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In this paper, we are interested in modifying inconsistent pairwise comparison matrix
which is a critical step in the AHP methodology, where decision makers have to improve
the consistency by revising the process. To this end, we propose an improved genetic
algorithm (GA) to allow decision makers to find an appropriate matrix and adjust the
consistency of their judgment without loss of original comparison matrix. Numerical
results with different dimensions of matrices taken randomly show the effectiveness of
these strategy to improve and identify the consistency of pairwise matrix which mean that
GAs are a very good tool to generate the consistent pairwise comparison matrices with
different number of criteria.

Keywords: genetic algorithm; pairwise matrix; analytic hierarchy process; decision the-
ory; consistency.
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1. Introduction

Analytic Hierarchy Process (AHP) is a multi-attribute decision-making methodology developed by
Saaty [1,2]. It is widely used in a variety of decision situations, in social, economic, military, manage-
ment, and many other fields [3-5].

The main problem of the AHP method in the practical application is the judgment matrix which is
constructed only by decision-makers based on their experience and knowledge. Thereby, the pairwise
comparison matrix could be inconsistent due to the limitations of experiences and expertise as well
as the complex nature of the decision problem [6, 7], especially when dealing with a great number
of judgments. Saaty [8] proposed the consistency ratio C'R to test whether the matrix is consistent.
Indeed, the pairwise comparison matrix can pass the consistency test, if the consistency ratio CR < 0.1.
However, in many cases, the judgment matrix cannot pass this test to be acceptable and it needs to
be adjusted.

The consistency of pairwise matrix has been a subject of many studies for several decades [9-12].
However, some developed methods are complicated and difficult to use in the revising process of the
inconsistent comparison matrix while some are difficult to preserve most of the original comparison
information since a new matrix has to be constructed to replace the original comparison matrix.

Genetic algorithms (GAs) are a class of metaheuristic approaches, developed by Jean Holland [13].
They are inspired by the natural biological mechanisms of the theory of evolution, proposed by Charles
Darwin [14]. It has been extensively employed to solve several problems [15-18]. It consists of mul-
tiple iterative processes which makes it possible to get closer and closer to the optimal solution. To
benefit from the advantages of GAs as fundamental approaches and to improve their performance, it is
necessary to adapt and adopt suitable genetic operators for the resolution of the considered problem.

The aim of this paper is to propose an alternative approach to create consistent pairwise matrices.
This approach is based on GA in defining a set of consistent pairwise matrices for different dimensions
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to aid experts to define the appropriate judgment decision. Thus, instead of determining a pairwise
matrix that can be inconsistent, especially in the case of high order, and trying to modify it, the expert
will have pairwise comparison matrices during the algorithm process allowing the identification of the
appropriate one.

The remaining parts of this paper are organized as follows. In the second section, we briefly describe
the different steps of the Analytic Hierarchy Process and the problem of inconsistency in the pairwise
comparison matrix. In Section 3, we present the genetic approach to identify consistent matrices and
modify an inconsistent judgment matrix. In Section 4, numerical results are performed with different
sizes of matrices showing the effectiveness and accuracy of the proposed method to overcome the
problem of inconsistency in pairwise comparison matrix in the AHP method.

2. Problem of pairwise comparison matrix

In Analytic Hierarchy Process (AHP), the process of decision-making starts with breaking down the
multi-criteria decision-making problem into a hierarchy model, then we can find the weights by using
mathematical calculation based on linear algebra. These weights can be generated with the help of
the pairwise comparisons of two alternatives under the given criterion.

Pairwise comparison is a fundamental concept in the Analytic Hierarchy Process (AHP). It involves
systematically comparing elements in a given level with respect to a shared criterion or property in
the level above. Decision matrices resulting from an application of AHP can be considered an effective
method to structure and represent relevant information of a strategic problem.

The pairwise comparison matrix has the form defined below:

I a2 -+ am
a21 1 .. a2
A= "
apl  QAp2 - 1
The matrix A = (a;), 4,j = 1,...,n has a positive entries everywhere and satisfies the reciprocal

property a;; = 1/a;j. The comparisons are made using a scale that indicates the importance of one
element over another element with respect to a given attribute.

Table 1 shows a scale ranging from 1 for ‘least valued than’ to 9 for ‘definitely most important
than’.

Table 1. 1-9 Scale for the pairwise comparison (Saaty 2001).

Linguistic term Preference number
Equally important 1
Weakly more important 3
Strongly more important b}
Very strong important 7
Absolutely more important 9
Intermediate values 2,4,6,8

Inconsistencies can arise, especially when dealing with a large number of judgments, since pairwise
judgments are based primarily on the experience and knowledge of experts. Hence the need to use a
method capable of evaluating this consistency in a specific problem.

The pairwise comparison matrix needs to pass a consistency test to be used. Saaty developed a
“consistency ratio” as a consistency test that allows a certain level of acceptable deviations. It is defined

as follows:

CI
CR = BT

Mathematical Modeling and Computing, Vol. 10, No. 4, pp. 1164-1173 (2023)



1166 Tajani Z., Tajani C., Khattabi |., Sabbane M.

where
n

/\max -
Cl=—"—
n—1
Amax 1s the maximum eigenvalue of the pairwise comparison matrix, and RI is a random index, whose

value depends on n, given in Table 2.

Y

Table 2. Random Consistency Index.

n | 1]2 3 4 ) 6 7 8 9 10
RI|0|0]058 |09 |112]|124|1.32| 141|145 | 1.49

If CR > 0.1, the decision-maker is asked to revise his judgments until an acceptable level of
consistency is reached.

3. Approach genetic for pairwise matrix

3.1. Overview of genetic algorithms

Genetic algorithms (GAs), which are primarily developed by Holland, have proven to be effective in
solving a variety of optimization problems. They are based on the principles of biological evolution and
operate as a searching method. A population of chromosomes is used to represent potential solutions,
and genetic operators are applied to progressively improve each chromosome, which becomes the basis
for the next generation. This process continues until the desired number of generations has been
completed or a predefined fitness value has been reached.

GAs offer a number of advantages over other optimization approaches. First, they search from a
population of solutions instead of just one. Second, they can use any fitness function, even if it is not
continuous. Third, they use random operators to generate new solutions. Fourth, they do not need to
know anything about the problem to find a good solution.

GAs are based on genetic operators (selection, crossover, mutation, ...) which must be adapted
following the nature of the problem. In this paper, we describe the steps of an improved genetic
algorithm for the considered problem with adapted operators.

3.2. Genetic operators

The implementation of genetic algorithm to solve a given problem, goes through an important step
consisting in representing the form of possible solutions of the problem treated. According to the
representation or the type of coding, which can be binary, real, matrix, prufer number, ...we must
adapt and apply a suitable operators which will allow to approach the sought solution and at the
same time perform the quality of the proposed algorithm. Concerning our problem we are opted for
the genetic operators defined bellows knowing that we have performed different choice of operators.
Genetic algorithms typically consist of the following basic elements:

3.2.1. Initialization

Genetic algorithms begins by creating a population of potential solutions to the problem being solved.
This is typically done by randomly generating a set of individuals, where each individual is a potential
solution represented as a set of genes or chromosomes.

In our case, the pairwise matrix, which is the objective of the problem, can be identified by %
elements from the set {2,3,...,9,1/2,1/3,...,1/9}. Thus, we have to generate randomly m matrices,
each of them is encoded by a vector under the form:

(a1,2, sy A1, 023544, A2y - vt 7an—1,n)

Example:
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1 2 1/3 5
12 1 4 17
3 1/4 1 2
15 7 1/2 1

(2]1/3][5]4]1/7[2]=

3.2.2. Fitness function

The fitness function is used to evaluate each individual in the population and assign a fitness score
based on how well it solves the problem being considered. The fitness score is used to select individuals
for reproduction in the next generation. The fitness function is defined as C' R, which is the consistency
index function.

3.2.3. Selection

The selection process involves choosing the fittest individuals from the current generation to be parents
for the next generation. The individuals are selected using various techniques such as roulette wheel
selection or tournament selection.

3.2.4. Crossover

It is the process of combining genetic material from two parents to create a new individual in the
next generation. This operator must be adapted following the considered encoding. In the pairwise
comparison matrix problem, we consider three crossover operators:

— One point crossover: In this approach, a random position or index in the parent chromosomes is
selected, and the genetic material beyond that point is exchanged between the parents, producing
two offspring.

Example:

| Parentl [2 [1/5]7[3]1/9]1/2]| [Chidl |2 [1/5]7[2]4 [1/4
| Parent2 [ 1/2[7 [8[2]4 [1/4] "[Child2[1/2]7 [8[3[1/9]1/2]
— Two point crossover: It is similar to single point crossover, but instead of a single point, two points

are selected. The genetic material between the two points is exchanged between the parents.
Example:

| Parentl [2 [1/5]7[3]1/9]1/2] |[Childl |2 [1/5[8[2][1/9]1/2]

=
| Parent2 [ 1/2[7 [8]2]4 |1/4| "[Child2[1/2]7 [7][3][4 [1/4
— Uniform crossover: We do not divide the chromosome into segments, rather we treat each gene

separately. In this, we basically flip a coin for each chromosome to decide whether or not it will be
included in the offspring. In other word, we consider a binary mask where the 1-bits are uniformly
distributed in a binary chromosome. Thus, the cross between parent 1 and parent 2 gives rise
to two children where children 1 contains the same elements of parent 1 by taking the elements
of parent 2 located at the same location of the considered binary chromosome. The children 2 is
created by the same procedure. An example of the uniform crossover is presented bellow:
Example:

|Parentl [2 [1/5]7[3[1/9]1/2

| Parent2 [ 1/2[7 [8[2[4 [1/4]
lmask [0 [0 [1[0]1 |1
Childl |2 [1/5[8[3[4 [1/4
Child2 |1/2|7 [7[2[1/9]1/2
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3.2.5. Mutation

The mutation operator involves introducing random changes or mutations in individuals to maintain
diversity and explore new regions of the solution space. And that is why we used Mutation by insertion,
which consists in selecting one or more random genes which will be replaced by new elements. An
example of insertion mutation is presented bellow:

Example:

21 [12]7]13]=[2]1]1/5]7]1/3]

3.2.6. Elitism

In the introduction step, we keep 10% of the best chromosomes from the previous population in the
new population to make sure they do not move out of solution, and we replace the remaining 90% with
the new generation.

3.2.7. Termination

The algorithm terminates when a stopping criteria is met, such as reaching desired fitness score or
running for a certain number of generations. These elements work together to produce a population
of increasingly fit individuals that can be used to find optimal solutions to a wide range of problems.

3.3. The proposed approach

The proposed algorithm, as illustrated in Figure 1, is based on an improved genetic algorithm to find an
acceptable pairwise matrix with different sizes, depending on the studied application, to help experts
to have a panel of choices of acceptable matrices to define by their expertise the desired matrix or to
complete an incomplete defined pairwise matrix.

The proposed approach is a combination of an adapted GA and the AHP method. GA method aim
to exploit the space of possible solutions through different genetic operators; however, the AHP method
will make it possible to evaluate the acceptability of the matrices by calculating their consistency ratio
CR until a stopping test is satisfied. It should be noted that following the desired results, two stoping
criteria are considered: The first one consists to get CR < 0.1 and the second one is the maximum
number of iterations.

The different steps of the proposed approach is described bellow.

Algorithm 1 GA-based approach to identify consistent pairwise comparison matrix.

1: Step 1 Define the number of criteria n;
2: Step 2 Initialization: random generation of initial population V() of k vectors (Vi(o)),z’ =1,..., k; of length
n(n —1)/2 from the set {2,3,...,9,1/2,1/3,...,1/9};
3: Step 3 Encoding: transform each vector of V(0 = (v,
(M) with i =1, ..., k;
4: Step 4 Evaluation: calculate CR(4) for each matrix MZ-(O) fori=1,...,k;
5: Step 5 Genetic process: generate V1) = M,,.C,..S (V)
with S, roulette selection;
C, crossover operator with probability p.;
M, mutation operator with probability p,,.
6: Step 6 Repeat the step 4 with M) replace M (©);
7: Step 7 The process continue until a stopping test is satisfied.

(0)) to a population of pairwise matrices M(©) =
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Random generation of initial
population (Vi), i=1,...,k

!

Generation of corresponding
matrices (M;), i=1,....k

A

New Generation

\ * J \ J
4 ) e A
Evaluation fitness CR(7) of each Mutation operator with
individual probability B,
\ J
e \

Crossover operator with
probability F.

A

|

Selection Method J

Fig. 1. Schema of the proposed approach.

4. Numerical results and discussion

In order to show the efficiency of genetic algorithms and their ability to provide experts with a number
of acceptable matrices (CR < 0.1) in a reasonable time, numerical experiments are developed using
an Intel(R) Core(TM) i3-6006U CPU @ 2.00 GHz RAM 4.00 GB.

Several simulations were performed to highlight the ability and efficiency of GAs to identify consis-
tent matrices with different numbers of criteria, which gives rise to matrices with different sizes. Thus,
the size of the population and the maximum number of iterations have been adapted according to the
size of the matrix to be identified.

The considered genetic operators and corresponding parameters are described bellow:

Selection: Roulette selection

Crossover: One point crossover, two point crossover, uniform crossover, with the probability p. =
0.9

Mutation: Insertion mutation, with the probability p,, = 0.05

Insertion: 10% are conserved for the next generation.

It is well known that genetic operators influence the performance of GAs, in particular, the crossover
operator. Thus, we have exploited three crossover operators; namely, one-point crossover, two-point
crossover and uniform crossover.

Figures 2 and 3 present the evolution of CR during the iterative process for different number of
criteria 4, 5, 6, 7, 9, 10, 12 and 15 with different choice of crossover operators. It shows that the
proposed algorithm with a uniform crossover produces a better evolution of C'R in less iterations.

Tables 3 and 4 present a comparison of the performance of different crossover operators in GA to
produce acceptable pairwise matrix. Particulary, we present the required number of iteration to obtain
a consistent pairwise matrix with CR < 0.1.

The results obtained show that the algorithm proposed with the three types of crossover makes it
possible to have a suitable pairwise matrix after a very small number of iterations, which can increase
according to the order of the matrix. In particular, the uniform crossover operator requires fewer
iterations to arrive at a first matrix with the requested criterion. In addition, during the iterative
process, the C'R continues to decrease, which allows experts to make their choices from one iteration
to another according to their data.
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Fig. 2. Comparison of the performance of different crossover operators in GA
to produce consistent pairwise Matrix.

0.6

0.5

0.4 4

0.2 4

0.1

—— Uniform crossover
—— Two Point crossover
—— One Point crossover

0.0

20 40 60 80 100 120 140
Iteration

a (Matrix size n = 9)

0.8

0.7 1

0.6

0.5 A

CR

0.4 4

0.3 4

0.2 4

0.1 4

—— Uniform crossover
—— Two Point crossover
—— One Point crossover

25 50 75 100 125 150 175 200
Iteration

¢ (Matrix size n = 12)

CR

CR

—— Uniform crossover

0.6 —— Two Point crossover
—— One Point crossover

0.5 1

0.4 4

0.3

0.24

0.1

0 20 40 60 80 100 120 140
Iteration
b (Matrix size n = 10)
08 —— Uniform crossover
: —— Two Point crossover

—— One Point crossover

0.7

0.6 4

0.5 4

0.4

0.3

0.2 4

0.14

0 50 100 150 200 250
Iteration

d (Matrix size n = 15)

Fig. 3. Comparison of the performance of different crossover operators in GA
to produce consistent pairwise Matrix.
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Table 3. Comparison of the performance of different crossover operators in GA with 4, 5, 6 and 7 criteria.

| Criteria | 4 | 5 | 6 | 7 |
Crossover CR | Iterations | CR | Iterations | CR | Iterations | CR | Iterations
Uniform crossover | 0.023 1 0.094 6 0.082 10 0.076 14
One point crossover | 0.076 2 0.088 9 0.087 18 0.093 15
Two point crossover | 0.067 2 0.078 5 0.094 16 0.098 29

Table 4. Comparison of the performance of different crossover operators in GA with 9, 10, 12 and 15 criteria.

| Criteria | 9 | 10 | 12 | 15 |
Crossover CR | Iterations | CR | Iterations | CR | Iterations | CR | Iterations
Uniform crossover 0.086 32 0.098 64 0.099 93 0.098 101
One point crossover | 0.097 45 0.098 80 0.099 186 0.099 240
Two point crossover | 0.095 39 0.097 108 0.099 160 0.098 258

Table 5. Numerical experiment with different matrices.

Matrix size | Population | Initial Min CR | Initial Maz CR | CR < 0.1 | Iterations
4 20 0.023 2.637 0.023 1

5 40 0.173 1.819 0.094 6

6 60 0.257 1.541 0.082 10

7 80 0.371 1.460 0.076 14

8 100 0.252 1.488 0.095 28

9 120 0.579 1.515 0.086 32

10 140 0.643 1.407 0.098 64

12 160 0.800 1.251 0.099 93

15 200 0.829 1.282 0.098 101

Table 6. Evolution of percentage of consistent matrices with different criteria.

Criteria | Min CR | Max CR | % of matrices with CR < 0.1 | Iterations
0.173 1.819 0% 1
5 0.065 0.942 42.5% 10
0.030 0.756 87.5% 20
0.371 1.460 0% 1
7 0.076 1.091 3.75% 20
0.064 0.390 57.5% 40
0.057 0.673 81.25% 60
0.579 1.515 0% 1
9 0.235 0.953 0% 20
0.073 0.457 25% 40
0.052 0.299 86.66% 60
0.800 1.251 0% 1
12 0.109 0.380 0% 80
0.097 0.306 20% 100
0.079 0.210 78% 130

To better perform the GA, we have to adapt the considered number of population to get consistent
pairwise matrix in less iterations. Table 5 presents the number of necessary iterations to obtain a
first pairwise matrix with C'R < 0.1 corresponding to a random generated matrices having a better
individual in terms of consistency with a C'R greater than 0.1.

It should be noted that the numerical simulations were carried out with random examples where
all the matrices of the initial population are inconsistent (with CR > 0.1). In this regard, the rate
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of consistent matrices goes from 0% for all the examples considered and gradually increases after a
reduced number of iterations to reach a very high rate of consistent matrices. In other words, the
experts will have a set containing an increasing number of consistent matrices as the genetic process
progresses to find a pairwise consistent matrix and thus avoid inconsistent matrices (see Table 6).

The study carried out aims to show the importance and efficiency of GAs in producing consistent
pairwise matrices according to the criteria given by Saaty. So, GAs present an interesting method
to help experts to define the desired and appropriate matrix according to the application and the
objective of their study.

5. Conclusion

In this work, we have exploited genetic algorithms (GAs) as a metaheuristic method for the determi-
nation of consistent pairwise matrices, when we use the AHP method. The different results obtained
for matrices with different sizes have shown that GAs can be considered as a good alternative to help
experts to have a set of choices of consistent matrices to consider or to define incomplete pairwise
matrices. In addition, the performance of GAs can be improved, when adapting different genetic op-
erators, to generate pairwise consistent matrices, especially for large size matrices in an acceptable
time.
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MeTaeBpuUCTUYHWIA NiaXia AN NOKPALWLEHHS Y3roa>XeHoCTi
napHoi matpuuyi 8 AHP

Taszmi 3.1, Tagui K.2, Xarra6i 1.2, Ca66ane M.
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V it craTTi Mu 3arikaBieHi B MOAUMIKAIT HEY3r0/[2KEHOI MATPUI APHOTO MOPIBHSAHHS,
sgKa € KPUTUIHUM KpokoMm y meromosorii AHP, ne ocobu, siki npuiiMarioTs pimmeHts, Ma-
I0Th TOKPAIUTHU Y3TO/KEHICTD IIJIAXOM [EPErvIsLy IpOoIecy. 3 Mi€l0 MEeTOIO MPOIOHYEThCS
nokpaienuit resernarnii aaroputm (GA), mo6 go3BosmTH 0c06aM, SKI IPUAMAIOTH pi-
IIeHHS, 3HaXOAUTH BIJIIOBITHY MAaTDPHIIO Ta KOPUI'YBATH Y3IOJ2KEHICTh CBOI'O CYJI2KEHHSI
6e3 BTpaTH BUXIiTHOT MATPUII MOPIBHIHHS. TUCIOBI PE3y/IbTATH 3 MATPUISMHI PI3HUX PO3-
MipiB, y34TUX BUIAIKOBO, BUSBJAIOTH e(DEKTUBHICTD i€l CTpaTeril Jjis MOKPAINEHHS Ta
BU3HAYEHHs y3TO/2KEHOCTI IIONAPHOI MaTpPUIl, 10 o3Ha4vae, mo GA € jy»Ke XOpOIIUM iH-
CTPYMEHTOM JIJIsl CTBOPEHHS Y3T0/[?KEHIX MaTPUIlh II0IIaPHOI'O IIOPIBHAHHS 3 PI3HOIO KiJIb-
KICTIO KpUTEPiIB.

Kntouosi cnoBa: zenemuunutll arzopumm; nonapra Mampuusi; GHAAIMUYHULT NPOyEC
1€PAPTI; MEoPLaA NPUTHAMMA PIUEHD; NOCATO0BHICND.
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