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In this study, we propose a discrete time mathematical model (SEIQR) that describes the
dynamics of monkeypox within a human population. The studied population is divided
into five compartments: susceptible (S), exposed (E), infected (I), quarantined (Q), and
recovered (R). Also, we propose an optimal strategy to fight against the spread of this
epidemic. In this sense we use three controls which represent: 1) the awarness of vulnerable
people through the media, civil society and education; 2) the quarantine of infected persons
at home or, if required, in hospital; 3) encouraging of vaccination of susceptible persons. To
characterize these optimal controls, we apply the Pontryagin’s maximum principle. The
optimality system is solved numerically using Matlab. Therefore, the obtained results
confirm the effectiveness of the proposed optimization approach.
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1. Introduction

Monkeypox is a zoonotic viral disease [1, 2] that occurs primarily in tropical rainforest regions of
central and western Africa [3, 4], with occasional spread to other regions. It is a virus of the genus
Orthopoxvirus, from the family Orthopoxviridae [7]. Monkeypox was first identified in 1970 in a 9-
year-old human in the Democratic Republic of Congo in an area where smallpox was uprooted in
1968 [8]. Utmost cases have been reported in pastoral areas of the Congo Basin rainforests and West
Africa, and deadly cases of infection are decreasingly being reported across Central and West Africa [5].
Outside Africa, the disease was first reported in the United States of America in 2003 [6]. In May
2022, multiple cases of monkeypox were detected in numerous non-endemic countries [9], with people
under 50 years old being most exposed to the threat of monkeypox due to the ceasing of compulsory
smallpox vaccination.

Clinical symptoms of monkeypox are analogous to those of smallpox, which was declared defunct
worldwide in 1980 [10]. The most important of these symptoms are [6]: fever, rash and enlarged
lymph nodes, secondary infections, bronchitis, encephalitis and corneal infection with vision loss [11].
These symptoms can last from 2 to 4 weeks [12–15], and their effect can lead to a range of medical
complications and severe health conditions. Recently, the death rate from these various injuries ranged
between 3 and 6 percent [16].

To diagnose monkeypox [11, 12, 17, 18] the examining doctor excludes other rash diseases such as
chicken pox, hand, foot and mouth syndrome, shingles, measles, bacterial skin infections, scabies,
syphilis, and allergic skin reactions [19, 20]. In case of diagnostic doubt, biological diagnosis is re-
sorted to by detecting the genome of monkeypox virus using the DNA amplification test for this virus
(NAAT) [21].
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One of the most important ways of transmitting the monkeypox virus to humans is to be in close
contact with an infected person or animal or with contaminated material [22,23]. Also, the infection is
transmitted among humans through close contact with sores, or with body fluids, respiratory droplets
and contaminated items such as bedding [14,24–26] and also through the placenta from mother to fetus
(congenital smallpox) [27–29]. In a recent study, researchers from the Spalanzani Institute announced
the discovery of DNA fragments of the monkeypox virus in the semen of four infected people in
Italy [30]. This troubling discovery tilts the balance in favor of the hypothesis that monkeypox virus
may be sexually transmitted between spouses.

Among the effective measures to prevent monkeypox is: sensitization and vaccination. These are
two important strategies to reduce the severity of this disease. The first one contributes to raising
awareness of risk factors and educating people about measures they can take to reduce exposure to
the virus. Through several existing studies [31], vaccination has been proven to be approximately 85
percent effective in preventing monkeypox.

Researchers in infectious diseases revealed the important role of mathematics and mathematical
models in giving a clear framework for understanding the dynamics of transmission of infectious diseases
among people, families, and animals. They developed simplified mathematical models and expressions
that include a set of clinical and important biological information to explain the development and
spread dynamics of disease [3, 32–34]. In this context, numerous studies have examined the dynamics
of several epidemic phenomena (alcoholism, smoking, Covid-19, obesity, etc.), for example [35–42]. To
understand the dynamics of monkeypox, there are some works based on compartmental models that are
widely used in epidemiology, among these contributions, we cite [43–45]. Besides the aforementioned
works, we study the dynamics of monkeypox, which contains the following important additions:

• Discrete time mathematical modeling;
• Focused study on disease transmission only between humans;
• Propose control strategies separately and then combinately.
In this paper, we study the dynamics of the discrete time mathematical model of monkeypox. The

goal is to reduce the spread of the epidemic, to achieve this, we propose effective strategies to minimize
the number of infected people by introducing optimal control in the discrete time SEIQR model. To
reach this aim, we propose three controls: the first one represents the media and education awareness
and prevention strategy. It can be implemented through campaigns to raise awareness of the severity
of the disease and call for preventive measures such as face masks, regular hand washing and physical
distancing, etc. The second control involves quarantining people with serious infections in hospitals
or health centers. The third control is through encouraging vulnerable populations to get vaccinated.
We prove the existence of an optimal control. To characterize the optimal controls, we rely on the
principle of Pontryagin maximum in discrete time [46]. The optimal system is solved by the iterative
method.

We have organized this article as follows. In Section 2 we present our mathematical model which
describes the dynamics of propagation and transmission of monkey pox. In Section 3 we expose the
problem of optimal control for the proposed model and characterize the optimal controls using the
principle of Pontryagin maximum in discrete time. Section 4 consists of a numerical simulation via
MATLAB. The conclusion is displayed in Section 5.

2. A discrete mathematical monkeypox model

Description of the model. In this section, we present a compartmental model of the transmission
dynamics of monkeypox. The study population is divided at time k into five compartments: susceptible
Sk, exposed Ek, infected Ik, isolated Qk and recovered Rk.

The following graphical representation of the proposed model is shown in Figure 1.
The compartment S: this population of susceptible individuals increases with the rate of the

recruitment Λ into the population and decreases by the natural death rate µ and by the rate βEk

N
,

where β is the probability that one susceptible individual becomes genuinely exposed to the disease.
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Fig. 1. Schematic representation of the model.

The compartment E: represents the number of humans exposed to the disease. Thus, we have a
coming flux equal to β SkEk

N
which designates the individuals entering the exposed class. This population

is decreasing because of the natural death µEk and by the rate αEk (illustrates the persons who are
more likely to become infected).

The compartment I: consists of the individuals infected with monkeypox virus. Their number
increases by the rate αEk. This compartment decreases by natural death µIk, by death due to the
monkeypox infection λIk and by the rate δIk which represents the infected persons who become quar-
antined.

The compartment Q: describes confined patients, it decreases by a natural mortality rate µ and
by the mortality rate φ due to the consequences of monkeypox infection, and it is also decreased by
the rate of recovered individuals θ. Q increases by the rate δIk where δ is the proportion of infected
individuals who should be isolated and put under surveillance.

The compartment R: recovered patients. It is reduced by a natural mortality rate µ, and it is
increased by the θ rate due to people being quarantined who recover.

The total population size at time k is denoted by Nk with Nk = Sk + Ek + Ik +Qk +Rk.
Model equations. We present the monkeypox mathematical model by using the following non-

linear system of difference equations:


































Sk+1 = Λ+ (1− µ)Sk − β
Ek

N
Sk,

Ek+1 = β
Sk

N
Ek + (1− µ)Ek − αEk,

Ik+1 = (1− µ− δ − λ)Ik + αEk,

Qk+1 = (1− µ− θ − φ)Qk + δIk,

Rk+1 = (1− µ)Rk + θQk,

(1)

where S0 > 0, E0 > 0, I0 > 0, Q0 > 0, and R0 > 0 are the given initial states.

3. The optimal control problem

In this model, we include three controls uk, vk, and wk, which consecutively represent the awareness
program through media and education, encouraging the susceptible people to get vaccinated and
inviting infected persons to be isolated at home or if required at the hospital. Thus, the controlled
mathematical system is given by using the following system of difference equations:



































Sk+1 = Λ + (1− µ)Sk − β(1 − uk)
Ek

N
Sk − vkSk,

Ek+1 = β(1− uk)
Sk

N
Ek + (1− µ)Ek − αEk,

Ik+1 = (1− µ− δ − λ)Ik + αEk − wkIk,

Qk+1 = (1− µ− θ − φ)Qk + δIk +wkIk,

Rk+1 = (1− µ)Rk + θQk + vkSk,

(2)

where S0 > 0, E0 > 0, I0 > 0, Q0 > 0, and R0 > 0 are the given initial states.
There are three controls uk = (u0,u1,, . . . , uT−1), vk = (v0,v1, . . . , vT−1), and wk =

(w0,w1, . . . , wT−1). The first control can be interpreted as the proportion to be adopted to aware-
ness programs through media and education, we note that (1 − uk)

SkEk

N
is the proportion of the

susceptible people who are protected from contacting exposed people at a time step k. The second
control can represent the proportion of individuals who are advised to be vaccinated, we observe that
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vkSk is the proportion of individuals who recover thanks to the vaccine at a time step k. The third
control can be defined as the proportion of individuals to be quarantined. So, we note that wkIkis the
proportion of the individuals move from the class of infected people towards the class of the isolated
individuals at a time step k.

The challenge faced here is how to minimize the objective functional:

J(u, v, w) = AT IT +

T−1
∑

k=0

(

AkIk +
1

2
a1u

2
k +

1

2
a2v

2
k +

1

2
a3w

2
k

)

.

Where the positive parameters Ak and ai (for i = 1, 2, 3) are the cost coefficients. They are selected
to weigh the relative importance of Sk, Ek, Ik, Qk, uk, vk, and wk at time k. T is the final time.

In other words, we seek the optimal controls u∗k, v
∗
k, and w∗

k such that

J(u∗k, v
∗
k, w

∗
k) = min

(u,v,w)∈U3

ad

J(uk, vk, wk). (3)

Where Uad is the set of admissible controls defined by

Uad = {uk = (u0, u1, . . . , uT−1), vk = (v0, v1, . . . , vT−1), and wk = (w0, w1, . . . , wT−1); a 6 uk 6 b;

c 6 vk 6 d; and e 6 wk 6 f for k = {0, 1, 2, . . . , T − 1}.

The sufficient condition for the existence of the optimal controls (u, v, w) for the problem (2), (3)
comes from the following theorem.

Theorem 1. There exist the optimal controls (u∗, v∗, w∗) such that:

J(u∗k, v
∗
k, w

∗
k) = min

(u,v,w)∈U3

ad

J(uk, vk, wk) (4)

subject to the control system (2) with initial conditions.

Proof. Since the coefficients of the state equations are bounded and there is a finite number of time
steps, S = (S0, S1, . . . , ST ), E = (E0, E1, . . . , ET ), I = (I0, I1, . . . , IT ), Q = (Q0, Q1, . . . , QT ), and
R = (R0, R1, . . . , RT ) are uniformly bounded for all (u, v, w) in the control set Uad; thus J(u, v, w) is
bounded for all (u, v, w) ∈ U3

ad. Since J(u, v, w) is bounded, inf
(u,v,w)∈U3

ad

J(u, v, w) is finite, and there ex-

ists a sequence (uj , vj , wj) ∈ U4
ad such that lim

j→+∞
J(uj ; vj ;wj) = inf

(u,v,w)∈U3

ad

J(u, v, w) and correspond-

ing sequences of states Sj, Ej , Ij , Q−j , and Rj. Since there is a finite number of uniformly bounded
sequences, there exist (u∗, v∗, w∗) ∈ U3

ad and S∗, E∗, I∗, Q∗ and R∗ ∈ IRT+1 such that on a subse-
quence, (uj , vj , wj) → (u∗, v∗, w∗), Sj → S∗, Ej → E∗, Ij → I∗, Qj → Q∗, and Rj → R∗. Finally, due
to the finite dimensional structure of system (2) and the objective function J(u, v, w); (u∗, v∗, w∗) is
an optimal control with corresponding states S∗, E∗, I∗, Q∗, and R∗. Therefore inf

(u,v,w)∈U3

ad

J(u, v, w)

is achieved. �

We use the discrete version of Pontryagin’s Maximum Principle [46–51]. The key trick is to introduce
the adjoint function to attach the system of difference equations to the objective functional causing
the formation of a function named the Hamiltonian. This principle transforms the problem of finding
the control to optimize the objective functional subject to the state of difference equation with initial
condition to find the control to optimize the Hamiltonian pointwise. There is the Hamiltonian Hk at
time step k, defined by

Hk = AkIk +
a1

2
u2k +

a2

2
v2k +

a3

2
w2
k +

5
∑

i=1

ζi,k+1fi,k+1.

Where fi,k+1 is the right side of the system of difference equations (2) of the ith state variable at time
step k + 1.

Theorem 2. Given the optimal controls (u∗, v∗, w∗) ∈ U3
ad and the solutions S∗, E∗, I∗, Q∗, and

R∗ of the corresponding state system (2), there exist adjoint functions ζ1,k, ζ2,k, ζ3,k, ζ4,k and ζ5,k
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satisfying

ζ1,k = ζ1,k+1(1− µ) + β(1− uk)
Ek

N
(ζ2,k+1 − ζ1,k+1) + vk(ζ5,k+1 − ζ1,k+1),

ζ2,k = ζ2,k+1(1− µ) + (ζ2,k+1 − ζ1,k+1)β(1− uk)
Sk

N
+ α(ζ3,k+1 − ζ2,k+1),

ζ3,k = Ak + ζ3,k+1(1− µ− λ) + (ζ4,k+1 − ζ3,k+1)(wk + δ), (5)

ζ4,k = (ζ5,k+1 − ζ4,k+1)θ + ζ4,k+1(1− µ− φ),

ζ5,k = ζ5,k+1(1− µ).

With the transversality conditions at time T : ζ1,T = ζ2,T = ζ4,T = ζ5,T = 0, and ζ3,T = AT .
Furthermore, for k = 0, 1, 2, . . . , T − 1 the optimal controls u∗k, v

∗
k, and w∗

k are given by

u∗k = min

[

b;max

(

a,
βEk

a1N
[(ζ2,k+1 − ζ1,k+1)Sk]

)]

,

v∗k = min

[

d;max(c,
1

a2
(ζ1,k+1 − ζ5,k+1)Sk)

]

, (6)

w∗
k = min

[

f ;max

(

e,
1

a3
[ζ3,k+1 − ζ4,k+1)Ik]

)]

.

Proof. The Hamiltonian at time step k is given by

Hk = AkIk +
a1

2
u2k +

a2

2
v2k +

a3

2
w2
k

+ ζ1,k+1f1,k+1 + ζ2,k+1f2,k+1 + ζ3,k+1f3,k+1 + ζ4,k+1f4,k+1 + ζ5,k+1f5,k+1

= AkIk +
a1

2
u2k +

a2

2
v2k +

a3

2
w2
k + ζ1,k+1

[

Λ + (1− µ)Sk − β(1 − uk)
Ek

N
Sk − vkSk

]

(7)

+ ζ2,k+1

[

β(1 − uk)
Ek

N
Sk + (1− µ)Ek − αEk

]

+ ζ3,k+1 [(1− µ− δ − λ)Ik + αEk − wkIk]

+ ζ4,k+1 [(1− µ− θ − φ)Qk + δIk + wkIk] + ζ5,k+1 [(1− µ)Rk + θQk + vkSk] .

For k = 0, 1, . . . , T − 1 the optimal controls uk, vk, and wk can be solved from the optimality
condition,

∂Hk

∂uk
= 0,

∂Hk

∂vk
= 0, and

∂Hk

∂wk

= 0. (8)

That are,

∂Hk

∂uk
= a1uk − β

Ek

N
(ζ2,k+1 − ζ1,k+1)Sk = 0,

∂Hk

∂vk
= a2vk − (ζ1,k+1 − ζ5,k+1)Sk = 0,

∂Hk

∂wk

= a3wk − (ζ3,k+1 − ζ4,k+1) Ik = 0.

So, we have

uk =
βEk

a1N
(ζ2,k+1 − ζ1,k+1)Sk,

vk =
1

a2
(ζ1,k+1 − ζ5,k+1)Sk,

wk =
1

a3
(ζ3,k+1 − ζ4,k+1)Ik. (9)

By the bounds in Uad of the controls, it is easy to obtain u∗k, v
∗
k and w∗

k in the form of (6). �
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4. Numerical simulation

In this section, we present the results obtained by solving numerically the optimality system. This
system consists of the state system, adjoint system, initial and final time conditions and the controls
characterization. Concerning the numerical method, we apply the forward-backward sweep method to
solve our system in an iterative process. We start with an initial guess for the controls at the first
iteration and then before the next iteration, we update the controls by using characterization. We
continue until convergence of successive iterates is achieved.

The values of the initial states and the parameters used are given in the following Table 1.

Table 1. The model parameter values and initial system states.

Initial state variable Value Source

S0 4500 Estimated

E0 3500 Estimated

I0 500 Estimated

Q0 80 Estimated

R0 700 Estimated

Parameter Value Source

β 0.25 Estimated

α 0.095 [52]

λ 0.1 [53]

θ 0.83 [53]

δ 0.25 Estimated

Λ 400 Estimated

µ 0.02 [53]

φ 0.2 [54]

In this part, we present numerical
simulation to highlight the effect of
our control strategy that we have de-
veloped within the framework of fight
against the spread of the monkeypox.

The numerical solution of model (2)
with the following parameter values
and initial values of the state variable
in Table 1 is executed using MAT-
LAB.

To detect out the best control
strategy, we employ and simulate
combinations of one, two, and three
controls in the optimization system
and examine the evolution of each
state with the combination of controls
applied. Our goal is to precisely spec-
ify the optimal controls for each state.

4.1. Comparison of three controls effectiveness

In order to characterize the role of each control in controlling the spread of monkeypox disease, we
display the evolution of all the states (S, E, I, Q, and R) before and after the implementation of each
of these controls (Figures 2a–2d).

Figures 2a–2d represent the population’s temporal evolution throughout all of the model’s com-
partments (S, E, I, Q, and R).

From Figures 2, we draw the following remarks:

— Generally, the adoption of three control measures resulted in both a decrease in susceptible (S),
exposed (E) and infected (I) cases and an increase in cured cases (R).

— The reduction in the number of people quarantined (Q) is mainly due to vaccination (Figure 2c),
because this strategy reduces the number of infected people.

— Early in the initiation of control, sensitization (w) can rapidly reduce the number of exposed cases
and slowly diminish infected cases (Figure 2b). In the first three days, the number of infections
dropped by 50% thanks to quarantine (Figure 2d).

— Vaccination is a more advantageous strategy than awareness or isolation. Indeed Figure 2c shows
that after 25 days the disease has almost disappeared (no infected cases: I ≈ 0), and the number
of healings goes from R = 700 at check out to R ≈ 4000 for five days.

— Figure 2d shows the effectiveness of the quarantine, especially at the onset of the disease, as the
number of infected people decreased significantly on the fourth day.
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a (The evolution without any control)
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b (The evolution under control u)
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c (The evolution with control v)
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All states with w control
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Q
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S

d (The evolution with control w)

Fig. 2. The evolution of all states with and without controls.

4.2. Effect of applying three controls separately

In this section, we apply three controls separately and we track the dynamics for each state when only
one control (u, v or w) is applied. The simulation results are given in the following Figures 3a–3d .

Analysis of the simulation results indicates that quarantine (w) is a control that has no effect
on the development of sensitive (S) and exposed (E) cases (Figures 3a, 3b), however (w) represents
a very effective strategy to limit infected cases number (Figure 3c). Two controls: vaccination (v)
and sensitization (u) reduce the number of exposed and infected more quickly (around the fifth day
of control: Figures 3b, 3c). On the other hand, Figure 3d shows that quarantine ranks second after
vaccination in terms of contribution to the increase in recovered cases (R).
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d (The progression of recovered cases (R)
without control and with three controls u, v

and w separately)

Fig. 3. The effect of applying three controls separately.

4.3. Applying the combination of two controls

In the present scenario we apply the combination of two controls each time.
The adoption of two combined controls: vaccination and sensitization (u, v) or quarantine and

vaccination (w, v) leads to almost the same results, the application of these two controls reduces
the number of susceptible people (Figure 4a), exposed (Figure 4b) and the number of people infected
(Figure 4c). The doublet of combined controls (u,w) effectively contributes to decreases in the number
of infected persons (Figure 4b). Figure 4d shows the increase in recovered cases with these two controls.
Thus, it is concluded that the control doublets (u, v) and (w, v) are effective strategies to reduce the
spread of monkeypox.
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Fig. 4. Two control strategies.

5. Conclusion

In this article, we propose a mathematical model to study the dynamics of monkeypox in human
populations. We tie our model to three control measures: vaccination, awareness through media and
civil society, and isolation. The optimal control problem is formulated and analyzed, and thus best
control strategies are found by minimizing the number of susceptible, exposed and infected individuals,
using the Pontryagin’s Maximum Principle. A comparison of evolution of all states with and without
controls is presented. Also, we try to study all the possible combinations between the controls and
analyze all the scenarios. All strategies are effective in limiting the spread of monkeypox disease, and
the choice of one over another depends on the desired goal of model control.
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Математичне моделювання та оптимальна стратегiя боротьби
з епiдемiєю вiспи мавп

Ель Мансурi А.1, Смунi I.1, Хаджi Б.2, Лабзай А.2, Белам М.1

1Лабораторiя LMACS, Унiверситет Султана Мулая Слiмана, дослiдницька група MATIC:

прикладна математика та iнформацiйно-комунiкацiйнi технологiї,

кафедра математики та iнформатики, полiдисциплiнарний факультет Хурiбга, Марокко
2Лабораторiя аналiзу, моделювання та симуляцiї, кафедра математики та iнформатики,

факультет наук Бен М’Сiк, Унiверситет Хасана II Касабланки, Марокко

У цьому дослiдженнi запропоновано математичну модель з дискретним часом
(SEIQR), яка описує динамiку вiспи мавп у людськiй популяцiї. Дослiджувана по-
пуляцiя подiляється на п’ять компартментiв: чутливi (S), зараженi (E), iнфiкованi
(I), карантинованi (Q) та одужалi (R). Також запропоновано оптимальну стратегiю
боротьби з поширенням цiєї епiдемiї. У цьому сенсi використовується три елементи
керування, якi представляють: 1) iнформованiсть вразливих груп через ЗМI, грома-
дянське суспiльство та освiту; 2) карантин iнфiкованих осiб вдома або, якщо потрiбно,
у лiкарнi; 3) заохочення до вакцинацiї сприйнятливих осiб. Щоб охарактеризувати цi
оптимальнi керування, застосововано принцип максимуму Понтрягiна. Система оп-
тимальностi розв’язана чисельно за допомогою Matlab. Отриманi результати пiдтвер-
джують ефективнiсть запропонованого оптимiзацiйного пiдходу.

Ключовi слова: дискретна математична модель; вiспа мавп; оптимальний кон-

троль; принцип максимуму Понтрягiна.
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