), o°(x)=Kr 'a*(X)VU(X),
where the functions a* and b* are 1-periodic and complex, such that:
a**(x) =a" (%) and b*°(x) = b* (%) : (3)
Moreover, we have explicitly stated the dependence of (u®, %) on €, being the periodicity of inclusions
in dimensionless form. Now (2) reads:

divo®(x) + 0™ (x)u’(x) =0, x€Q;
o (x) = a**(x) Vu® (x); (4)
u® and ¢° - n continuous x € 9Q;, i=1,2,...,N,,

where in this case, the functions a¢* and b* are 1-periodic and piecewise complex constant, such that:

a*ex — 17 Q/QT7 *E x) = K; 27 Q/QT7
(%) {a*(ﬂ), O, b*" (%) {b(f(%?), 0. (5)

€

The boundary conditions at |x1| — 400 and x9 = +KrH/2, are called radiation conditions, apply
once the wave source has been defined. For the moment, we do not need to specify their form.

2.2. Effective interface and classical effective medium models

In the effective interface model [8], this is done by imposing the jump conditions between z = —e/2
and z = e/2. In the classical effective mean model [29], this is done by replacing the row of inclusions
by a homogeneous and anisotropic slab. Both models are based on an asymptotic method and are
valid in the limit kh < 1, we will see the predictions hold up to kh ~ 1 with reasonable errors.

2.2.1. Effective interface model

The homogenized problem of the real problem (4), is done by defining the fields (u”, o") satisfying the
Helmholtz equation in the matrix and the associated jump conditions (see Ann.4), and is written as
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follows:
Aul +ul =0,
oul oul
h
=eB— +eBy—
[u"] =e 8:E1+€ 28:132’ 6)
TR 80’1h 80’2h
[oh] =€ |Sdiveh — ¢y s —C’a—%2 ,
where the jump conditions and associated mean value for any field are defined as follows:
S
Fl=st =71 F=5lm+17,
with
K
=1 (50 a).
and

_e _e e (M _c e (pi _
B_h+B1, C_h+h<Mm 1>+CQ, S_h—l-h(pm 1),

with (B;, C;, i = 1,2) the interface parameters (32)—(43), and ¢ is the filling fraction of each inclusion
in the row. M; is the complex shear modulus and p; is the mass density of the viscoelastic inclusions
occupying the 2, region.

Finally, from (6) and return to real space to obtain the final homogenized problem, which will be
defined outside the interface occupying X € (—e/2,e/2)x (—00,+00), and is written as follows:

AUM + K*2Uh =0, |Xy| > g
auh auh
UM, = hB=— + hBy——,
[[ ]] 83:1 + 2 83:2 (7)
- o)LL)
M. = h | Sdivh — -
[[ 1]] Sdiv G 0xs 0xa ’

with [F] = F(e/2,X3) — F(—e/2,X5) and F = 1/2[F(e/2, X5) + F(—e¢/2, X5)].

2.2.2. Classic effective medium model

Classical homogenization tells us that a medium composed of inclusions can be replaced by an equiv-
alent homogeneous and anisotropic medium described by the wave equation, as follows:

: (@*) 0 h * 2rrh €
div << 0 (1 /a) 1 vU" | + (b")Kg“U" =0, | X1 < 5
AU + K*2U" = 0, X > £ (®)
U" and " - n continuous X1 =—¢/2,¢/2,
involving effective parameters ((a*), (1/a*)~1) and (b*) defined by:
*\ MZ *\—1 __ Mm -
) =oq-+1-9 (1/a”) —[soMiJrl—sO] ,

0= (E) (1)
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3. Numerical validation of the actual problem

In this section, we discuss the error of the homogenized solution with respect to the solution of the
real problem, we consider the particular diffusion problem of a row of square, or rectangular inclusions.
Note that for rectangular inclusions, being symmetric about ys, V1) is symmetric and V? is anti-
symmetric about yo; it follows that Ba = C; = 0 in (32) and (43), and only (S, B, C) are needed in
the jump conditions. These effective parameters are determined numerically by using a multi-modals
method (see [8]).

3.1. Solutions of the physical problem

We numerically solve the real
problem of an incident shear wave
of type SII [30], which coming Q
from X; < —e/2 and hitting

the inclusion row at oblique inci- XgL XZL

dence 6 with heterogeneity degree 0 0 X, H 0 0 Xx; B
v (Figure 3). To do this, the mul- e T
timodal method is used (see [31]). ¢ lh

We will work with complex

fields (because the physical fields  Fig. 3. Left: Real problem of plane wave scattering at oblique incidence
are the real parts of the calcu- @ by arow of rectangular voids, with a degree of heterogeneity . Right:
lated complex fields); in the har- The homogenized problem involves an interface of equal thickness e,
which is associated with jump conditions applying to X; = +e/2.

Probléme physique Probléme homogénéisé

Uinc e

monic regime, the complex fields
(and we will consider the displacement field U(X)) have a time dependence in ™! and it will be
omitted in the following. This type of shear wave is defined as a SII type wave [30], of the following
form:

Uine(X) = emiwtgiKr — gmiwto— AT iPr (10)
where 7 = (X1, X3) is the position vector, and K the complex wave vector is given by
K =P+ 1A = Kg21 + Kincta
and the corresponding propagation and attenuation vectors, are given by
P = |P|cos(0)za + | P|sin(6)72 = Re[Ks|71 + Re[Kinc| 72,
A = |Alcos(f —v)z1 + |A|sin(f — v)z2 = Im[K |21 + Im[Kine| 22,
with (21, 42) are orthogonal real unit vectors for a Cartesian coordinate system, kin. is the complex

wave number for the assumed general SII wave, and Kg = \/ K*? — Kin.2, where “y/ 7 is understood
to indicate the principal value of the square root of a complex number z = zp +1z; defined in terms
of the positive square root of real numbers by

Vz= 1/7’2‘ —;ZR + isign[z7]4/ Izl = zr ; R

. (1 i >0
senlz] =9 L <o

hence, the complex wave numbers Kj,. and Kg reads
Kine = [P|sin(6) + i| ] sin(6 — ),
Kg = |P|cos(0) +i|A| cos(6 — ),
where the magnitudes of the propagation and attenuation are specified in terms of the given material

parameters, the complex wave number K* or wave speed (v, = w/Kpg) and the reciprocal quality
factors (Qm ™' = M,/ My p), and the given degree of inhomogeneity ~ [30].

with
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The reference numerical solution U™™ is searched in the matrix where the Helmholtz equation
applies and U and ¥ - n being continuous at each interface between the matrix and the inclusion. The
current problem is placed in €, being the region occupied by the matrix and we denote 2, = U2;,
(1=1,2,...,N;) the row occupied by each inclusion §;, with K = w+/p;/M; the complex wavenumber
in the inclusions,

AU 4+ K**U =0, X € Qp,
AU + K;**U =0, XeW, i=12,...,N,,
U and ¥ - n continuous on X1 €00,i=1,2,...,N,,
X {aXl (U= U)K (U - Umc)} -0 (11)
H ; H
U <X17 E) = elKinCU <X17_E> 3 Xl € R7
ou H ou H
X - — iKine X _ X R
6X2<1’2> ‘ 6X2< 2>’ LER

where the scattered waves (U — U™¢) at X; — +oo satisfy the radiation condition [32], and are
considered in the low frequency regime [5]. The last condition represents the pseudo-periodicity [33],
which applies in the case where H = nh, with n an integer, for the incident wave and for the total
field.

3.2. Homogenized problem solutions

We will check the accuracy of the homogenized solution of the effective interface problem (12) and
the classical effective model (8). To do this, we treat two particular problems of diffusion by a row of
rectangular inclusions. Thus, the matrix is considered a linear viscoelastic medium with a reciprocal
quality factor Q! which is different from the reciprocal quality factor Qi_nl of linear viscoelastic
inclusions.

3.2.1. Solutions of the effective interface model

Solutions of the effective interface model (7) with (10) is of the form:

AU + K*2U" =0, | X1 > g
aUh
U"e = hB——
[U"] e
h — %"
[SH]e = h | SdivEF - 22|,
2
(12)
h inc : h _ rrinc —
e (08— 04 o,
H - H
uh <X1, 5) = Ky (Xl, —5> : X1 €R
ouh H A H
| 9X, <X1’2>_ X, <X1’ 2)’ X1eR
The solution of (12) is written
U(X) = [eiKs(X1+6/2) + Re—iKs(X1+e/2)] e ineX2 ¥ —e/2,
(13)

U(X) = [TeiKS<X1—@/2>] ¢ Kine X2 X1 > e/2,
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with (R, T) are given using jump conditions (12) with (13). The transmission coefficient 7" and reflection
coefficient R is read:

R=1 [2’_4 _ 2_2]
2 )
Lo (14)
r- 1 {2_4 N Z_z] 7
2 3 21
with
h
z71=1- 1§BKS,
h
z1=1+ 1§BKS,
, (15)
Z9 = KS — 15 (S (KS + IHC) CK1211C) 5
h
29 = Kg + i§ (S (KS + mc) CKlan) .
3.2.2. Solutions of the classical effective medium
The homogenized classical problem (8) with the incident (10) takes the following form:
_ {(a*) 0 h o\ o 2r7h _ ¢
d1v<< 0 (1/a")-1 VU™ ) 4+ (b")Kr“U" =0, |X1] < 3
AU" + K*2Uh = 0, x> 5 ¢
U" and ¥" - n continuous on X = —6/2,6/2,
h inc : h _ 7rinc _ (16)
R s e )
H ; H
o (Xl, 5) = Hmegyh (Xl,—5> , X, €R,
ou” H ou H
X = ¢'fine X X, eR
k6991*2(1’2) 8X2<1’ 2)’ LE
The solution of (16) is written:
U(X) = [eiKS(XH-@/?) n Re—iKs(X1+e/2)} KXoy o _C
) 27
U(X) = [ae5X1 4 pe KX ciKineXz, X <3, (17)
U(X) = TelKs(X1—e/2)+iKinc X2 X, > e
Y 27

on X1 = —e/2,e/2, using the continuities of U" and %}, - n, we obtain the diffusion coefficients (R, T')
of the form
2 (K3 - K2¢") sin Ke
(Ks — K¢)?etfte — (Kg + K§)?em e’ (18)
4K Kgs€
(KS — Kf)2eiKe _ (KS + Ké)ze—iKe’

R=

T=-—

with

b* % M;
K:\/< >K,2%—<1/Z> Ko E=03+1-6.
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3.3. Accuracy of the homogenized solution compared to the real solution

We will check the validity of the homogenized solution for an oblique incident wave. We first introduce
the fields U™™ numerically calculated (11) and the U" fields of classical homogenized solutions (8)
and interface (13), this is done for low-loss viscoelastic media Q! < 1 and for no Low-loss media
Q! > 0.2) (Figure 4). We will also present numerical and homogenized solutions for the case of
(Q7! > 0.2), but this time varying e/h the geometric shape of the inclusions (Figure 5).

Actual problem Homog. interface Classical homog.

E
M
"
il
/

i

Actual problem Homog. interface Classical homog.

(0)

V//H
y////
)

r

Fig.4. (a) The numerical solution U™™ in the real problem of low-loss viscoelastic media @Q;,} = 0.05 and

Q;nl = 0.1, for an oblique incident plane wave 6 = 7/3 with a degree of heterogeneity v = 7/6 and Krh = 1.

Reflected by a slab of rectangular voids (h = 1, e/h = 0.5 and ¢ = 0.5); (b) Same representation as (a) with
Q,,} = 0.2 and Qi_nl = 0.3 in the case of viscoelastic media (no low-loss media).

Actual problem Homog. interface Classical homog.

y
)/
W/
7

Actual problem Homog. interface Classical homog.

(0)

(1
7
(1
/]
i
i

Fig.5. (a) Same representation as (Figure 4) with the reciprocal quality factor @;;! = 0.1 and Q' = 0.2.
(b) Same representation as (a) with e/h = 1.
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Defining AU = |U — U™ |/|U™™| (for | X1| > e/2 with || - || the norm L?), we obtain, on average,
the results indicated in the table (Table 1). It is interesting to note that a small error was found even
at a relatively high value kh = 1.

Table 1. Error AU} of the homogenized interface solution and error AUS of the classical
homogenization solution compared to the real solutions represented in the figures (Figures 4 and 5).

Error AU Error AU%

QL =0.05 Q;!' =0.1and e/h = 0.5 (a-Fig.4) 0.4 % 0.6 %
Q=02 Q; =03 and e/h = 0.5 (b-Fig.4) 0.5% 0.7%
Q. =0.1,Q; =02 and e/h = 0.5 (a-Fig.5) 0.5 % 0.7%
Q. =0.1,Q; =02 and e/h =1 (b-Fig.5) 0.5% 0.7%

3.3.1. Transmission error as a function of frequencies

We first perform a validation for Q' = 0.2 and Qz_nl = 0.3 (no Low loss media), for which we report
the transmission spectra as a function of Krh € [0.1] and e/h € [0.4], as well as the corresponding
errors AT = |T™™ —T|/|T™™| (Figure 6).

Actual problem Classical homog. Homog. interface

-i1
0 4 0

Classical homog. Homog. interface

1 100% 100%
0 1% 1%
0 4 0 4

e/h

e/h
Fig. 6. Above: Transmission coeflicients in the real |7T™"™| and homogenized |T'| problem at the classical
homogenization, and at the homogenized interface as a function of e/h and frequency Krh; (Q,! = 0.2,
;nl =0.3, p =0.5, 0 = /3 and v = 7/6) were considered. Below: Errors AT on the transmission coefficient,
which are calculated numerically. Errors less than 1% appear in dark blue, and errors greater than 100% appear
in dark red.

0 4

In Figure 6 and for Q! = 0.2 and Qi_nl = 0.3, the error in the transmission coefficient at the
homogenized interface is less than 1% in the whole range of e/h, and it is 10% on average at classical
homogenization. On the other hand, classical homogenization wrongly predicts the transmission co-
efficients for negligible thicknesses e/h, but by including the jump conditions (7) at the homogenized
interface it restores the real scattering properties of a row of rectangular inclusions. This is consistent
with the result of [34], in which the effective permittivity of electromagnetic waves must depend on
thickness (the effective shear modulus parameter in our case).
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1 \ =
T Classical homo. L / 100¢
T" Homo. interface — Error Classical homo.
_ X /,_,_%/
N—
1 |
& =~
Tnum q
— : -
T" Homo. interface 0.01f —— Error Homo. interface |
—— 1" Classical homo. Cl ' Error Homo. interface —— Error Classical homo.
0
1
A A
N / / 100+
T Classical homo. hum /
h . Error Classical homo.
T Homo. interface —~
=) s TN
S~— -
i ~ 1 /
Tnum q
—— 1" Homo. interface c 0.01F Error Homo. interface = Error Homo. interface
—— 1" Classical homo. 2 ' = Error Classical homo.
0
1 0
0 1 10 10
KRh KRh

Fig. 7. Left: Transmission coefficients |T™"™| and |T'| as a function of Krh for e/h = 0.05 and e/h =1 (Cy, Cs

profiles of Figure 6), with |T™"™|: blue symbols and |T|: black lines the classic homogenization and red lines the

homogenized interface. Right: The corresponding error AT of homogenized predictions, which are indicated as
a percentage (black lines the classical homogenization and red lines the homogenized interface).

1
T" Classical homo. 1007
Error Classical homo.
<
_— Thum &
& =
= N )
oum T" Homo. interface Y Error Homo. interface
—h : -
T" Homo. interface 0.01t —— Error Homo. interface ||
— 1" Classical homo. ’ —— Error Classical homo.
0
0 4 0 4
e/h e/h

Fig. 8. Transmission coefficients |7""™| and |T'| and errors AT as a function of e/h, for Krh = 1. Same
representation as in (Figure 7).

Specifically, we inspect (i) |7™™| and its homogenized counterparts |T'|, with the corresponding
errors AT as a function of Kgh for e/h = 0.05 and e/h = 1 (Figure 7). For a thin thickness (C} profile
of Figure 6), the homogenized interface covers the actual transmission of the row of inclusions, while
classical homogenization overestimates the transmission; for a row of thickness e/h = 1 (Cq profile),
the classical homogenization is valid for small values of Krh; and applying the jump conditions allows
us to increase the validity domain of the homogenized solution. (ii) Changes in |[7™"™| and |T'| (and
the corresponding errors AT) as a function of e/h for Krh = 1 are reported in Figure 8. We notice
that the grand error in classical homogenization seems to be a direct consequence of the disappearance

of e/h.
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3.3.2. Transmission error as a function of reciprocal quality factor

Finally, we show the variations of |7™"™| and its homogenized counterparts |T'|, with the corresponding
error AT based on Q; " and Q;,' (Figure 9). In both cases and for Kgh = 1, the homogenized interface
solution is valid by noting that the error of AT is less than 2% in the set of intervals of Qz_nl or QL.

—
A
/ 100 Error Classical homo.
T T" Homo. interface N Py \
T Classical homo. <)
= =
= = TN— ]
num 4 Error Homo. interface
— H
Th Homo. interface Q-1 =02 0.01f —— Error Homo. interface |
=T Classical homo. m. P —— Error Classical homo.
0
0 1 0 1
-1 —1
i —
4 100} Error Classical homo. 4
num
T T Classical homo. J
<
- T Homo. interface é
& = 1r 1
-I—I'\Um q Error Homo. interface
— H
Th Homo. interface Q-ﬁl —03 0.01f —— Error Homo. interface |
=T Classical homo. mn : —— Error Classical homo.
0
0 1 0 1
-1 -1
m Qm

Fig. 9. Top: Transmission Coefficients |T™"™| (blue symbol), |T| (black lines the classic homogenization and

red lines the homogenized interface) and errors AT (black lines classical homogenization and red lines the

homogenized interface) as a function of Qi_nl for inclusions, with (Q,,} = 0, Krh = 1, ¢/h = 0.5, ¢ = 0.1,

0 = /3, v = 7/6). Bottom: Same representation as a function of Q! for the viscoelastic matrix, with
Q1 =0.3.

4. Concluding remarks

In this article, we have presented a homogenized interface which can replace the physique problem of
the scattering of shear waves at a periodic row of linear viscoelastic inclusions embedded in a linear
viscoelastic matrix. Parameters effective of an equivalent interface enter in jump conditions for the
displacement and the normal stress at the interface. They are obtained by the resolution of elementary
problems written in the static limit, and they are therefore wave independent by construction. We
have validated this model in the simple case of a rectangular inclusion and for a plane wave at oblique
incidence on the row of linear viscoelastic inclusions. Note that this simplicity would be lost in the case
of periodic media with a more complex unit cell. Finally, the explicit expressions of the transmission
coefficients deduced from the effective interface parameters have been shown to be accurate for the
Low-Loss viscoelastic media and no Low-Loss media, with a range of validity being Krh < 1. On
the other hand, classical homogenization wrongly predicts the transmission coefficients for negligible
thicknesses e/h, but by including the jump conditions at the homogenized interface it restores the real
scattering properties of a row of rectangular inclusions. The present model can be extended to a large
class of wave problems, in acoustics and in electromagnetism.
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Appendix A. Effective harmonic problem of a row of inclusions

Let us derive in this appendix the effective model. From the physical problems position (4), we noticed
that the wave equation is identical to the one homogenized in [4,5,8-10,13,17-19,23,24,31,33|, except
that in our case, the coefficients of the physical parameters entering the wave equation are complex.
Therefore, we obtained by analogy the same form of the homogenized wave equations at different
orders.

We will apply the same asymptotic expansion technique as in [8] by dividing the space into two

regions.
outer reg
X yzl
| |

O >

inner reg
M M
outer reg

1e
Fig.10. Left: In the coordinate configuration x; the periodicity along x5 is ¢ = Kgrh; the inner region is

the neighborhood of the row of inclusions —e/2 < (z1 < e/2). Right: the unitary cell (inner region) in the
coordinate y, with y = x/e,and y e Rx Y, with Y = (-1/2,1/2).

A.1. The matching asymptotic expansion
A.1.1. Inner and outer expansions

We consider the inner region (|z1| < 1) and the outer region (|z1| > €), corresponding in terms of
wave field to the near field and the far field, respectively (Figure 10). The outer regions are far enough
from the row of inclusions that the evanescent field can be neglected. Then, the inner region and the
outer regions are connected using so-called matching conditions, which will be the boundary conditions
for the outer solutions. With this approach, the expansions read:

= u’(x) + e ut(x)

outer region, |z1| > ¢, u°
0 =0’ (x) +eot(x)
u€

T
N (19)

inner region, || < 1, V0(z0,y) + vt (z0,y) + ...,

£

o =1(x2,y) +eT (@2, y) + ...,

with the outer terms (u",0™) for z; < 0 and the inner terms (v",7") being Y periodic with ¥ =
(—=1/2,1/2); and now the second real problem (4) can be written in the inner and outer regions,
thanks to the expansion of the following differential operator:

outer region, V — Vy,
. . 1 (20)
inner region, V — ——es + —Vy,
61’2 £

where V and Vy means the gradient with respect to x and y, as a macroscopic coordinate x associated
with slow variations of the fields (with the particular scale 1/Kpr of the wave) and a microscopic
coordinate y, associated with the fast variations (the particular h scale of the inclusions), and in the
inner region, we keep the coordinates xo that are relevant to describe the variations of the field.

In the following, we will use the domain coordinate 2 = (—y{*, y1") X Y containing a single inclusion
(Figure 10). ; and €, are the subdomains occupied respectively by the inclusion and by the matrix
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(Q = Q; UQ,,); the continuities of the displacement and the normal stress apply on 09;. We will also
use oo = limym o0 .
Finally, from (5), (a*®,b*¢) can be specified in the outer regions (|z1| > €) as:

e (x) = 1,
K*\° (21)
*E _
v = ()
and in the inner region a*¢(x) = @*(x/¢) and b*¢(x) = b*(x/e) with
b*(y2)7 y € Q’ia

= 0\ 2 22
(g) y € Qp, 22)
R

~ % _ a*(y2)7 y € Qia T %
=91 veq,, VW

Q

with a*(y2), b*(y2) 1-periodic and piecewise complex constant.

A.1.2. Matching conditions

Because of the separation of the space into two regions, it is necessary to specify the boundary condi-
tions at |y;| — +oo and for 1 — 0%, which are unknown a priori. These conditions are provided by
the matching conditions; they ensure the continuity of the displacement and the normal stress in an
intermediate region where the evanescent field can be considered as negligible.

According to [35] the matching is written for z; — 0% corresponding to y; — Zo0. Due to the
Taylor expansion of

ul(x1, 29) = u®(0F, 29) + 2105, u’ (0%, 29) + ...
= u0(0%, z9) + €105, uP (05, 20) + .. .,

even for ¢%; we obtain for n = 0:

u’ (0%, 29) = yim v (3,y), (23a)
o0(0%, 2p) = yll—i>niloo 70(29,y), (23b)
and for n = 1:
ut (0%, 29) = lim |:U1(332 y) — yla—uo(ojE 3:2)] (24a)
’ y1—F00 ’ Oxi1 " ’
ot(0%,23) = lim [Tl(xg y)— ylaé‘o(ojE 1’2):| . (24b)
’ y1—=£o0 ’ ox1"

A.2. Jump conditions and effective parameters

We start with the jump conditions [v°]p and [oV] at first order through an interface of zero thickness
at 1 = 0, with:

[£lo = F(0T,22) — F(07, 22). (25)

A.2.1. Jump conditions at order 0

The real wave equations (4) for inner problem at first-order in e~! give:
Vyvo =0, diVyTO =0,
we deduce that v° does not depend on y, so

w07, x2) = u®(0F, z2) = v0(z2). (26)
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Then, integrating div,7® = 0 over R x Y (Figure 11), and using (i) the continuity of 7 - n between
inclusions along ¥, and (ii) the periodicity of 7° with respect to y2, we obtain:

/ [T{)(Z'Q, +OO,y2) - T{)(‘%?u —007?42)] dy2 =0.
Y

Finally, by integrating the matching conditions (23a)

y2I Q; Qe and (23b) on Y, we obtain

1 0 (29, 200, y2) dyp = 0?(0i,3:2). (27)
Vi ;
e/h

Using (25), we deduce from (26)—(27) the jump condi-
" tions to the first order

m

d!
Fig. 11. The elementary cell in coordinates y [u'To = [¢9]0 = 0. (28)

with y € RxY (Y = (-1/2,1/2)). In co- .
ordinates y, we define © = (—yI,y7) x Y, From (28), we find that the displacement and normal

with ¢ > e¢/h (In coordinates y, we define stress are continuous, which forces us to go to the next
y" — +oo will be taken into consideration); ~order to obtain the effect of the row of inclusions.

Q =, with Q; and Q,, the domains occupied In order to obtain the second order jump conditions,
by the inclusion and the matrix, respectively. we need to find the solutions of the elementary problems.

A.2.2. Jump conditions at order 1

Elementary problems and the jump condition on u!. From the first equation in (4) at order e~

and the second equation in (4) at order £°, the matching conditions (23b), it follows that the system
satisfies by v!(x2,y) can be written:

1

0 ~ 8U0

divyTOZO with 7 = a*(y) 87(0,1’2)62+Vy1)1(1'2,y) ,
2

v! and 7° - n continu on 99, (29)

lim Vyul(zy,y) = 8_u0(0 x2)e
Y1 Fo0 y 2,Y) = 8%’1 s 42)€1,

with v! and 70 periodic with respect to y2. (29) is linear with respect to 9, u°(0,x2) and 9,,u’(0, z3).
Thus, we define V) (y) and V@ (y) as

ou’ ou®

2

v any) = 5 (0.2) VO ) + o] + 502V O y) + () (30)

and for i = 1,2,
TO(y) = a*(y)V [VO(y) +ui]
We see that the field v! in (29) is defined up to a function of x5, and it is denoted ¥(x2) in (30); we

will see that the determination of #(z3) is not necessary. It is easy to see that if (V@ T®) satisfy the
elementary problems:

divT® =0 with TO(y) =a(y)V [VO(y)+4],

V@ and T® - n continuous on 9L, (31)
i (@) (v) =
yll—lgl:loo VV¥(y) =0.

then v!(z9,y) satisfied (29).
From (31), V@ fori=1,2, being defined up to a constant, can be chosen as:

; v y)s y1 <0,
VO(y) =14 ° ( )(i)
B+ Ve (y), v1>0,
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where Ve(if) (y), i = 1,2 are evanescent fields, vanishing at y; — +oo. Thus,

with B; being constant values (i = 1,2), and are called the first interface parameters. It is now enough
to use the matching condition (24a) to obtain:

ou’ ou’

1

u o = B1=—(0,22) + Ba—(0, z2), 33
[u"To 163:1( 2) + Bagg (0, 22) (33)
which provides the first jump condition written here for u' across an interface of zero thickness at

331:0.

The jump condition on o}. The derivation of the jump condition on o¢! is more demanding and

requires integrating more than € the first equation of (4) to order € for the inner solution, which reads
as follows:

1

. 0
v0(0, 29) / b*(y)dy + / [divy ™+ dﬁ} dy =0, (34)
0 0 02

where we used (26). After doing this, we inspect the TS term that is needed in the above equation.
From (31) and (30), we have:

~ ou” AV Py0 oV (2
0 % _ -
T = a*(y) [83:1 (0, x2) 9 + s (0, x2) ( 995 + 1>] .

It is now enough to use the second equation of (4) for the problem outside the order €° to obtain:
b o
8:E1 ’ 8ZE2 ’

. ov () ov®
T20 =a (y) [O'(l)(O,JZQ)a—y2 + Ug(O,JZ'Q) < + 1 . (35)

01

and therefore:

0yo

We can return to the equation (34), which involves three integrals. The first integral is:

uO(O,:Eg)/Ql;*(y) dy — <f§;>2u0(o,x2) {2;,;“ + % <;’—m - 1>} , (36)

with e@/h the surface of the inclusion in coordinates y (¢ is the filling fraction of the inclusion for
y1 € (0,e/h)) (Figure 11). The second integral, of divy, is obtained thanks to the continuity of 7! - n
and its periodicity with respect to yo, and we obtain

/QdivyTldy:/ (71 (+y" y2, 22) — 71 (—y, y2, v2) | dye (37)
Y

for the third integral, with d,,79 given by (35), we have
ord rolea) / _ ov

—=dy =—(0,z a*
o, O y 8952( 2) 0 (¥) D2

(38)
ol ov ) ep [ M;
—2(0 i 27 + L —1)].
a@(’“) [/Qa(y) T S v
Two terms in (36) and in (38), are linear in y{*. They are added together to obtain:
K*\? 009 do?
oM 0 2 — _9ymY%
% [(KR> 00,2) + 27 (0,;,;2)] W (0,22), (39)
where we used the second equation of (4) for the inner problem of order °, in particular:
009 009 K*\? 0
— 4+ —= =0. 40
83:1 + 8ZE2 + <KR> Y ( )
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We now add two terms of (37) and (39) using the matching conditions (24b) written in another form:

_ : m 00}
A0 = i [ o) 4 50
Yyt —+oo 8 (41)
do?
1int : 1/, m mYY1 4+
0 = 1 —y'=—(0
00 = im0 o) — G 0% )
and because of the continuity of 0¥ at y; = 0, we get
. m m foleas
[[O-%]]O = Jllm |:Tll(y1 7y27$2) - Tll(_yl ,yg,ﬂjg) 2y1 a (0 $2):| 3
Yyt —o0
including equations (36) to (39) in (34) for y* — +o0, and using the above equation, we get:
K* ep [ pi roleal / v
1 1
= — 0, ——1)—-——=—=(0
[[01]]0 <KR> ( ‘T2) h <pm ) ax2( 7‘7;2) Qooa ( ) ayz
0 _ oV ep [ M;
——=(0 * — .
S (0,2 [/w 5=+ (i
Finally, with (40), the jump of of through an interface of zero thickness at z1 = 0 is written:
1 ep ( pi da) da) ep [ M; Do
=—|——-1)=—(0 —Ci—(0 C - — 0 42
follo = £ (£ 1) 2 0) - 15 0o — o+ 2 (- £ P2 000, (a2
where we have defined the parameters of the second interface, for i = 1, 2,
ov
. (¥) o5 Y (43)

A.3. The homogenized problem and the associated final jump conditions

The final jump conditions Will be Written from (33) and (42), in a different form and equivalent up to
O(£?) to those obtained for u® + eu! and for ¢ + eof. From (4), u and o7 up to O(£?) satisfies the
Helmholtz equation in the matrix and jump conditions through a zero thickness interface at z; = 0,
which reads as follows:

Au+u =0,

ou® ou® 9
[ulo —6818 (0, z2) +z—:l328 (0,22) + O(e),

Z2
_ e (pi 000 000 (44)
[[0'1]]0 =€ A < . 1> 8&31 (0 xg) ECl 83:2 (0 xg)
_ ep (M pi\] 0
cle+ (G- 2| 200 + 0

It has been shown in [4,5,11,36] that it is better to express the jump conditions through an extended
version of the interface. First, we define an enlarged version of the jumps and associated mean value
for any field f(z1,x2),

[[f]] = f+ - f_v f
We now use the Taylor expansion

K 0 K
u? (j:e R,x2> = (Oi,a:g) j:sial (j:e—R,x2> + 0(52),

[f~+fT], with fE=f (i@,@).

1
2 2

2 2h 0z 2
where we used e/h = O(1), and with (44), we obtain the jump condition:
Ou ou
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(and the same thing to get the jump from [o;]). Now, after [7], we define the new homogenized
problem in rescaled coordinates:

A+l =0,
duh ouh

h ou”
[[u]]—aBa +EBQa2 (45)
801 B Cadgh
83:2 8ZE2

[oh] =€ [SdIVO' -C

with

1
2]
3]
4]
5]

[6]
7]
18]
191

[10]
[11]
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[13]
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_¢ _e_ep (M _e_ ep(pi
B_h+B1, C_h+h<Mm 1>+CQ, S = h—l-h(pm 1)

It is easy to see that (vh, ah) has the same expansions as (v, o) up to O(¢?).
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MNomoredisayis 3apgadvi NenbMronsua 3a HasiBHOCTI psgy
B I3KONPY>XHNX BKJIIOYEHb
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eya. 06’conanux Hayiti, A2dan, 8007.N.U, Pabam, Mapoxko
3 Jla6opamopis mexaniru meepdozo misa, Iorimerniuna wrora,
91128, Ilaneso, Pparuis

3alpOIIOHOBAHO METO/I TOMOTeHI3aIlil, IKUil 3aCHOBAHUI Ha TEXHIIll Y3I0IZKEHOI0 ACUMIITO-
TUYIHOT'O PO3BUHEHHSI, MO0 OTpUMATH €(PEKTUBHY MOBEIIHKY MePioMIHOrO MACUBY JIiHii-
HUX B’SI3KOIPYKHUX BKJIIOYEHDb, SKi BOYIOBaHI y JIiHIHY B I3KONpYKHY MaTpuiio. Pos-
TVISTHYTO 3aJ1a9y JIJIsi 3CYBHUX XBUJIb | XBUJILOBE PIBHSHHSA B TapMOHIYHOMY pexkumi. Ot-
pruMaHa edeKTHBHA TIOBEIHKA BiIIOBiae €KBIBAJIEHTHIN MeXKi MOIiTy, sika IIOB s3aHa 3
yMOBaMu CTPUOKA, JJjIs 3MIMEHHS Ta HOPMAJIHHOTO HAIIPY2KEHHS Ha Mexi momiry. Koedi-
IIEHTU TPOIYCKAHHs Ta IMOJs 3MIillleHb OTPpUMAaHi B 3aMKHEHHX (opMax i mepesipeHa iX
CIIPABEJJIUBICTD IIJIAXOM IOPIBHAHHS 3 YUCJIOBUMH PE3YIbTATAMU y BUIAIKY IPIMOKYT-
HUX BKJIIOYEHb.

Knrouosi cnoBa: zomozeniszauis; yszodicene acumMnmomuine po3kisOaHmi; cyoreusbo-
80 WKAAG; NePedaya TOUND; 6 AZKONPYHCHUT; 20MO2EHIZAULA MeEINHCT MOoJdiAY; ePexmuehi
YMOBU cMPuUbdKa.
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