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The objective of this research is to examine the steady incompressible two-dimensional
hydromagnetic boundary layer flow of nanofluid passing through a stretched sheet in the
influence of viscous and ohmic dissipations. The present problem is obtained with the help
of an analytical technique called DTM-Pade Approximation. The mathematical modeling
of the flow is considered in the form of the partial differential equation and is transformed
into a differential equation through suitable similarity transformation. The force of fixed
parameters like thermophoresis number Nt, Brownian motion number Nb, Prandtl number
Pr, Lewis number Le, Magnetic field M , suction/injection S and Eckart number Ec are
displayed with the aid of Figures. Our outcomes showed a greater trend in the velocity
profile for the parameters of magnetics M , suction S, and nonlinear stretching parameter n.
While the reverse trend is found against the temperature profile when the Prandtl number
increases. Lewis number and other parameters have shown increasing behavior in the
concentration profile.
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1. Introduction

Heat transfer enhancement is a fascinating subject to explore in the present day because of its nu-
merous applications in engineering fields. Conventional fluids such as water, engine oil, and ethylene
glycol are being used for heat transfer, but they have limited conduction of heat. To complete the heat
energy for industrial and engineering places, an alternate way to enhance the heat transfer is by adding
nanoparticles to an ordinary fluid called nanofluid. Choi [1] introduced a new fluid in 1995 known as
nanofluid. It is a colloidal suspension of nanoparticles, whose size is between (1 − 100)nm. Nano-
liquids are used in a variety of human endeavors, electrical and chemical engineering such as power
systems, heat pipes, heat sinks,and thermal management of power electronics: semiconductors, air
conditioning, refrigeration, fermentation, protein/cell separation, drug delivery, catalysts, lubricants,
rotary seals, cancer therapy, antibacterial agents, NMR imaging, magnetic cell sorting, energy sav-
ing cooling medium, automobiles, solar energy, solar air collectors, fuel cells, refrigeration, electronic
devices cooling, micro-electro-mechanical systems. The biochemical applications include gas sensing,
protein and pathogen detection, DNA translocation and sequencing. In addition, utilizing magne-
tized nanofluid systems is a significant step toward achieving targeted medication administration and
differential diagnostics.

Mustafa et al. [2] studied the flow through a stretching sheet is a significant issue in many engi-
neering processes with industry sectors such as melt spinning, plastic and rubber sheets, production
of paper, chemical engineering plant, food processing. Khan and Pop [3] deal with the boundary layer
flow of nanofluid over a stretching sheet. Hassni et al. [4] depicted an analytical solution of the bound-
ary layer flow of nanofluid by the Homotopy analysis method. Recently, Jabeeb et al. [5] analyzed
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the MHD flow over a nonlinear stretching sheet and solved the steady, in compressible problems using
computational software with various standard techniques. Vennila et al. [6] investigated an outcome of
a magnetic field on heat transfer carbon nanotubes suspended nanofluids by shooting type of Laplace
Adomian decomposition method. Mabood et al. [7] introduced a notion of heat transfer of nanofluid
flow over a stretching sheet in an occurrence of a magnetic field by the Runge–Kutta–Fehlberg fourth–
fifth order method. Mustafa and Junaid [8] deal with Casson nanofluid magneto hydrodynamic flow
and heat transfer across a non-linearly stretched sheet. Ellah et al. [9] investigated the combined im-
pact of MHD and slip across a flat moving plate. Rashid et al. [10] discussed an entropy formation
analysis of the hydrodynamic boundary layer flow of nanofuid past over a porous shrinking wall. Japil
et al. [11] discussed the magnetic stagnation point flow past a stretching or shrinking sheet in a porous
medium with momentum slip. Alias et al. [12] explained an impact of suction and magnetic-induced
Navier slip flow due to nonlinear shrinking sheet.

Malik et al. [13] described an effect of viscous dissipation on the magnetic boundary layer flow
of Sisko fluid. Prakash et al. [14] proposed an impact of viscosity and joule dissipation on magnetic
field mixed convection nanofluid flow via a nonlinear stretched inclined plate exposed to varied suc-
tion embedded in a porous medium. Ganga et al. [15] discussed the magnetic boundary layer flow of
nanofluid past a vertical plate in an influence of heat generation/absorption, viscous and Joule dissipa-
tion. Mohsen et al. [16] examined the concept of numerical simulation of MHD flow of nanofluid, heat
transfer and effect of viscous dissipation. Nayak [17] expressed the hydrodynamic three-dimensional
flow and heat transfer investigation of nanofluid through the shrinking sheet inspired by thermal radia-
tion and viscous dissipation. Seyyedi Mehdi et al. [18] delivered the consequences of viscous dissipation
and internal heat produced in the porous circular cavity on free convection of Cu-water nanofluid using
the CVFEM.

The DTM has been explored and applied to a variety of linear and nonlinear issues in recent years.
Rashidi et al. [19] explored a DTM method for solving both linear and nonlinear differential equations.
Mujammad et al. [20] illustrated the DTM technique for unsteady nanoliquid flow and heat transfer.
Dibyendu and Sanjib [21] approached the DTM and Pade approximation to derive the problems of
magnetic field and mass transfer nanofluid flow through a stretching sheet with the influence of Soret
and Dufour phenomena. Sheob Rashid et al. [22] solved a problem of free convection and MHD slip
flow and heat transfer over a radially stretching sheet with thermal radiation using the differential
transformation method.

A study of the previously mentioned literature motivated us to present this work with the effects
of magnetic, ohmic and viscous dissipation in nanofluid boundary layer flow over a stretching sheet.
Khashi et al. [23] discussed the effect of suction on the MHD flow in a doubly stratified micropolar fluid
over a shrinking sheet. Majeed et al. [24] predicted the steady thermal boundary layer nanofluid flow
was solved by the DTM-Pade approximation technique. Based on his motivation, we have expanded
the work of nanoliquid motion with the effects of magnetic, ohmic and viscous dissipation in this
problem.

2. Mathematical formulation

X

Y

magnetic field

momentum

thermalcon
cen
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ion

Fig. 1. Physical model.

The two-dimensional, laminar, steady nonlinear hydromag-
netic flow of an incompressible, viscous, electrically conductive
nanofluid has been addressed as Fig. 1. The flow takes place
across a nonlinear stretching sheet. A variable magnetic field of

strength B(x) = B0 x
n−1

2 is the applied normal force towards the
sheet and parallel to the y-axis. The sheet corresponds to the
plane y = 0, and the flow is confined y > 0. The x-axis is po-
sitioned in the same direction as the stretching sheet, the y-axis
is angled in the opposite direction. Let u = Uw(x) = axn sym-
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bolized as a stretching sheet velocity, where a is a positive constant and n is a nonlinear stretching
parameter. An energy equation takes into account both viscous and ohmic dissipation. The ambient
temperature and concentration are indicated as T∞ and C∞, respectively. We made an assumption
that the constant temperature was TW > T∞ and that the constant temperature was CW > C∞.
The governing equations for the boundary layer, which include momentum, energy, and concentration
equations with dissipation effects are as follows [19, 24]

u
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= 0, (1)
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where u and v are the velocity components along the x and y axis, ν is the nanofluid kinematic viscosity,

α is the nanofluid thermal diffusivity, τ =
(ρc)p
(ρc)f

is the ratio between the effective heat capacity of the

nanoparticles and the heat capacity of the base fluid, ̺nf is the density of the nanoparticle. DB is the
Brownian diffusion coefficient, DT is the thermophoretic diffusion coefficient, and C is the volumetric
expansion coefficient.

The boundary conditions are as follows:

υ = Vw(x), u = axn, T = Tw, C = Cw at y = 0,

u → 0, T → T∞, C → C∞ at y → ∞.

Let us introduce a similarity transformations
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,

T∞ + θ(η)(Tw − T∞) = T,

C∞ + φ(η)(Cw − C∞) = C.

Incorporating the above mentioned transformation into the governing equations (1) to (4) reduces to,

f ′′′ + ff ′′
−

2n

n+ 1
f ′2

−Mf ′ = 0, (5)

1

Pr
θ′′ + f θ′ +Nbφ′ θ′ +Nt θ′2 Ec f ′′2 +Mf ′2 = 0, (6)

φ′′ + Le fφ′ +
Nt

Nb
θ′′ = 0, (7)

and the corresponding boundary conditions are

f(0) = S, f ′(0) = 1, θ(0) = 1, φ(0) = 1 at η = 0, (8)

f ′(η) → 0, θ(η) → 0, φ(η) → 0 at η → ∞, (9)

primes stands for differentiating with to η. M is the magnetic parameter, Pr is the Prandtl number,
Nb is the Brownian motion parameter, Nt is the thermophoresis parameter, Le is the Lewis number,
Ec is the viscous dissipation parameter (Eckart number), S > 0 is the suction parameter and S < 0 is
the injection parameter
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,
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.
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The Nusselt number Nux and Sherwood number Shx, which are defined as the parameters of practical
significance

Nux =
χqw

k(Tw − T∞)
, Shx =

χqm

DB(Cw − C∞)
,

where qw and qm are the wall heat flux and mass flux, respectivelty; the reduced Nusselt number Nur
and Sherwood Shr can be written as

Nur = Re−0.5
x Nux = −θ′(0), Shr = Re−0.5

x Shx = −φ′(0).

3. Differential transformation method with Pade approximation employment

The DTM is the one of the famous semi analytical tools to solve the nonlinear differential equation.
The boundary condition can be considered from equations (8)–(9) as,

F [0] = f(0) = S, F [1] = f ′(0) = 1, F [2] = f ′′(0) = a,

θ[0] = θ(0) = 1, θ[1] = θ′(0) = b,

φ[0] = φ(0) = 1, φ[1] = φ′(0) = c.

Proceeding F [3] for series of momentum profile, we would either predict the value of F [2] or find it.
For that purpose, the Pade approximation can be utilised to calculate the unknowns. We have to
calculate θ[1] and φ[1] for thermal and concentration profiles.

DTM. The following are the basic definitions and operations of differential transformation.
Differential transformation of the function f(η) is defined as follows
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where F (j), θ(j) and ϕ(j) are the transformed functions of f(j), θ(j) and ϕ(j), respectively; they are
given by
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Pade approximation. If a power series is used to represent a function f(η), then
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∞
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where Ci, i = 0, 1, 2, . . . is reserved for the given set of coefficients. The Pade approximant is a rational
function and it is given by
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Temperature
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According to the theoretical works data, Ec = 0.5, Nb = Nt = 0.1, Le = 10, M = 0.5 so on.

Pade approximation of temperature and concentration

Pade[5, 5](θ(η)) =
1− 0.025461η + 1.04764η2 − 0.45441η3 − 0.004535η4 + 0.03423η5

0.9999 − 0.01622η + 0.01376η3 − 0.00147η4 + 0.00679η5
,

Pade[5, 5](ϕ(η)) =
1− 0.01194η + 0.27415η2 − 0.004207η3 − 0.25106η4 + 0.03393η5

0.9999 − 0.009763η + 0.004563η3 − 0.010054η4 + 0.004023η5
.

4. Results and discussion

We have used the analytical approach to solve the system of nonlinear ordinary differential equa-
tions (5)–(7) along with the boundary conditions (8) and (9). The obtained results demonstrated
the effects of the governing parameters that are nondimensional, namely, the suction parameter S,
Lewis number Le, thermophoresis parameter Nt, Brownian motion Nb, Eckart number Ec, magnetic
parameter M on the velocity, thermal and nanoparticle concentration. Figure 2 examines the suction
parameter S on the velocity profile f(η). It is making a thinner momentum boundary layer. The
increasing trend of velocity profile for different values of magnetic parameter M is studied in Figure 3
and shows that it accelerates the momentum flow. Therefore, the boundary layer thickness increases.
Figure 4 illustrates that the velocity gradient increases when the stretching parameter increases due
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to the impact of volume fraction and thermal exponent. From Figure 5, we can see the diminution of
thermal gradient, while increasing the Prandtl number. It means that Prandtl number controls the
relative thickening of the momentum and thermal boundary layer. Figure 6 examining the Nb and Nt
demonstrates that the temperature decreases when Nb and Nt increase. From Figure 7, it is clear that
the temperature profiles become lower, which implies loss in the thickness of the thermal boundary
layer. From Figures 8 and 9, it is seen that decreasing Ec number and increasing magnetized number
cause the θ(η) profile decreases. In Figure 10 we observe that if the suction parameter is increasing
then φ(η) profile also is increasing. In Figure 11, the same situation with the Pr number: with in-
creasing Pr number the φ(η) profile is increasing. Figure 12: Nb and Nt parameters do not affect the
concentration distribution. Figures 13 and 14 show that the effects of Lewis and Eckart numbers: their
increase will enhance the concentration profile of nanofluid. The volume proportion of nanoparticles
and the thickness of the concentration layer raised exponentially as the Le number increases.
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Both Figures 15 and 16 indicate that there is a drop in the rate of mass transfer while there is an
increase in Prandtl number, Brownian motion, and thermophoresis. So that the reduced Sherwood
number is a decreasing function of dimensionless parameters Pr, Nb and Nt. The effects of Pr and Nb
parameters on heat transfer rates are shown in Figures 17–19, respectively, for a variety of Le values. It
is obvious that the heat transfer rates will increase when the non-dimensional parameters are enlarged.
So that the reduced Nusselt number is an increasing function of each dimensionless number.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-20

-15

-10

-5

0

5

(
)

Pr=1
Pr=5
Pr=8
Pr=11

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(
)

Nb,Nt=0.1
Nb,Nt=0.2
Nb,Nt=0.3
Nb,Nt=0.4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
1

1.2

1.4

1.6

1.8

2

2.2

2.4

(
)

Le=2
Le=5
Le=7
Le=9

Fig. 11. The effect of Pr on con-
centration profile.

Fig. 12. The effect of Nb, Nt on
concentration profile.

Fig. 13. The effect of Le on con-
centration profile.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
1

1.2

1.4

1.6

1.8

2

2.2

(
)

Ec=0.0
Ec=0.1
Ec=0.2
Ec=0.3

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Nt

-0.5

0

0.5

1

1.5

2

-
'(0

)

Pr=0.79
Pr=0.89
Pr=0.99

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Nt

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

-
'(0

)

Nb=0.1
Nb=0.2
Nb=0.3

Fig. 14. The effect of Ec on con-
centration profile.

Fig. 15. The effect of Pr on mass
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Fig. 16. The effect of Nb on mass
transfer.
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5. Conclusion

The primary goal of this work is to investigate a two-phase modeling solution for the movement of
a boundary layer’s heat and mass through a stretched sheet. The current issue is resolved using
the analytical method DTM with the Pade approximation method. The Pade approximation is used
to solve the issue in the [5, 5] order of precision since the governing equations are nonlinear and
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there are some boundary conditions. Additionally, it looked for any connections between Pr, Le,
suction/injection, and other parameters. In contrast to the reduced Nusselt number, which is a rising
function of each dimensionless number, the reduced Sherwood number is a decreasing function of each
dimensionless number, as we have learned.
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МГД-потiк пограничного шару нанорiдини на листi,
який розтягується, з в’язкою омiчною дисипацiєю

Нiтiя Н., Веннiла Б.

Факультет математики, Iнженерно-технологiчний коледж,

SRM Iнститут науки i технологiй,

Каттанкулатур 603 203, Тамiл Наду, Iндiя

Метою цього дослiдження є вивчення усталеного нестисливого двовимiрного гiдро-
магнiтного пограничного шару потоку нанофлюїду, що проходить через розтягнутий
лист пiд впливом в’язкої та омiчної дисипацiї. Ця задача вирiшується за допомогою
аналiтичного методу пiд назвою DTM апроксимацiєю Паде. Математичне моделюван-
ня потоку розглядається у формi диференцiального рiвняння в частинних похiдних i
перетворюється на диференцiальне рiвняння за допомогою вiдповiдного перетворен-
ня подiбностi. Впливи фiксованих параметрiв, таких як число термофорезу Nt, число
броунiвського руху Nb, число Прандтля Pr, число Льюїса Le, магнiтне поле M , всмок-
тування/впорскування S та число Екарта Ec показано на рисунках. Нашi результати
показали бiльшу тенденцiю в профiлi швидкостi для параметрiв магнiтного поля M ,
всмоктування S та параметра нелiнiйного розтягування n. Тодi як на профiлi тем-
ператури виявляється обернена залежнiсть зi збiльшенням числа Прандтля, Число
Льюїса та iншi параметри збiльшують профiль концентрацiї.

Ключовi слова: магнiтний; Екарт; термофорез; броунiвський; теплопередача;

масообмiн.
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