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A study on triple diffusive magneto convection is made for a fluid — porous composite sys-
tem with rigid-rigid boundaries insulated to temperature and concentration. The porous
layer of the composite system is modeled using Darcy-Brinkman model. The method of
regular perturbation approach is employed to find the eigen-value for the problem con-
sidered. The critical Rayleigh number as criterion for the onset of convection is derived
for step function, salting below and desalting above salinity profiles. The effect of various
physical parameter on the onset of convection is graphically depicted and the stability of
the system is analyzed.
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1. Introduction

The existence of convective instability in classical Benard problem, is determined by the temperature
gradient between the top and bottom boundaries of the composite system. This instability due to
diffusion heat alone is classified as single component convection. When the convection is caused by
two opposing density components like heat and mass then the convection refers to double diffusive
convection. When the convection is brought about by three different diffusivities (heat and two salts),
it is referred as triple diffusive convection. The problems with three component convection is at
high interest of many researchers as the occurrence of three diffusive component is quiet common
and natural in almost all real time problems. It has enormous applications including fields of crystal
growth, material processing, spacecraft, underground spread of chemical contaminants, petroleum
reservoirs, waste disperse and fertilizer migration in saturated soil, alloy solidification and many more.
The physical configuration with rigid-rigid boundaries are more suitable especially in the process of
material processing. Astrophysical and geophysical applications triggered the investigation of magneto-
convection in an electrically conducting horizontal fluid layer.

Oceanographers, astrophysicists, geophysicists, engineers and many others have increasingly been
drawn attention to the study of convection in the application of an applied magnetic field [1,2].
Thompson [3] and Chandrasekhar [4] were the first to examine magneto-convection in a horizontal fluid
layer. Lortz [5] investigated magnetic field effects on double-diffusive convection. Rudraiah [6] studied
in a Boussinesq fluid, the interaction of double-diffusive convection and an externally imposed vertical
magnetic field. Siddheshwar and Pranesh [7]| studied that in an electrically conducting Boussinesq
fluid with suspended particles confined between an upper free/adiabatic and a lower rigid /isothermal
boundary in a horizontal layer, the role of magnetic field in the inhibition of natural convection driven
by combination of buoyancy and surface tension forces.
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Triple diffusive magneto convection in a fluid-porous composite system 227

Jyoti Prakash et al. [8] have used the Darcy—Brinkman—Maxwell model to analyze the onset of
convective instability in a triply diffusive Maxwell fluid saturated porous layer. They have established
a sufficient condition for the validity of the principle exchange of stabilities and also the bounds for
the complex growth rate were found with the conclusions that for the very general existence of the
bounding surfaces, the results are universally true. Shivakumara and Naveen Kumar [9], analyzed the
impact of couple stresses on linear and weakly nonlinear stability of a triply diffusive fluid layer using
a modified perturbation technique. They have also measured heat and mass transfer based on the
Nusselt number and discussed the influence of various physical parameters in detail. Manjunatha and
Sumithra [10] have investigated triple diffusive magneto-convection in a composite system for three
temperature profiles. Mukesh Kumar Awasthi et al. [11], analyzed a Maxwell fluid saturated porous
layer for the onset of triple diffusive convection subjecting to a linear stability study in the presence of
an internal heat source, and it was discovered that Lewis number has a destabiliing effect and solute
Rayleigh number has a stabilizing effect. In a two-component system, the onset of double diffusive
magneto-Marangoni convection have been investigated for non-uniform salinity gradients by Komala
and Sumithra [12].

The work quoted above clarifies that numerous studies on magneto-convection in single fluid /porous
layer and double-diffusive magneto-convection and triple-diffusive magneto-convection have been made.
But, the occurrence of non uniform salinity gradients is the reality which is rarely touched. This work
is an attempt to investigate the effect of non-uniform salinity gradients on triple diffusive natural
convection in the existence of an applied magnetic field in a composite system.

2. Formulation of the problem

The triple diffusive magneto convection in composite system as shown in Fig. 1 is considered with rigid
boundaries. The top and bottom boundaries are maintained at constant temperature and concentration
differences. The rectangular coordi- z-axis

nate system’s origin is defined at the

interface of fluid — porous compos-

ite system and the magnetic field is FLUID LAYER

imposed along z-axis upwards. The
Darcy—Brinkman model predicts that

at the interface, the velocity, shear d
stress, normal stress, heat, heat flux,
mass, and mass flux are all contin-
uous. The governing equations are
considered with Boussinesq approxi-
mation.

. . . 3£ R
The governing equations for fluid / POROUS LAYER

y-axis

layer (region-1) are,
the laws of conservation of mass is -
V-q=0; Fig. 1. Physical system.
the solenoidal property of magnetic field is
V-H=0;
the momentum equation is
0q -
0 {E +(q-V)q] = —VP+ uV3q — pgk + pp (H - V) H;

the heat equation is

or
ot
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228 Sumithra R., Komala B., Manjunatha N.

the concentration equations are

oC
a—tl + (q . V) C = /€1V201,
oC
(9—?52 +(g-V)Cy = HQV2CQ;

the equation for magnetic induction is

%—f:quwav?H;

the equation of state is
P = pPo [1 — oy (T — To) + Q51 (Cl — Co) + (g2 (Cg — C())] .

The governing equations for porous layer (region-2),
the laws of conservation of mass is

Vin - @m = 0;
the solenoidal property of magnetic field is
Vm : Hm = O;
the Darcy—Brinkman equation for porous layer is
10q 1 I ~
o ga_;n + 6_2 (Qm . Vm) dm| = _vmpm + NV2Qm - KQm - pmgk
q
+ pp (H : Vm) H + \/%Cb ‘Qm’ dm;
the heat equation is
0T, 9
AW + (qm . Vm) Tm = lﬁ:mvam;
the concentration equations are
oC,
¢ 8::1 + (qm : Vm) le - Hm1V2mCm17
oC,
¢ 8::2 + (Qm : vm) Crma = fim2V$nC'm2;
the magnetic induction equation is
oH,, 9
¢7 =V X qm X Hy, + vamHm;

the equation of state is
Pm = PO [1 — Qm (Tm - TO) + Qsm1 (le - CO) + Qsm2 (Cm2 - CO)] s
where ¢ = (u,v,w) is the velocity vector in fluid layer, pg is a reference density of the fluid, ¢ is the

time, P =p + NPTH2 is the total pressure, p is the dynamic viscosity, p is the density of the fluid, g is
the gravity, T is the temperature, x is the diffusivity of heat, C; and C5 are the concentrations or the
salinity fields, 1 is the solutal diffusivity of the first solute, ko is the solutal diffusivity of the second
solute, H is the magnetic field, v is the effective magnetic viscosity, ar is the thermal expansion
co-efficient, a1 and ago are the solute analog of ap, ¢ is the porosity, K is the porous medium’s

permeability, p, is the effective viscosity of the porous medium, A = (fpog;’ ));" is the heat capacities

ratio, Cj, is the specific heat. The quantities in porous medium are denoted by the subscript m.

The theoretical part of the study emphasizes upon using the process of regular perturbation to find
solution to all above driving equations and attain the critical Rayleigh number for the salting below,
desalting above and step function salinity gradients.

The solution is considered as below in equation (1) and (2), since the basic steady state is known
to be at rest,
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in the region-1,
[U, v, w, P7 T7 Cl ) 027 H] = [07 07 07 PbS(Z), Tbs(Z), Cbsl(z)a 0632(2)7 Hbs(Z)], (1)
and in region-2,

[uma VU Wiy Py Ty Cit, 2, Hm] = [07 0,0, Prps (Zm), Tmbs(zm)7 Crbs1 (Zm), Cmbs2(zm)a Hmbs(zm)]-
(2)
Infinitely small disruptions are implemented to focus on the stability of the basic steady state,

in the region-1,

[qa P7 T7 017027H] = [O,Pbs(Z),Tbs(Z),Cbsl(Z),CbSQ(Z),HbS(Z)] + [q/7P,707517527H/]7
and in region-2,

[Qma PmaTma le: Cm27 Hm] = [prmbs(zm)mibs(Zm)y Cmbsl (Zm)y Cmbs2(2m)7Hbs(Zm)]
+ [q;n,P;n,em,Sml’sz’H/],

where the perturbed counterparts are the primed quantities. The parameters are then non-
dimensionalized with the use of d, %, 7, Ty — Ty, C1o — Cry, Co0 — C2y, Hp in the fluid layer as
units of length, time, velocity, temperature, species concentrations, and magnetic field and d,,, %,
%, T, — Ty, Cy — Cho, Coy1 — Cog, Hppg as the porous layer’s corresponding distinctive quantities. Two
layers have different length scales, so each layer has the same depth. A detailed flow field is attained
in both the layers of composite systems for all depth ratios d = %. In the fluid and porous layers,
solutions for dependent variables are obtained using normal mode analysis of the dimensionless equa-
tions for the perturbed variables. Supposing that the theory of exchange of instabilities remains true
for composite layers, we obtain the following differential equations,

m0d<z<1
(D? = a)* W = Ra®® — Ry1a®%, — Rya®Ss + QD*W, (
(D*—a®) 0+ W =0, (4
el (D2 — a2) Y1+ Wyg(z) =0, (
Tg(D2—a2)E2—|-W:O; (

n0<z, <1

(D2, — a2)aB? — 1] (D2, — a2,) Wi, = Rina2,©pm — Remiat, S

m

- Rsm2a$nzm2 + QmﬁzDranma (7)
(DZ, —a2,) O + Wy, = 0, (8)
Tpml (D%1 — afn) Y1+ Wingm(zm) =0, (9)
Tpm2 (D,zn — a2m) Yimo + Wy, = 0. (10)

The dimensionless numbers present in the above set of differential equations from (3) to (10) are, a

_ 3
is the horizontal wave number, W is the velocity, R = gaT(TgiT")d

gas1(C10—Ciu)d3 gas2(Ca0—Cau)d®

is the Rayleigh number, Ry, =

o and Rgpo = = are the solute Rayleigh numbers, © is the temperature,
1 and Xy are the concentrations, 7 = % and ™ = “—,f are diffusivity ratio, Q = %’ﬁd? is the
Chandrashekara’s number, D = %, h(z) is the salinity gradient with fod h(z)dz = 1 in region-1,
o= “—: is the viscosity ratio, 5% = % = Da is the porous parameter and the suffix ‘m’ denotes

dimensionless numbers in region-2.
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230 Sumithra R., Komala B., Manjunatha N.

3. Boundary conditions

At zp, = d;y, the boundary conditions are,

B Own 00 OSm1 OSm2
wm =0, 0zm 0 0z | Ozm | Oz 0
At z = d, the boundary conditions are,
B ow a0 051 08y
w=0, 5_0’ 0z 0z =0 0z =0
At z=0 and z,, =0,
- 6 =20 a_w — wnn, @ — %
W= W, R PR P "oz T Hm(‘?zm’
B B 051 0Sm1 08y 0Sm2
S1=Sm1, 52 = Smay DE D 8zm » D 0z = D 8zm
0?\ ow ow 9%\ ow
73 12 _ m 2 m
Td*s <3V2+a 2> R N <3V2m 82%) Dom”

0w or 0" W,
<a2+v2> g<a2+v )

4. Solution by regular perturbation technique

Convection occurs at small range of horizontal wave number ‘a’, for both constant heat and mass flux

boundaries, thus we expand

W Wj Wm

O | N2 9 Om | _ X~ 2
X —Z_:Oa i |’ Yim1 —Z_:a
p = 2j2 Ym2 -

Using equation (11) in equations (3) to (10) we get the zero order differential equation in a

in region-1,
D*Wy — QD*W, = 0,
D0 + Wy =0,
1 D*Y10 + Wog(2) =0,
79 D*Y0 + Wig = 0;
and in region-2,
(182D Wino — D2 Wino — QD2 Wi = 0,
D200 + Wi = 0,
Tt D2, Sm10 + Winogm (2m) = 0,
T2 D2 S m20 + Winto = 0.

Wi
O
Ymj1
ij2

(11)

To solve above mentioned differential equations (12) to (19), the corresponding boundary conditions

are as follows:
Wo(1) =0, DWy(1) =0, D6g(1)=0, DSio(1) =0,

TWo(0) = Wino(1),  TdDWo(0) = Dy Wino(1

Td? D*Wy(0) = D% Wino(1),  DySmao(0)
@0(0) = T@mo( ), D@Q( ) = Dm®m0(1), 510(0)
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DS16(0) = Dy Simio(1),  S20(0) = SSma0(1),  DS20(0) = DpnSman(1),
Td? 32 D3Wo(0) = — D Wino(1) + 482 D3 Wio (1),
Wno(0) =0, DpuWino(0) =0, Dp©pno(0) =0, DpnSpmio(0) = 0.

Zero order equations solution are given by,

Wo(2) =0, ©g(2) =T, Y10(z) =51, Da0(z) =S,

WmO(Zm) - 07 @mO(Zm) - 17 EmlO(Zm) - 17 Em20(zm) =1.

The equations at the first order in a? are

for region-1,

D*W) — RT + Rg1 51 + RepS> — QD?*W,; = 0, (20)
D?0, —T + W =0, (21)
mD?%1 — 7181 + Wig(z) =0, (22)
T9D?Y91 — 7585 + W = 0; (23)
for region-2,
B> D Wint = Dy, Wn1 = Ryn + Rt + Rsma — Qu3> D, Wont = 0, (24)
D201 — 1+ Wy =0, (25)
Tm1 DA Sm1 — Tm1 + Win1Gm(2m) = 0, (26)
Tm2 D25 m2 — Tma + Wit = 0. (27)
The following are the corresponding boundary conditions:
Wi(l) =0, DWi(1)=0, D®©:(1)=0, DSi(1)=0, DSy(1) =0,
TW1(0) = Wi (1), TdDW1(0) = d* Dy Wi (1),
Td*D*W1(0) = D2, W1 (1)d?,  51(0) = S1d*Smi (1),
DySim2(0) =0, ©1(0) = Td*0,1(1), DO1(0) = d*Dyy, O, (1),
DS1(0) = d*DynSm1 (1),  S2(0) = S1d%Sima(1),  DS5(0) = d> Dy, Sima(1),
W1 (0) =0, DpWpi(0) =0, Dp0,1(0)=0, D;,;Sni(0)=0,
Td?B2D*W1(0) = —d? Dy W1 (1) + 82d2 D3, W1 (1).
The solutions of Equations (20)—(23) and (24)—(27) give W and W,,; as follows,
Wi(z) = C1 + Cyz + cosh(1/Q2) <C'3 +Cy tanh(\/@z)) - z;—é;, (28)
Win1(2m) = Cs + Cezp, + cosh y/pzm (C7 + Cg tanh \/pzy,) — Bz,2, (29)
where p = M—ég and Cjs, i = 1 to 8 are constants found using the velocity boundary conditions as
below,

2~ A A Rm_Rsml _Rsm2
A=RIT — Rs151 — Ry2Sy, B = )
191 202 2(1+Qm52)

,  Cy = Ad31 + Bdsa, C3= Ads3+ By,

_ Adag + B3
a T

Cy = Ad35 + Bigg, Cs=-C7, Cg= —\/]_?Cg,
C7 = Ador + Bbag, Cg = Adss + Bdog

& = d? (cosh /p— 1) — %p cosh \/p, 0y = d? (sinh \/p — /p) — %p sinh /p,

—01 Qi —0y i .
03 = —— — —=pcosh cosh /p, 04 = ——— —=pcosh sinh /p,
3= 7 QTp V@ VD, 04 7 QTp V@ VP

Ch
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27 Q Q T TQ 1+ Qmp?’

5 — 1 1 coshy/Q)\ 1 S — %_d; jicosh /Q 1
(e (5

07 = — \/g]{jp cosh /psinh \/Q, g = — \/g]{jp sinh /psinh 1/Q,
1 < v/Q sinh \/@> f17/@ sinh /Q
dg=—|1-———F—], d10== ;
Q Q TQ (1+ Qmp?)
P 03 — 07 S0 04 — 08
" sinh Q@ — VQeosh Q' T sinh/Q — V@ cosh Q'
S — 05 — dy Sun d6 + 010
7 Sinh V@ — V/Qcosh/Q’ 7 sinh VQ — VQcosh/Q’
1 .
014 = T(Z52Q\/@ (1 n Qmﬂ2) + 037, 015 = —sinh \/@(511 + 03,

016 = — sinh \/@(512 + 04, 017 = —sinh \/@513 + 05,
518 = sinh \/@(537 — 567 519 = T515 + T\/@éll + (j\/]_? sinh \/]_?,
dog = T(516 + T\/@élg + CZ\/ﬁ — CZ\/ﬁ cosh \/]_), 091 = T(517 + T\/@(Slg,

s . d _ 4B%py/psinh /p — \/psinh \/p
b0 = T15 — T/ Qb37 + AT 0.5 023 = TA0V0 -9
St — VD + iB%py/pcosh \/p — /pcosh \/p 021093 + 013019

11,

— — 019, 095 = — "
Tdp2Q/Q 2 519024 — 0a00a3
g = 022023 — 014019 Syr = —020025 — 021 Sys = —020026 — 022
819024 — 020023 d19 ’ d19
T 20 — Qd?
029 = 01027 + 02025 — a2k 030 = 01028 + 02026 + ng@),

031 = 097 (— sinh \/@(511 + (53) + 095038 — sinh \/@513 + Js5,
032 = 028 <— sinh /Qd11 + 53) + 026038 + sinh \/Qdz7 — J,

ftp cosh \/p fip cosh \/p 1 .
033 = 70 o7 + 70 d25 + o d33 = —sinh /Qd12 + 64,
San = op C(zsh \/]_)5 N fip sinh \/]_)5 B il

28 - 2% — = ,
TQ TQ TQ (1 + Qmp?)
035 = 011027 + 012025 + 013, 036 = 011028 + 012026 — 037.

4.1. The condition of solvability

The condition of solvability is obtained from the differential equation of temperature and concentration
and using their respective boundary conditions as below,

1 1 1 1 1
/ Whdz + Tpmi / Whg(z)dz + d?/ Woidzm + Tld?/ Wit 9m (zm)dzm + Tpmg/ Whdz
0 0 0 0 0

1
+ Tzd?/ Winidzm =T + a2 + T1Tpm1 (Sl + d?) + ToTpm2 (Sg + d?). (30)
0

We compute the critical Rayleigh number R, for step function, salting below and desalting above salin-
ity profiles by substituting expressions for W, and W,,; from equations (28) and (29) in equation (30).
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4.2. Step function salinity profile

The basic composition gradually decreases in this salinity profile by AS at z = € and AS,, at z,,, = em
otherwise uniform. Accordingly,

9(z) =0d(z—¢€), gm(zm)=0(zm — m)-
The depth of saline in the fluid layer is € whereas the depth of saline in the porous layer is €,,. The
condition of solvability (30) has been used to evaluate the critical Rayleigh number for this profile and

as proceeds, R R
A1+ (Rs151 + Rs252) A12 + (Rem1 + Rem2) A3

c = = — N

d382A
T (Alg + — 13)

where A;S are given by

Ay = T + (i2 + 71 Tpml(g + d?) + T2 Tpm2(S2 + (i2)7

1+ Tpm

Ay =1+ Tpml T Tpm2; Az = ETpm1 + %7

(1 m
A4—Tpmlcosh\/_s—|— %2 h\/7,
A5—Tpmlsmh\/—5—|— 4;/57”2 <osh\/_ )

27 m 1+ 7m 1+ 7

Ag = 2le+( 65 2), Ar=d*(1+7+7m), Ag:d?<€m71+ 22>,
Ag = d? <7'1 cosh \/ﬁsm+(1+7\/]_)7—2)sinh \/§>,

1 h -1
Am:d? <Tlsinh\/ﬁz—:m—|—( +72) (C\ji VP )>,

b

2 1+
A = d2 T1Em 2 )
" < 0+ QuP?) | 601+ Q)
529A2

AND = + 031 A3 + 9334 + 935 A5 — Ag — Aqo1,

0302
Ay = 23022

+ 0320A3 + 934 A4 + 936 A5 — A1 — A3y,

Aqg1 = 0277 — /DI25Ag + d27Ag + d25 A1,
Aq31 = 098 A7 — \/PbacAg + 628 Ag + 26 A1p.

4.3. Piecewise linear salting from below salinity profile

For this considered profile following Currie [13], we assess

1 —1

e, 0<z<¢, €, 0 2 <y
z) = Z. =
9(2) { z<1 9 (2m) {0, Em < Zm < 1.

The condition of solvability (30) has been used to evaluate the critical Rayleigh number for this profile

and as proceeds, R N
Ay + (RaS1 + R2S2) Ata + (Rem1 + Rama) Aus

~ d332A )
T (Alg + — 13)

1
where A% are

Ay =T+ d% + 11 Tyt (S + %) + 72 Tyma (S2 + ),
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1
AQ =1+ Tpml + Tpm?2, A3 =3 (ETpml +1+ 7—pm2) 5

2
Tpml . (1 + 7 m2) .
Ay = P2 sinh \/Qe + ~—E2""" sinh )
1= Ly iV Qe T sinh vV
Toml (1+ 7pm2)
As = 22 (cosh /Qe — 1) + —E" (cosh /Q — 1),
2mpm1 . (1 + Tpm2) 5
A6— 6@ 6@ , A7—d(1+7’1+7’2),
d? d? (7 sinh VPEm (1+1) .
Ag—;(emTl—l—l—l—TQ), Ag—% ( . + \/]_9 Slnh\/]_9>,
d? [ 7i(cosh \/pey, — 1
A10:%< 1 ;{n_ ) +(1+72)(cosh\/]_)—1)>,
A —7J2 (rie0, + 14 1)
(5 A
Ay = 222 4 531 A3 + G334 + 53505 — Ag — Aja,
530A2
Az = + 0323 + 93424 + 036 A5 — A1 — Aqay,

Aq91 = 0277 — /Pd25Ag + d27Ag + d25A 10,
A131 = 028 A7 — \/Plag Ag + 028 Ag + d26A1p.

4.4. Piecewise linear desalting above salinity profile

For desalting from above salinity profile following Vidal and Acrivos [14], we consider

({0 0<:<0-9) (= {0 0SS (1-cn)
TE =V e, 1—e)<a<t, I T\ enl, (1—ep) <om < 1

m

The condition of solvability (30) has been used to evaluate the critical Rayleigh number for this profile

and as proceeds, R R
A1+ (RaS1+ Rs252) A1z + (Rsm1 + Remz) A1

Rc = N P )
T (A12 + LB?{A”)

where A;S are given by
Al =T+ d? +7‘17'pm1(5”—|—d?) +7—2Tpm2(§2 + (i2)7

1 /m
Ay =1+ Tpmi + Tpma2, Az == (p?ml 1-(-9?)+0 +Tpm2)> )

2
Ay = gp\/m_l (sinh\/@ ~ sinh \/Q(1 — s)) + %sinh NG}

As = gpml (cosh v/@ = cosh /Q(1 — )) + C t/%’”? (cosh /Q — 1),
Ag = gpgg (1—(1—¢) )+%, A7 =d>(1+ 11+ 1),

Ag = d; <€m (1—(1—em)? )+(1+rz)>,

Ag = % (;—;(sinh\/ﬁ — sinh\/p(1 — ) + (1 + 1) sinh \/1_)> ,
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2
A = % <€T—1(cosh\/p7 —cosh /p(1 — &) + (1 + 72)(cosh \/p — 1)) )
d2 (1= (1 —¢epn)?)
Ay = 1
1T 60 T Q) < em + +T2)>’
TDTYAN
AND = 29T 2 + 031 A3 + 03304 + 035 A5 — Ag — A121,

d30A
A = 30T 2 4 030 A3 + 034 A4 + 9365 — A1p — Aq3q,

Aq91 = 277 — \/PIa5Ag + da7Ag + d25A10,
A131 = 028 A7 — /PdagAg + 628 Ag + d26A10-

5. Graphical interpretations

The graphs which are discussion in this section are plotted by considering critical Rayleigh number
R, along y-axis and saline depth ¢ along z-axis with 0 < ¢ < 1 for step function, salting below
and desalting above salinity profiles for triple 0r
diffusive magneto convection. The graphs are :
projected for known fixed set of values Da = 0.1,
R = 1, ﬂ = 2.5, T = T2 = 0.25, Tpml = Tpm2 =
075, 81 =8 =T=1,d=1, Ry = R =5
and ) = 2 for all the salinity profiles discussed
in previous section.

The effect of step function, salting below and
desalting above salinity profiles on the onset of

SALTING BELOW PROFILE

©
T

DESALTING BELOW PROFILE

STEP FUNCTION PROFILE

——— -]
—— -

—

CRITICAL RAYLEIGH NUMBER R¢
\l
\

magneto convection with three diffusive compo- af 3
nents is depicted in Figure 2. Table 1 infers that ;)g e T T e T os T s o
a suitable choice of salinity profile can be made SALINE DEPTH €
in order to control the onset of convection in the  Fig. 2. Critical Rayleigh number R, versus the saline
composite system. depth e.
Table 1.
Saline depth range Stable profile Unstable profile
0<e<0.05 salting from below profile step function profile
0.05<e<06 desalting from above profile | salting from below profile
06<e<1 step function profile salting from below profile

Figure 3 depicts the influence of the Darcy number Da = /3, which is the porous parameter in
concern of critical Rayleigh number R, for salting below, desalting above and step function profiles.
Figure 3 indicates that critical Rayleigh number R, increases as Darcy number Da enhances in all
profiles for a fixed number of saline depth €. This delays the onset of convection in the composite
system. Thus the system is stabilized.

The effect of the porosity e, depicted graphically in Figure 4 for salting below, desalting above
and step function profiles. Figure 4 indicates that critical Rayleigh number R, decreases as porosity e
enhances in all profiles for fixed number of saline depth €. This accelerates the onset of convection in
composite system. Thus the system is destabilized.

The effects of the magnetic field @ on R, is graphically shown in Figure 5 for salting below, desalting
above and step function profiles. From the graph, for fixed values of saline depth ¢ critical Rayleigh
number R, increases as () enhances in all profiles. This delays the convection in the composite system.
Thus the system is stabilized.
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Fig. 6. The effect of solute Rayleigh number Ry, = 5,10, 15.

The influence of the solute Rayleigh number Rgo of the second solute is seen in Figure 6 for salting
below, desalting above and step function profiles. From the curves in Figure 6, for a fixed number
of saline depth ¢, increasing the value of the solute Rayleigh number R enhances the value of the
critical Rayleigh number R.. The onset of convection in the composite system is slowed as a result of
this. Also as a consequence, the system has been stabilized.

6. Conclusions

The onset of triple diffusive magneto convection in the composite system is investigated using regular
perturbation technique for the composite system with rigid—rigid boundaries. The graphs are projected
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with critical Rayleigh number along y-axis and saline depth along the x-axis with the saline depth e
varying from 0 to 1. The influence of various physical parameters on the onset of triple diffusive
magneto convection are shown graphically in Section 5.
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With the increase in the value of the physical parameters solute Rayleigh number Ry, Darcy
number Da and Chandrashekara’s number @, the critical Rayleigh number R. enhances in all the
salinity profiles as observed from the graphs in Section 6, because of which the convection sets in
slowly. Thus, these parameters stabilizes the composite system.

As a result of managing these parameters, stability-demanding conditions such as solar pond, crystal
growth can be effectively managed.

The critical Rayleigh number R, decreases with the increase in the value of porosity e of the porous
layer in fluid-porous composite system for all the salinity profiles considered in Section 5. The
convection sets in at a faster pace due to this decrease in critical Rayleigh number. Thus the
porosity of the porous layer destabilizes the composite system.

In the process of manufacture of permanent magnetic material, the destabilizing effects under
normal gravity conditions are more efficient. Thus, by increasing the porosity of the porous medium,
a high-quality permanent magnetic material can be made.
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MoTpiina audpysiriHa MarHeTOKOHBEKLiISl Y PIANHHO-NOPUCTI
KOMMNO3UTHIN CUCTeml

Cywuirpa P.!, Komana B.2, Mampkynarxa H.3

Kagedpa UG, PG nasuanns ma 00cAiddicens 6 Mamemamuyi,
Vuisepcumem Hpynamywea, Bernezaaypy, Kapramaxa, Indis
2 Kagedpa npupodnunur ma symanimaprux mayx, Ywisepcumem PES,
Beneanrypy, Kapramaxa, Ihdis
3 @axysvmem mamemamuru, Ixora npuraiadnuz nayx, Ywisepcumem REVA,
Beneanypy, Kaprnamaxa, Indis

Hocaimkeno norpiiiny qudy3iitHy MarHeTOKOHBEKITIO /I PiAUHHO-TIOPUCTOT KOMITO3UTHOT
CHCTEMU 3 YKOPCTKUMHU MeYKaMH, sKi i30JIb0BaHi BiJl TemmepaTypu Ta KoureHtparrii. [To-
pucTHii Iap KOMIO3UTHOI CUCTEMU MOJIETIOETHCS 3a JJoTioMoroio mogiesi lapci-bpinkmana.
JlJ1si BU3HAYEHHST BJIACHOTO 3HAYEHHS PO3IVIALYBAHOI 33/1a9i BUKOPUCTOBYETHCS METOJ Pe-
ryssipaux 30ypensb. Kpuruane qnciio Peses, sike € Kpurepiem 71 mo9aTKy KOHBEKIIII, OT-
pUMAaHO JJisi CTYMHYACTOI (DYHKIINI, 3aCOTIOBAHHS HI2KYE Ta 3HECOJIEHHsI BUINE MPOMIIiB
conorocti. I'padiuno 300parkeHo BIIUB Pi3HUX (DI3UTHUX MapaMeTpiB HA MMOYATOK KOH-
BEKIIil Ta TPOAHAJII30BaHO CTIAKICTH CUCTEMH.

Knw4osi cnoBa: nompitina dudysiting maznemoxoneeryis; Heodnopioni epadienmu co-
AOHOCTE; MEMOO PERYAAPHBIL BO3MYUWEHUT.
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