
STUDY OF REAL-TIME OPERATING SYSTEM INCLUDING PROGRAMMABLE 

LOGIC CONTROLLER FUNCTIONALITY 

Ulyana Dzelendzyak, Ph. D., As.-Prof., Vladislav Vanyuk, MS Student, 

Halyna Vlakh-Vyhrynovska, Ph. D., As.-Prof., 

Lviv Polytechnic National University, Ukraine; e-mail: uliana.y.dzelendziak@lpnu.ua 

Mariusz Węgrzyn, Ph. D., As.-Prof., 

Cracow University of Technology, Poland 

https://doi.org/10.23939/istcmtm2023.04.052 

Abstract. The article describes the developed real-time operating system “VladOS”, which is a set of modules and utilities 

from which the required system for controlling the eco-house should be assembled. Users can load their written applications into 

the file system in the form of binary files. System generation involves selecting an active configuration from a list of available user 

applications, setting values of system configurations, compiling system module parameters using this configuration, and linking 

system modules into an executable program. Additionally, the performance of the developed operating system is assessed through 

a comparison with the widely recognized Arduino core, with the “SmartHatka” treehouse serving as a representative example. 

Essentially, “SmartHatka” is a Ukrainian smart eco-house. 

Key words: real-time operating system; programmable logic controller; smart home automation; remote monitoring and 

control; apple HomeKit. 
 

1. Introduction 

Microcontrollers are widely used today for im- 

plementing control tasks in various devices, particularly 

8-bit and 32-bit microcontrollers have seen significant 

development. They are designed to control various sys- 

tems according to the developed microcontroller pro- 

gram. Microcontrollers are used in both domestic and 

industrial systems. Among enthusiasts and engineers, 

microcontroller boards from Arduino have gained popu- 

larity. Such controllers are used to control all perip- 

herals. The Arduino platform has gained popularity due 

to its suitability for those who lack extensive knowledge 

of electronics. However, writing programs for microcon- 

trollers is significantly different from writing programs 

for a general-purpose computer. When a program is exe- 

cuted on a computer, the operating system takes care of 

launching programs, interacting with internal and exter- 

nal devices, or human interaction. In contrast, an execu- 

ted program written for a microcontroller represents a 

clear sequence of actions. Moreover, the number of tasks 

that the microcontroller must solve in parallel is con- 

stantly increasing. Based on this, microcontroller pro- 

grams become more complex both during development 

and debugging. Often, the issue of multitasking arises, 

which needs to be resolved by the development of a con- 

trol program. When developing almost any software for 

microcontrollers, it turns out that the program should 

consist of several relatively independent tasks with the 

ability to communicate with each other. In other words, 

there is a need for a general control program known as a 

real-time operating system (RTOS). 

With the growth of knowledge and the recent in- 

troduction of the Internet of Things (IoT), interest in 

Arduino has experienced another significant develop- 

ment, becoming an essential tool for educating engineers 

and hobbyists. Now, the Arduino platform has started to 

evolve to adapt to new needs and challenges, such as IoT 

applications, 3D printing, and, finally, programmable 

logic controllers. 

A programmable logic controller (PLC) is a spe- 

cialized computing device designed for use in industrial 

control systems and other applications where system 

reliability is crucial. Originally, they were developed to 

replace hardwired relays, sequencers, and timers used in 

industrial automation processes, but today they are sca- 

lable and used for building automation (access control, 

lighting control, heating, ventilation, air conditioning, 

elevator and escalator control, etc.).They also serve as a 

good example of real-time operating systems as they 

have a high capability to produce outputs in response to 

specific inputs in short timeframes, which is a key re- 

quirement for most settings, as a second delay can dis- 

rupt the entire process. 

One of the key characteristics of the PLC is its 

low technical programming and operational require- 

ments. PLCs were designed to be used by both highly 

skilled automation professionals and ordinary techni- 

cians. Microcontrollers, on the other hand, require a 

careful approach. Designers need to have in-depth 

knowledge of electrical engineering principles and pro- 

gramming to complete projects using microcontrollers. 

Even though there are simplified platforms such as Ar- 

duino, it is still much more complex than the “plug and 

play” nature of PLCs both in terms of connection and 

ease of use. 

Despite the wide variety of proposed real-time 

operating systems, none of them come close to the sim- 

plicity of the PLC's software model. Therefore, the prob- 

lem of implementing a reliable real-time operating sys- 

tem with low technical requirements for operation on 

controllers remains relevant today. 

mailto:uliana.y.dzelendziak@lpnu.ua


Measuring equipment and metrology. Vol. 84, No. 4, 2023 53 
 

 

2. Analysis of the issue 

A Programmable Logic Controller (PLC) is typi- 

cally a single-board mini-computer constructed based on 

a single-chip microcontroller and housed in a standard- 

sized (brick-sized) enclosure. Inputs to the PLC can be 

connected to buttons, joystick contacts, switches (i. e., 

control elements), sensors, and actuating mechanisms 

(motors, lamps, heating elements, valves, fans, actuators, 

etc.). The PLC cyclically polls input signals (control 

elements and sensors), executes the user program (calcu- 

lates variable values) and outputs the obtained values to 

the actuating mechanisms [2]. In other words, the PLC 

repeatedly executes the same user program in a cycle. 

On the market, there are many different types of 

PLCs available to meet customer requirements. After 

analyzing existing PLC boards and operating systems 

[3], the Arduino Mega [7] was selected as the main de- 

velopment platform. This choice makes it more cost- 

effective to implement the PLC strategy for budget- 

conscious systems. The board features the ATmega2560 

[6] microcontroller, which includes 54 digital in- 

put/output pins (15 of which can be used as PWM out- 

puts), 16 analog inputs, 256 kb of flash memory (quite a 

large capacity relative to other AVR controllers), and a 

clock frequency of only 16 MHz. The limited processing 

speed posed a challenge in implementing a reliable sys- 

tem, leading to a rewrite of the system kernel since the 

selected development environment was Arduino IDE. 

Thus, the entry threshold for users who decide to write 

an application for the “VladOS” system remained the 

same as with regular Arduino-core. The clock frequency 

can only be changed by soldering a different resonator to 

the board, which can be fatal for the controller. Addi- 

tionally, effective dynamic stack allocation can only be 

implemented using assembly functions, making changes 

to the bit registration functionality for user processes is 

not recommended. Furthermore, when the code address 

is stored in the stack on the ATmega2560, it occupies 

three bytes instead of two as on other ATmega micro- 

chips. Therefore, porting to other schematics without 

changes to the OS is impossible. 

Additionally, some functionality in the imple- 

mented kernel, although faster than the original, con- 

sumes more Flash memory. The main problem can be 

summarized as follows: how to select the executed soft- 

ware modules for the available system resources to mi- 

nimize the cost-to-performance ratio [1]. 

To solve this problem, the following approaches 

were used: 

1. Program code configuration. A 

specific set of services is chosen by conditional 

loading of applications and conditional linking. 

This approach allowed the con- struction of a 

minimal system, which is especially useful in 

real-time system generation requiring high 

performance. 

2. Dynamic configuration. The 

operating system can respond to changing user 

requirements by efficiently altering its 

configuration. 

 

3. Goal 

Develop a real-time operating system for AVR 

ATMEGA2560 microcontrollers as a programmable 

electronic control unit, and evaluate its performance in 

managing an eco-house system built in the Arduino IDE, 

conducting real-world analysis through a practical case 

study. 

 

4. The structure of the “VladOS” 

The “VladOS” operating system consists of a ker- 

nel, main and additional services. Main system services 

are the modules that cannot be disabled. Errors in these 

modules are critical for the entire system. 

Main system services include: 

1. Peripherals services. 

2. “Control Menu” service. 

3. EEPROM Configuration DB. 

4. Main “SD_File System”: bootloader, JSON 

configurations for objects, groups, and other settings. 

5. Service of system error codes [5] “Status 

Code System”. 

6. User application. 

Additional system services are modules that can 

be disabled during execution or excluded from system 

compilation. Their absence will not trigger critical er- 

rors, and the system will continue to operate. 

Additional system services include: 

1. “Keylock”: Security Lock System; 

2. “iHatka”: UART json [9] Serialization with 

WemosD1 Mini [8] and Apple Home kit; 

3. Additional “SD_File System”: logger, con- 

figurations data backup; 

4.1. Groups for peripherals services 

Fig. 1 shows a block diagram of the devices con- 

nected to the control unit. 

Input group services: 

1. Button polling service “ButtonsHandler”. 

2. Keypad polling service “KeypadHandler”. 

3. Infrared (IR) signal processing service “IR- 

RecvHandler”. 

4. Analog signal processing from potentiome- 

ters service “PotsHandler”. 

5. Analog sensor signal processing service 

“SensorsHandler”. 

6. I2C sensor processing service “I2CHandler”. 

7. Optional additional rotary encoder processing 

service “EncoderHandler”. 



Measuring equipment and metrology. Vol. 84, No. 4, 2023 54 
 

 

 

 

Fig. 1. Block diagram of services for connected devices 
 

Input group devices: 

1. Pull-up buttons, regular buttons, switches. 

2. Keypad. 

3. IR receiver. 

4. Analog potentiometers: regular potentiome- 

ters, joysticks. 

5. Analog sensors: temperature, humidity, pres- 

sure sensors, and others. 

6. I2C sensors: sensors and devices connected to 

the controller via the I2C bus. 

7. Additional rotary encoder (EncButton, En- 

coder). 

Output group services: 

1. Room lighting control service “Bulbs”. 

2. LED lighting control service “Leds”. 

3. Ventilation control service “Fans”. 

4. Heating control service “Heat” (service is 

disabled by default). 

5. Additional I2C devices control service (ser- 

vice is disabled by default). 

Output group devices: 

1. Light bulbs: controlled with impulse signals 

on relays or static signals on relays. 

2. LED strip lights. 

3. Ventilation fans (with or without connected 

control potentiometer) and air conditioner IR transmitter. 

4. Heating control: with a connected tempera- 

ture sensor “autoHeat” or with a connected control input 

device “manualHeat”. 

5. I2C devices: additional screens and subordi- 

nate devices. 

4.2. LCD Navigation Control Menu 

The System Engineering Management function 

has the responsibility for the design of the complete sys- 

tem’s architecture. It develops and maintains system 

requirements and its internal and external interfaces [11]. 

That’s why the multi-level navigation menu system 

should be highlighted separately. 

The LCD20x4 “EncMenu” is a display module 

board with a rotating encoder that was specifically de- 

signed for the operation of this service. The presence of 

the main elements of this module is a minimal require- 

ment for launching the entire system. The navigation 

menu service (EncMenu) also functions with other types 

of LCDs on both the Arduino Mega and other platforms. 

Fig. 2 shows the PCB schematic of the Arduino Mega 

LCD2004 shield. 

The main control element is the encoder, the han- 

dle of which can be rotated and pressed (it serves as a 

button). 

Use scenarios: 

1. Navigate through the menu by rotating the 

pressed encoder. 

2. When rotating the encoder’s handle, the se- 

lection cursor (arrow) moves between menu items. 

3. Pressing the encoder selects a variable for 

modification. 

4. Multiple presses – toggling a mode (based on 

the number of presses). 

5. Changing the selected variable by rotating the 

encoder. 



Measuring equipment and metrology. Vol. 84, No. 4, 2023 55 
 

 

6. Rapidly rotating the encoder changes the va- 

lue with a large step. 

The block diagram of the linked list of the main 

navigation menu is shown in Fig. 3. The initialization of 

groups and objects within each group, followed by queu- 

ing in the RTOS, is done in the same order as the dis- 

played menu elements. The main advantage of the de- 

veloped menu is its user-friendly navigation between 

groups and the ability to interact with objects within the- 

se groups by pointers, the number of which can vary. 

These interactions are much easier with a linked list be- 

cause the structures themselves aren’t manipulated, only 

the associated pointers [10]. 

The main menu contents include: 

1. Main navigation screen. 

2. BULB (relay) light control screen. 

3. LED (PWM) control screen. 

4. FAN (ventilation) monitoring and control screen. 

5. Heating control screen (relay and phase con- 

trol dimmer). 

6. When there are no changes for a certain pe- 

riod, an information screen is activated, displaying the 

current time and values from connected sensors (tempe- 

rature, pressure, humidity). 

7. Settings menu (accessed through the main 

screen). 

Each menu item contains the following informa- 

tion: the parameter’s ordinal number, its name, and the 

display of the current value (with multiple display modes). 

Users can configure the display mode and ordinal number 

of each value in the Settings menu. The block diagram of 

the settings navigation menu is shown in Fig. 4. 

Settings menu: 

1. Creating new device groups and configuring 

their display in the menu. 

2. Setting up or creating new connected devices. 

3. Creating automation between devices for 

connected groups. 

4. Configuring active services. 

5. Time settings. 

6. Password settings. 

7. Resetting settings in EEPROM to default. 

All values and parameters are stored in static 

EEPROM memory. 

 

 

 

Fig. 2. Schematic of the LCD20x4“EncMenu” printed circuit board 

 

 

Fig. 3. The structural diagram of the main navigation menu 



Measuring equipment and metrology. Vol. 84, No. 4, 2023 56 
 

 

 

Fig. 4. The structural diagram of the settings menu 
 

4.3. System configuration parameters and OS 

initialization 

On the first system startup, if the SD card module 

is connected, the values of the configuration parameters 

are taken from the template files located on the SD file 

system. These files have the “JSON” extension. After 

that, the system checks for the presence of a new binary 

firmware that can be loaded into the system as a user 

service application. If the memory card is not connected, 

a system error can occur, and the file system service 

could be disabled, but the system initialization will be 

continued. In this case, the minimum configuration could 

be used to create the database. 

File system hierarchy: 

1. Apps: 

• “app.json” – user application description; 

• “app.bin” – user-compiled application. 
2. Import: 

• “new_group.json” – new device group confi- 

guration; 

• “new_objects.json” – new connected devices 

configuration; 

• “settings.json” – new system settings. 

3. Export: 

• “db.json” – current pin settings for connected 
devices; 

• “settings.json” – a merge of files from the 
“Settings” directory. 

4. Logs (Logs Service): 

• “setup_log” – errors that occurred during 
system initialization; 

• “system_log” – key system events; 

• “event_log” – events triggered by devices 
from the Input group; 

• “trigger_logs” – events triggered by timers or 
timeouts. 

5. Settings: 

• “time_conf.json” – time and timer settings; 

• “main_config.json” – some system values 
(e.g., signal processing coefficients); 

• “wifi_conf.json” – values to be sent via 
UART (only if the “iHatka” service is active). 

The database is created in an electrically erasable 

programmable memory (EEPROM), as it is a type of 

non-volatile memory, and the values will be retained 

even in case of an emergency shutdown. Upon the next 

system startup, parameter values are retrieved from the 

EEPROM database. 



Measuring equipment and metrology. Vol. 84, No. 4, 2023 57 
 

 

Later, after the system starts, the user will have 

the option to access the settings menu, where the selec- 

tion of included modules in the executable version of the 

system can be changed. However, it should be noted that 

choosing the correct values requires an understanding of 

the system’s internal structure and even the impact of the 

parameters on the system. As an example of customiza- 

tion: the system can load peripheral maintenance pro- 

grams depending on the situation. 

After configuring the database, the process of sys- 

tem initialization begins. During the initialization proc- 

ess, the core modules of the operating system are loaded 

into memory. The system manager sets the values of the 

configuration parameters that determine how many re- 

sources of what type will be included in the system. The 

stages of system initialization include: 

1. “StatusCode System” initialization (checking 

for errors at each program step). 

2. Initialization of the control block: I2C LCD 

menu with a rotary encoder, RTC module, and SD card 

module. 

3. If the “FileSystem” service is enabled: check 

for new firmware on the SD card, check for new 

configurations, and initialize the logging system. 

4. Initialization of the database from EEPROM 

memory. 

5. Configuration of the internal timer and 

threads. 

6. Peripheral initialization and task creation. 

7. If the “iHatka” service is enabled: initiali- 

zation of the UART connection with the Wi-Fi module. 

8. Real-time system operation. 

4.3. Task control 

Fig. 5 shows the structural diagram of real-time 

task management for system modules. 

 

 
 

Fig. 5. Structural diagram of processing system modules 



Measuring equipment and metrology. Vol. 84, No. 4, 2023 58 
 

 

 

 

signal. 

Priorities of system module operation: 

1. Polling the main encoder occurs as an interrupt 

 

2. Periodic reading from communication channels: 

This makes the system adaptable to specific require- 

ments and suitable for integration into both eco-friendly 

and conventional homes. 

In other words, “SmartHatka” is a group of inter- 

I2C (time module, temperature, and other sensors), UART 

(signal presence, and hence new parameters from the 

internet module). 

3. Polling INPUT channels for changes in button/ 

extra encoder state. 

4. Polling analog INPUT for changes in 

potentiometer state. 

5. Polling INPUT channels for changes in Keypad 

state. 

6. Reading the signal from the IR receiver. 

7. If changes are detected, a signal is sent to other 

threads (8–14). 

8. Changing the state of the light relay OUTPUT 

channel. 

9. Changing the state of the LED strip PWM 

OUTPUT signal. 

10. Changing the state of the ventilation PWM 

OUTPUT signal. 

11. Changing the state of the INPUT door relay 

channel when the correct password is entered. 

12. Changing the state of the IR fan and sending a 

signal through the IR transmitter. 

13. Signal for generating a JSON document [9] and 

sending it via UART to WemosD1 mini. 

14. Signal to update the LCD menu. 

The built-in programs mentioned above represent 

separate and independent services of the operating 

system. In case of a system error during the initialization 

of these services or while using the system, the following 

will occur: the error code will be registered in a separate 

service “StatusCodeSystem”, and the respective service 

will be disabled until the next system reboot. 

5. IoTeco-house “SmartHatka” 

This work proposes the implementation of various 

sensors and devices connected to an Arduino Mega 2560 

development board for home monitoring, as well as the 

use of an ESP8266 board [8] to monitor and control ot- 

her devices remotely via Wi-Fi and an iPhone built-in 

application called “Homekit”. The proposed real-time 

automation operating system offers a cost-effective solu- 

tion that can be used and configured locally through a 

navigation LCD menu and rotary encoder, or used re- 

motely via various iOS-based devices over Wi-Fi, giving 

users the ability to control all devices with minimal ef- 

fort. Configuration settings for active services, timing, 

device quantity, tasks, types, connections, and other set- 

tings are indicated in the display menu and are stored in 

the system’s memory even after emergency shutdown. 

connected devices managed by a central control unit 

(Arduino Mega with the “EncMenu Shield”) operating 

within a “VladOS” environment, which runs a single 

user application, and an actively running service, “iHat- 

ka” which is hosted on a connected to the internet 

ESP8266. “SmartHatka” has a Software Defined Net- 

working (SDN) architecture as an approach to network 

management [12]. 

5.1. Homekit + Wifi WemosD1mini = “iHatka” 

Homekit by Apple was chosen for monitoring and 

control over the internet for several reasons: 

1. The presence of a built-in app on Apple de- 

vices, enables users to set up an Apple tablet to control 

their home from anywhere in the world. This eliminates 

the need to purchase additional applications, servers, 

hosting, and IP addresses, and connect them. 

2. By designing rooms, objects, and actions within 

the HomeKit service, users can enable automatic actions 

in their home, which helps ensure the periodic execution 

of tasks and the correctness of system concepts such as 

queues, semaphores, mutexes, interrupts, and, most 

importantly, reliable data transmission via UART and 

stable controller operation. 

3. Built-in logging systems are available on Apple 

devices, allowing easy comparison with logs generated 

on the controller to quickly identify the cause of any 

issues. 

4. Homekit offers a wide range of device cate- 

gories and no limitations on the number of connected 

devices. This allows users to check system “Groups” in 

dynamically created objects and obtain a well-displayed 

representation of correctly configured groups and objects 

on their smartphone. 

It is worth noting that the “SmartHatka” system 

can connect to almost all applications and servers via 

various IoT protocols, from MQTT to deploying a web 

page on ESP8266[4]. This adaptability is possible 

because the system itself doesn’t need to know where 

it’s sending or receiving data. It only needs to know if 

new data has arrived from the WiFi module via UART 

(requiring an update of these object values) and whether 

there have been changes in system objects that need to 

be sent to the ESP controller. This adaptability is one of 

the reasons why the JSON format [9] was chosen for 

data transmission between controllers. 

5.2. Building “SmartHatka” 

The following components were utilized to build 

the “SmartHatka” smart eco-house: 



Measuring equipment and metrology. Vol. 84, No. 4, 2023 59 
 

 

1. Arduino Mega microcontroller (based on 

Atmega2560). 

2. LCD-20X4B. 

3. I2C module pcf8574. 

4. Wemos D1 mini. 

5. RTC_DS3231. 

6. Digital latch-based memory circuits using 

HEF4013. 

7. 4 tactile buttons. 

8. 4 analog potentiometers. 

9. 4 different fans. 

10. Infrared receiver. 

11. Infrared transmitter. 

12. Bme280 sensor. 

13. SD/TF module. 

14. 5 relays HK19F-DC5V-SHG. 

15. 3×4 matrix keypad. 

16. Rotary encoder EC12. 

17. Power supply unit for the system. 

The compiled system of objects includes: 

1. Calling selected functions through buttons 

(4 related objects). 

2. Lighting control: 4 pulse relays (4 objects). 

3. PWM LED strips (3 objects). 

4. PWM ventilation: fans and potentiometers 

(8 related objects). 

5. Infrared receiver and transmitter for air 

conditioner control (2 related objects). 

6. Temperature, pressure, and humidity sensor 

(1 object). 

7. Security system with keypad-based password 

identification and door relay control (2 related objects). 

8. Additional real-time module. 

9. Logging and firmware update system via the 

SD card (SPI). 

10. Implementation of internet control through 

Apple Homekit with Esp8266 via UART. 

Fig. 6 and Fig. 7 depict the schematics of the main 

control unit and the connection of the “SmartHatka” 

modules, respectively. 

5.3. The analysis of the effectiveness of the 

developed system 

Table 1 presents a comparison of the processing 

time for basic modules connected to Arduino Mega. 

 

Table 1. Execution time of individual modules 
 

Module Arduino, us VladOS, us 

Bulb 2.40 0.125 

Button 2.06 0.063 

Led 5.9 0.63 

Fan 107.2 5.94 

 

However, since in real-time systems, the tran- 

sition between task execution occurs through interrupts, 

a complete analysis of efficiency should also consider 

the time the system spends processing interrupts. The 

analysis was conducted using a logical 24MHz 8-chan- 

nel analyzer Saleae Logic. Fig. 8 shows the results of the 

analysis. 

 

 

 

Fig. 6. The schematic of the connections to the main control unit 



Measuring equipment and metrology. Vol. 84, No. 4, 2023 60 
 

 

 

 

Fig. 7. The schematic of module connections 

 

 

 

Fig. 8. Analysis of task switching time 
 



Measuring equipment and metrology. Vol. 84, No. 4, 2023 61 

 

 

 

The approximate task switching time is 0.125 microseconds. Therefore, the formula for the processing 

time of a compiled group of modules is as follows: 

(t(task ) + t(interrupt) ) 
(t

(task ) ) 
Table 2 shows how many times “VladOS” processes the connected modules faster. 

 

Table 2. Comparative analysis of system efficiency 
 

Module 

groups 
Bulbs Leds Fans Buttons 

Times 

faster 
6.98 6.2 59.5 6.27 

 

Even with interruptions between tasks, “VladOS” is significantly faster by orders of magnitude. 

The “SmartHatka” system has been implemented in an IoT eco-house as the primary control element. The 

versatility of the proposed solution lies in the operating system's ability to dynamically respond to changing user 

requirements, efficiently altering its configuration. 

6. Conclusions 

Through the modernization of the Arduino Mega controller, integration of peripheral modules into the real-

time operating system for Atmega2560 microchips, and optimization of data processing, a cost-effective alternative 

to expensive PLCs named “VladOS” has been developed, which, while not matching the speed of 32-bit systems, 

proves significantly faster and more reliable than the widely-used Arduino-avr core, making it a viable choice for 

home automation applications. 

7. Gratitude 
The authors thank their colleagues: Ihor Nau- menko for his valuable contributions and advice, Ihor Yarish for his 

professional insights and guidance on sci- entific literature, and Valentin Turkovsky for providing the logic analyzer. 

8. Mutual claims of authors 

The authors have no claims against each other. 

References 

[1] A. C. A. Y. Putra, H. Wijanto and Edwar, “Design and Implementation RTOS (Real Time Operating System) as a Nano 

Satellite Control for Responding to Space Environmental Conditions”, IEEE Asia Pacific Conference on Wireless and Mobile 

(APWiMob), 2021, pp. 178- 182.DOI: 10.1109/APWiMob51111.2021.9435247. 

[2] M. S. Saleh, K. G. Mohammed, Z. S. Al-Sagar, and 

A. Z. Sameen. “Design and Implementation of PLC-Based Monitoring and Sequence Controller System”, Journal of 

Advanced Research in Dynamical and Control Systems, Vol. 10, 2018. Available from: https://www.researchgate. 

net/publication/357451701_Pengembangan_Embedded_De vice_Berbasis_PLC_untuk_Simulator_Rejection_System_d 

engan_Penambahan_Human_Machine_Interface [accessed Oct 24, 2023]. 

[3] Khan, S. (2021). Real-Time Operating System (RTOS) with Different Application: A Systematic Mapping: A Systematic 

Mapping. European Journal of Engineering and Technology Research, 6, 1 (Jan. 2021), 100–103. DOI: 

https://doi.org/10.24018/ejeng.2021.6.1.2322. 

[4] Hahm S.-I., Kim J., Jeong A., Yi H., Chang S., Kishore S. N., Chauhan A., Cherian S. P. Reliable real-time operating system 

for IoT devices. IEEE Internet of Things Journal, Vol. 8, No. 5, 3705–3716, 2021. DOI: 

10.1109/JIOT.2020. 3025612. 

[5] Luna, R., Islam, S. A. Security and Reliability of Safety- Critical RTOS.SN COMPUT. SCI.2, 356. 2021. DOI: 

https://doi.org/10.1007/s42979-021-00753-y 

[6] ATmega2560 Datasheet; ATmega640/V-1280/V-1281/V- 2560/V-2561/V; Atmel: San Jose, California, USA, 2014 [Online]. 

Available: https://ww1.microchip.com/downloads/ en/DeviceDoc/Atmel-2549-8-bit-AVR-Microcontroller- ATmega640-1280-

1281-2560-2561_datasheet.pdf (accessed on 23 October 2023). 

[7] Arduino Mega 2560 Rev3: Product Reference Manual; Arduino S.r.l.: Scarmagno, Italy, Year: 2023 [Online]. Available: 

https://docs.arduino.cc/resources/datasheets/ A000067-datasheet.pdf (accessed on 23 October 2023). 

[8] ESP8266EX Datasheet; Version 7.0; Espressif Systems: Shanghai, China, 2023 [Online]. Available: https://www. 

espressif.com/sites/default/files/documentation/0a- esp8266ex_ datasheet_en.pdf (accessed on 23 October 2023). 

[9] Benoît Blanchon, Mastering ArduinoJson: Efficient JSON serialization for embedded C++. Ebook, 2017. 

[10] James M. Fiore, Embedded Controllers Using C and Arduino – 2e. Dissidents, 2018. 

[11] U. S. Air Force, SMC Systems Engineering: Primer & Handbook. 2nd Edition, 77–78. Space & Missile Systems Center, 

2004. 

[12] Academic colleagues of the ALIOT consortium, Internet of Things for Industry and Human Applications, Vol. 2, National 

Aerospace University “KhAI”, 2019. 

T = . 

https://doi.org/10.24018/ejeng.2021.6.1.2322
http://www/

