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A study on triple diffusive magneto convection is made for a fluid – porous composite sys-
tem with rigid-rigid boundaries insulated to temperature and concentration. The porous
layer of the composite system is modeled using Darcy–Brinkman model. The method of
regular perturbation approach is employed to find the eigen-value for the problem con-
sidered. The critical Rayleigh number as criterion for the onset of convection is derived
for step function, salting below and desalting above salinity profiles. The effect of various
physical parameter on the onset of convection is graphically depicted and the stability of
the system is analyzed.
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1. Introduction

The existence of convective instability in classical Benard problem, is determined by the temperature
gradient between the top and bottom boundaries of the composite system. This instability due to
diffusion heat alone is classified as single component convection. When the convection is caused by
two opposing density components like heat and mass then the convection refers to double diffusive
convection. When the convection is brought about by three different diffusivities (heat and two salts),
it is referred as triple diffusive convection. The problems with three component convection is at
high interest of many researchers as the occurrence of three diffusive component is quiet common
and natural in almost all real time problems. It has enormous applications including fields of crystal
growth, material processing, spacecraft, underground spread of chemical contaminants, petroleum
reservoirs, waste disperse and fertilizer migration in saturated soil, alloy solidification and many more.
The physical configuration with rigid-rigid boundaries are more suitable especially in the process of
material processing. Astrophysical and geophysical applications triggered the investigation of magneto-
convection in an electrically conducting horizontal fluid layer.

Oceanographers, astrophysicists, geophysicists, engineers and many others have increasingly been
drawn attention to the study of convection in the application of an applied magnetic field [1, 2].
Thompson [3] and Chandrasekhar [4] were the first to examine magneto-convection in a horizontal fluid
layer. Lortz [5] investigated magnetic field effects on double-diffusive convection. Rudraiah [6] studied
in a Boussinesq fluid, the interaction of double-diffusive convection and an externally imposed vertical
magnetic field. Siddheshwar and Pranesh [7] studied that in an electrically conducting Boussinesq
fluid with suspended particles confined between an upper free/adiabatic and a lower rigid/isothermal
boundary in a horizontal layer, the role of magnetic field in the inhibition of natural convection driven
by combination of buoyancy and surface tension forces.
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Triple diffusive magneto convection in a fluid-porous composite system 227

Jyoti Prakash et al. [8] have used the Darcy–Brinkman–Maxwell model to analyze the onset of
convective instability in a triply diffusive Maxwell fluid saturated porous layer. They have established
a sufficient condition for the validity of the principle exchange of stabilities and also the bounds for
the complex growth rate were found with the conclusions that for the very general existence of the
bounding surfaces, the results are universally true. Shivakumara and Naveen Kumar [9], analyzed the
impact of couple stresses on linear and weakly nonlinear stability of a triply diffusive fluid layer using
a modified perturbation technique. They have also measured heat and mass transfer based on the
Nusselt number and discussed the influence of various physical parameters in detail. Manjunatha and
Sumithra [10] have investigated triple diffusive magneto-convection in a composite system for three
temperature profiles. Mukesh Kumar Awasthi et al. [11], analyzed a Maxwell fluid saturated porous
layer for the onset of triple diffusive convection subjecting to a linear stability study in the presence of
an internal heat source, and it was discovered that Lewis number has a destabiliing effect and solute
Rayleigh number has a stabilizing effect. In a two-component system, the onset of double diffusive
magneto-Marangoni convection have been investigated for non-uniform salinity gradients by Komala
and Sumithra [12].

The work quoted above clarifies that numerous studies on magneto-convection in single fluid/porous
layer and double-diffusive magneto-convection and triple-diffusive magneto-convection have been made.
But, the occurrence of non uniform salinity gradients is the reality which is rarely touched. This work
is an attempt to investigate the effect of non-uniform salinity gradients on triple diffusive natural
convection in the existence of an applied magnetic field in a composite system.

2. Formulation of the problem

The triple diffusive magneto convection in composite system as shown in Fig. 1 is considered with rigid
boundaries. The top and bottom boundaries are maintained at constant temperature and concentration

Fig. 1. Physical system.

differences. The rectangular coordi-
nate system’s origin is defined at the
interface of fluid – porous compos-
ite system and the magnetic field is
imposed along z-axis upwards. The
Darcy–Brinkman model predicts that
at the interface, the velocity, shear
stress, normal stress, heat, heat flux,
mass, and mass flux are all contin-
uous. The governing equations are
considered with Boussinesq approxi-
mation.

The governing equations for fluid
layer (region-1) are,
the laws of conservation of mass is

∇ · q = 0;

the solenoidal property of magnetic field is

∇ ·H = 0;

the momentum equation is

ρ0

[

∂q

∂t
+ (q · ∇) q

]

= −∇P + µ∇2q − ρgk̂ + µp (H · ∇)H;

the heat equation is
∂T

∂t
+ (q · ∇)T = κ∇2T ;
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the concentration equations are

∂C1

∂t
+ (q · ∇)C1 = κ1∇2C1,

∂C2

∂t
+ (q · ∇)C2 = κ2∇2C2;

the equation for magnetic induction is

∂H

∂t
= ∇× q ×H + ν∇2H;

the equation of state is

ρ = ρ0 [1− αt (T − T0) + αs1 (C1 − C0) + αs2 (C2 − C0)] .

The governing equations for porous layer (region-2),
the laws of conservation of mass is

∇m · qm = 0;

the solenoidal property of magnetic field is

∇m ·Hm = 0;

the Darcy–Brinkman equation for porous layer is

ρ0

[

1

ε

∂qm

∂t
+

1

ε2
(qm · ∇m) qm

]

= −∇mPm + µ∇2qm − µ

K
qm − ρmgk̂

+ µp (H · ∇m)H +
qm√
K

cb |qm| qm;

the heat equation is

A
∂Tm

∂t
+ (qm · ∇m)Tm = κm∇2

mTm;

the concentration equations are

φ
∂Cm1

∂t
+ (qm · ∇m)Cm1 = κm1∇2

mCm1,

φ
∂Cm2

∂t
+ (qm · ∇m)Cm2 = κm2∇2

mCm2;

the magnetic induction equation is

φ
∂Hm

∂t
= ∇m × qm ×Hm + νm∇2

mHm;

the equation of state is

ρm = ρ0 [1− αtm (Tm − T0) + αsm1 (Cm1 − C0) + αsm2 (Cm2 − C0)] ,

where q = (u, v, w) is the velocity vector in fluid layer, ρ0 is a reference density of the fluid, t is the

time, P = p +
µpH

2

2 is the total pressure, µ is the dynamic viscosity, ρ is the density of the fluid, g is
the gravity, T is the temperature, κ is the diffusivity of heat, C1 and C2 are the concentrations or the
salinity fields, κ1 is the solutal diffusivity of the first solute, κ2 is the solutal diffusivity of the second
solute, H is the magnetic field, ν is the effective magnetic viscosity, αT is the thermal expansion
co-efficient, αs1 and αs2 are the solute analog of αT , φ is the porosity, K is the porous medium’s

permeability, µp is the effective viscosity of the porous medium, A =
(ρ0Cp)m
(ρCp)f

is the heat capacities

ratio, Cp is the specific heat. The quantities in porous medium are denoted by the subscript m.
The theoretical part of the study emphasizes upon using the process of regular perturbation to find

solution to all above driving equations and attain the critical Rayleigh number for the salting below,
desalting above and step function salinity gradients.

The solution is considered as below in equation (1) and (2), since the basic steady state is known
to be at rest,
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in the region-1,

[u, v, w, P, T,C1 , C2,H] = [0, 0, 0, Pbs(z), Tbs(z), Cbs1(z), Cbs2(z),Hbs(z)], (1)

and in region-2,

[um, vm, wm, Pm, Tm, Cm1, Cm2,Hm] = [0, 0, 0, Pmbs(zm), Tmbs(zm), Cmbs1(zm), Cmbs2(zm),Hmbs(zm)].
(2)

Infinitely small disruptions are implemented to focus on the stability of the basic steady state,
in the region-1,

[q, P, T,C1, C2,H] = [0, Pbs(z), Tbs(z), Cbs1(z), Cbs2(z),Hbs(z)] + [q′, P ′, θ, S1, S2,H
′],

and in region-2,

[qm, Pm, Tm, Cm1, Cm2,Hm] = [0, Pmbs(zm), Tmbs(zm), Cmbs1(zm), Cmbs2(zm),Hbs(zm)]

+ [q′m, P ′
m, θm, Sm1, Sm2,H

′],

where the perturbed counterparts are the primed quantities. The parameters are then non-
dimensionalized with the use of d, d2

κ
, κ

d
, T0 − Tu, C10 − C1u, C20 − C2u, H0 in the fluid layer as

units of length, time, velocity, temperature, species concentrations, and magnetic field and dm, d2m
κm

,
κm

dm
, Tl − T0, C1l −C10, C2l −C20, Hm0 as the porous layer’s corresponding distinctive quantities. Two

layers have different length scales, so each layer has the same depth. A detailed flow field is attained
in both the layers of composite systems for all depth ratios d̂ = dm

d
. In the fluid and porous layers,

solutions for dependent variables are obtained using normal mode analysis of the dimensionless equa-
tions for the perturbed variables. Supposing that the theory of exchange of instabilities remains true
for composite layers, we obtain the following differential equations,
in 0 6 z 6 1

(

D2 − a2
)2

W = Ra2Θ−Rs1a
2Σ1 −Rs2a

2Σ2 +QD2W, (3)
(

D2 − a2
)

Θ+W = 0, (4)

τ1
(

D2 − a2
)

Σ1 +Wg(z) = 0, (5)

τ2
(

D2 − a2
)

Σ2 +W = 0; (6)

in 0 6 zm 6 1

[

(D2
m − a2m)µ̂β2 − 1

] (

D2
m − a2m

)

Wm = Rma2mΘm −Rsm1a
2
mΣm1

−Rsm2a
2
mΣm2 +Qmβ2D2

mWm, (7)
(

D2
m − a2m

)

Θm +Wm = 0, (8)

τpm1

(

D2
m − a2m

)

Σm1 +Wmgm(zm) = 0, (9)

τpm2

(

D2
m − a2m

)

Σm2 +Wm = 0. (10)

The dimensionless numbers present in the above set of differential equations from (3) to (10) are, a

is the horizontal wave number, W is the velocity, R = gαT (T0−Tu)d3

νκ
is the Rayleigh number, Rsm1 =

gαS1(C10−C1u)d3

νκ
and Rsm2 = gαS2(C20−C2u)d3

νκ
are the solute Rayleigh numbers, Θ is the temperature,

Σ1 and Σ2 are the concentrations, τ1 = κ1

κ
and τ2 = κ2

κ
are diffusivity ratio, Q =

µpH
2

0
d2

µκτ
is the

Chandrashekara’s number, D = d
dz

, h(z) is the salinity gradient with
∫ d

0 h(z)dz = 1 in region-1,

µ̂ =
µp

µ
is the viscosity ratio, β2 = K

d2p
= Da is the porous parameter and the suffix ‘m’ denotes

dimensionless numbers in region-2.
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3. Boundary conditions

At zm = dm, the boundary conditions are,

wm = 0,
∂wm

∂zm
= 0,

∂θm

∂zm
= 0,

∂Sm1

∂zm
= 0,

∂Sm2

∂zm
= 0.

At z = d, the boundary conditions are,

w = 0,
∂w

∂z
= 0,

∂θ

∂z
= 0,

∂S1

∂z
= 0,

∂S2

∂z
= 0.

At z = 0 and zm = 0,

w = wm, θ = θm,
∂w

∂z
=

∂wm

∂zm
, κ

∂θ

∂z
= κm

∂θm

∂zm
,

S1 = Sm1, S2 = Sm2, D
∂S1

∂z
= Dm

∂Sm1

∂zm
, D

∂S2

∂z
= Dm

∂Sm2

∂zm
,

T̂ d̂3β2

(

3∇2
2 +

∂2

∂z2

)

∂w

∂z
= −∂wm

∂zm
+ µ̂β2

(

3∇2
2m +

∂2

∂z2m

)

∂wm

∂zm
,

(

−∂2w

∂z2
+∇2

2w

)

=
µ̂T̂

d̂

(

−∂2wm

∂z2m
+∇2

2mwm

)

.

4. Solution by regular perturbation technique

Convection occurs at small range of horizontal wave number ‘a’, for both constant heat and mass flux
boundaries, thus we expand









W

Θ
Σ1

Σ2









=
∞
∑

j=0

a2j









Wj

Θj

Σj1

Σj2









,









Wm

Θm

Σm1

Σm2









=
∞
∑

j=0

a2j









Wmj

Θmj

Σmj1

Σmj2









. (11)

Using equation (11) in equations (3) to (10) we get the zero order differential equation in a2 as
in region-1,

D4W0 −QD2W0 = 0, (12)

D2Θ0 +W0 = 0, (13)

τ1D
2Σ10 +W0g(z) = 0, (14)

τ2D
2Σ20 +W10 = 0; (15)

and in region-2,

µ̂β2D4
mWm0 −D2

mWm0 −QmD2
mWm0 = 0, (16)

D2
mΘm0 +Wm0 = 0, (17)

τm1D
2
mΣm10 +Wm0gm(zm) = 0, (18)

τm2D
2
mΣm20 +Wm10 = 0. (19)

To solve above mentioned differential equations (12) to (19), the corresponding boundary conditions
are as follows:

W0(1) = 0, DW0(1) = 0, DΘ0(1) = 0, DS10(1) = 0, DS20(1) = 0,

T̂W0(0) = Wm0(1), T̂ d̂DW0(0) = DmWm0(1),

T̂ d̂2D2W0(0) = µ̂D2
mWm0(1), DmSm20(0) = 0,

Θ0(0) = T̂Θm0(1), DΘ0(0) = DmΘm0(1), S10(0) = ŜSm10(1),
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DS10(0) = DmSm10(1), S20(0) = ŜSm20(1), DS20(0) = DmSm20(1),

T̂ d̂3β2D3W0(0) = −DmWm0(1) + µ̂β2D3
mWm0(1),

Wm0(0) = 0, DmWm0(0) = 0, DmΘm0(0) = 0, DmSm10(0) = 0.

Zero order equations solution are given by,

W0(z) = 0, Θ0(z) = T̂ , Σ10(z) = Ŝ1, Σ20(z) = Ŝ2,

Wm0(zm) = 0, Θm0(zm) = 1, Σm10(zm) = 1, Σm20(zm) = 1.

The equations at the first order in a2 are
for region-1,

D4W1 −RT̂ +Rs1Ŝ1 +Rs2Ŝ2 −QD2W1 = 0, (20)

D2Θ1 − T̂ +W1 = 0, (21)

τ1D
2Σ11 − τ1Ŝ1 +W1g(z) = 0, (22)

τ2D
2Σ21 − τ2Ŝ2 +W1 = 0; (23)

for region-2,

µ̂β2D4
mWm1 −D2

mWm1 −Rm +Rsm1 +Rsm2 −Qmβ2D2
mWm1 = 0, (24)

D2
mΘm1 − 1 +Wm1 = 0, (25)

τm1D
2
mΣm1 − τm1 +Wm1gm(zm) = 0, (26)

τm2D
2
mΣm2 − τm2 +Wm1 = 0. (27)

The following are the corresponding boundary conditions:

W1(1) = 0, DW1(1) = 0, DΘ1(1) = 0, DS1(1) = 0, DS2(1) = 0,

T̂W1(0) = d̂2Wm1(1), T̂ d̂DW1(0) = d̂2DmWm1(1),

T̂ d̂2D2W1(0) = µ̂D2
mWm1(1)d̂

2, S1(0) = Ŝ1d̂
2Sm1(1),

DmSm2(0) = 0, Θ1(0) = T̂ d̂2Θm1(1), DΘ1(0) = d̂2DmΘm1(1),

DS1(0) = d̂2DmSm1(1), S2(0) = Ŝ1d̂
2Sm2(1), DS2(0) = d̂2DmSm2(1),

Wm1(0) = 0, DmWm1(0) = 0, DmΘm1(0) = 0, DmSm1(0) = 0,

T̂ d̂3β2D3W1(0) = −d̂2DmWm1(1) + µ̂β2d̂2D3
mWm1(1).

The solutions of Equations (20)–(23) and (24)–(27) give W1 and Wm1 as follows,

W1(z) = C1 + C2z + cosh(
√

Qz)
(

C3 +C4 tanh(
√

Qz)
)

− Az2

2Q
, (28)

Wm1(zm) = C5 + C6zm + cosh
√
pzm (C7 + C8 tanh

√
pzm)−Bzm

2, (29)

where p =
√

1
µ̂β2 and Cis , i = 1 to 8 are constants found using the velocity boundary conditions as

below,

A = RT̂ −Rs1Ŝ1 −Rs2Ŝ2, B =
Rm −Rsm1 −Rsm2

2 (1 +Qmβ2)
,

C1 =
Aδ29 +Bδ30

T̂
, C2 = Aδ31 +Bδ32, C3 = Aδ33 +Bδ34,

C4 = Aδ35 +Bδ36, C5 = −C7, C6 = −√
pC8,

C7 = Aδ27 +Bδ28, C8 = Aδ25 +Bδ26

δ1 = d̂2 (cosh
√
p− 1)− µ̂

Q
p cosh

√
p, δ2 = d̂2 (sinh

√
p−√

p)− µ̂

Q
p sinh

√
p,

δ3 =
−δ1

T̂
− µ̂

QT̂
p cosh

√

Q cosh
√
p, δ4 =

−δ2

T̂
− µ̂

QT̂
p cosh

√

Q sinh
√
p,
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δ5 =

(

1

2
+

1

Q
− cosh

√
Q

Q

)

1

Q
, δ6 =





µ̂
Q
− d̂2

2

T̂
+

µ̂ cosh
√
Q

T̂Q





1

1 +Qmβ2
,

δ7 = −
√
Qµ̂p

QT̂
cosh

√
p sinh

√

Q, δ8 = −
√
Qµ̂p

QT̂
sinh

√
p sinh

√

Q,

δ9 =
1

Q

(

1−
√
Q sinh

√
Q

Q

)

, δ10 =
µ̂
√
Q sinh

√
Q

T̂Q (1 +Qmβ2)
,

δ11 =
δ3 − δ7

sinh
√
Q−√

Q cosh
√
Q
, δ12 =

δ4 − δ8

sinh
√
Q−√

Q cosh
√
Q
,

δ13 =
δ5 − δ9

sinh
√
Q−

√
Q cosh

√
Q
, δ37 =

δ6 + δ10

sinh
√
Q−

√
Q cosh

√
Q
,

δ14 =
1

T̂ d̂β2Q
√
Q (1 +Qmβ2)

+ δ37, δ15 = − sinh
√

Qδ11 + δ3,

δ16 = − sinh
√

Qδ12 + δ4, δ17 = − sinh
√

Qδ13 + δ5,

δ18 = sinh
√

Qδ37 − δ6, δ19 = T̂ δ15 + T̂
√

Qδ11 + d̂
√
p sinh

√
p,

δ20 = T̂ δ16 + T̂
√

Qδ12 + d̂
√
p− d̂

√
p cosh

√
p, δ21 = T̂ δ17 + T̂

√

Qδ13,

δ22 = T̂ δ18 − T̂
√

Qδ37 +
d̂

(1 +Qmβ2)
, δ23 =

µ̂β2p
√
p sinh

√
p−√

p sinh
√
p

T̂ d̂β2Q
√
Q

− δ11,

δ24 =

√
p+ µ̂β2p

√
p cosh

√
p−√

p cosh
√
p

T̂ d̂β2Q
√
Q

− δ12, δ25 =
δ21δ23 + δ13δ19

δ19δ24 − δ20δ23
,

δ26 =
δ22δ23 − δ14δ19

δ19δ24 − δ20δ23
, δ27 =

−δ20δ25 − δ21

δ19
, δ28 =

−δ20δ26 − δ22

δ19
,

δ29 = δ1δ27 + δ2δ25 −
T̂

Q2
, δ30 = δ1δ28 + δ2δ26 +

2µ̂ −Qd̂2

2Q (1 +Qmβ2)
,

δ31 = δ27

(

− sinh
√

Qδ11 + δ3

)

+ δ25δ38 − sinh
√

Qδ13 + δ5,

δ32 = δ28

(

− sinh
√

Qδ11 + δ3

)

+ δ26δ38 + sinh
√

Qδ37 − δ6,

δ33 =
µ̂p cosh

√
p

T̂Q
δ27 +

µ̂p cosh
√
p

T̂Q
δ25 +

1

Q2
, δ38 = − sinh

√

Qδ12 + δ4,

δ34 =
µ̂p cosh

√
p

T̂Q
δ28 +

µ̂p sinh
√
p

T̂Q
δ26 −

µ̂

T̂Q (1 +Qmβ2)
,

δ35 = δ11δ27 + δ12δ25 + δ13, δ36 = δ11δ28 + δ12δ26 − δ37.

4.1. The condition of solvability

The condition of solvability is obtained from the differential equation of temperature and concentration
and using their respective boundary conditions as below,
∫ 1

0
W1dz + τpm1

∫ 1

0
W1g(z)dz + d̂2

∫ 1

0
Wm1dzm + τ1d̂

2

∫ 1

0
Wm1gm(zm)dzm + τpm2

∫ 1

0
W1dz

+ τ2d̂
2

∫ 1

0
Wm1dzm = T̂ + d̂2 + τ1τpm1

(

Ŝ1 + d̂2
)

+ τ2τpm2

(

Ŝ2 + d̂2
)

. (30)

We compute the critical Rayleigh number Rc for step function, salting below and desalting above salin-
ity profiles by substituting expressions for Wm and Wm1 from equations (28) and (29) in equation (30).
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4.2. Step function salinity profile

The basic composition gradually decreases in this salinity profile by ∆S at z = ε and ∆Sm at zm = εm
otherwise uniform. Accordingly,

g(z) = δ(z − ε), gm(zm) = δ(zm − εm).

The depth of saline in the fluid layer is ε whereas the depth of saline in the porous layer is εm. The
condition of solvability (30) has been used to evaluate the critical Rayleigh number for this profile and
as proceeds,

Rc =
∆1 +

(

Rs1Ŝ1 +Rs2Ŝ2

)

∆12 + (Rsm1 +Rsm2)∆13

T̂
(

∆12 +
d̂3β2∆13

κ

) ,

where ∆
′s
i are given by

∆1 = T̂ + d̂2 + τ1 τpm1

(

Ŝ + d̂2
)

+ τ2 τpm2

(

Ŝ2 + d̂2
)

,

∆2 = 1 + τpm1 + τpm2, ∆3 = ετpm1 +
1 + τpm2

2
,

∆4 = τpm1 cosh
√

Qε+
(1 + τpm2)√

Q
sinh

√

Q,

∆5 = τpm1 sinh
√

Qε+
(1 + τpm2)√

Q

(

cosh
√

Q− 1
)

,

∆6 =
ε2τpm1

2Q
+

(1 + τpm2)

6Q
, ∆7 = d̂2 (1 + τ1 + τ2) , ∆8 = d̂2

(

εmτ1 +
1 + τ2

2

)

,

∆9 = d̂2
(

τ1 cosh
√
pεm +

(1 + τ2)√
p

sinh
√
p

)

,

∆10 = d̂2

(

τ1 sinh
√
pεm +

(1 + τ2)
(

cosh
√
p− 1

)

√
p

)

,

∆11 = d̂2
(

τ1ε
2
m

2 (1 +Qmβ2)
+

1 + τ2

6(1 +Qmβ2)

)

,

∆12 =
δ29∆2

T̂
+ δ31∆3 + δ33∆4 + δ35∆5 −∆6 −∆121,

∆13 =
δ30∆2

T̂
+ δ32∆3 + δ34∆4 + δ36∆5 −∆11 −∆131,

∆121 = δ27∆7 −
√
pδ25∆8 + δ27∆9 + δ25∆10,

∆131 = δ28∆7 −
√
pδ26∆8 + δ28∆9 + δ26∆10.

4.3. Piecewise linear salting from below salinity profile

For this considered profile following Currie [13], we assess

g(z) =

{

ε−1, 0 6 z 6 ε,

0, ε 6 z 6 1,
gm(zm) =

{

ε−1
m , 0 6 zm 6 εm,

0, εm 6 zm 6 1.

The condition of solvability (30) has been used to evaluate the critical Rayleigh number for this profile
and as proceeds,

Rc =
∆1 +

(

Rs1Ŝ1 +Rs2Ŝ2

)

∆12 + (Rsm1 +Rsm2)∆13

T̂
(

∆12 +
d̂3β2∆13

κ

) ,

where ∆
′s
i are

∆1 = T̂ + d̂2 + τ1 τpm1

(

Ŝ + d̂2
)

+ τ2 τpm2

(

Ŝ2 + d̂2
)

,
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∆2 = 1 + τpm1 + τpm2, ∆3 =
1

2
(ετpm1 + 1 + τpm2) ,

∆4 =
τpm1

ε
√
Q

sinh
√

Qε+
(1 + τpm2)√

Q
sinh

√

Q,

∆5 =
τpm1

ε
√
Q
(cosh

√

Qε− 1) +
(1 + τpm2)√

Q

(

cosh
√

Q− 1
)

,

∆6 =
ε2τpm1

6Q
+

(1 + τpm2)

6Q
, ∆7 = d̂2(1 + τ1 + τ2),

∆8 =
d̂2

2
(εmτ1 + 1 + τ2), ∆9 =

d̂2√
p

(

τ1 sinh
√
pεm

εm
+

(1 + τ2)√
p

sinh
√
p

)

,

∆10 =
d̂2√
p

(

τ1(cosh
√
pεm − 1)

εm
+ (1 + τ2)(cosh

√
p− 1)

)

,

∆11 =
d̂2

6(1 +Qmβ2)

(

τ1ε
2
m + 1 + τ2

)

,

∆12 =
δ29∆2

T̂
+ δ31∆3 + δ33∆4 + δ35∆5 −∆6 −∆121,

∆13 =
δ30∆2

T̂
+ δ32∆3 + δ34∆4 + δ36∆5 −∆11 −∆131,

∆121 = δ27∆7 −
√
pδ25∆8 + δ27∆9 + δ25∆10,

∆131 = δ28∆7 −
√
pδ26∆8 + δ28∆9 + δ26∆10.

4.4. Piecewise linear desalting above salinity profile

For desalting from above salinity profile following Vidal and Acrivos [14], we consider

g(z) =

{

0, 0 6 z 6 (1− ε),
ε−1, (1− ε) 6 z 6 1,

gm(zm) =

{

0, 0 6 zm 6 (1− εm),
ε−1
m , (1− εm) 6 zm 6 1.

The condition of solvability (30) has been used to evaluate the critical Rayleigh number for this profile
and as proceeds,

Rc =
∆1 +

(

Rs1Ŝ1 +Rs2Ŝ2

)

∆12 +
(

Rsm1 +Rsm2

)

∆13

T̂
(

∆12 +
d̂3β2∆13

κ

) ,

where ∆
′s
i are given by

∆1 = T̂ + d̂2 + τ1 τpm1

(

Ŝ + d̂2
)

+ τ2 τpm2

(

Ŝ2 + d̂2
)

,

∆2 = 1 + τpm1 + τpm2, ∆3 =
1

2

(τpm1

ε

(

1− (1 − ε)2
)

+ (1 + τpm2)
)

,

∆4 =
τpm1

ε
√
Q

(

sinh
√

Q− sinh
√

Q(1− ε)
)

+
(1 + τpm2)√

Q
sinh

√

Q,

∆5 =
τpm1

ε
√
Q

(

cosh
√

Q− cosh
√

Q(1− ε)
)

+
(1 + τpm2)√

Q

(

cosh
√

Q− 1
)

,

∆6 =
τpm1

6Qε

(

1− (1− ε)3
)

+
(1 + τpm2)

6Q
, ∆7 = d̂2(1 + τ1 + τ2),

∆8 =
d̂2

2

(

τ1

εm

(

1− (1− εm)2
)

+ (1 + τ2)

)

,

∆9 =
d̂2√
p

(

τ1

εm
(sinh

√
p− sinh

√
p(1− εm)) + (1 + τ2) sinh

√
p

)

,
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∆10 =
d̂2√
p

(

τ1

εm
(cosh

√
p− cosh

√
p(1− εm)) + (1 + τ2)(cosh

√
p− 1)

)

,

∆11 =
d̂2

6(1 +Qmβ2)

(

τ1(1− (1− εm)3)

εm
+ (1 + τ2)

)

,

∆12 =
δ29∆2

T̂
+ δ31∆3 + δ33∆4 + δ35∆5 −∆6 −∆121,

∆13 =
δ30∆2

T̂
+ δ32∆3 + δ34∆4 + δ36∆5 −∆11 −∆131,

∆121 = δ27∆7 −
√
pδ25∆8 + δ27∆9 + δ25∆10,

∆131 = δ28∆7 −
√
pδ26∆8 + δ28∆9 + δ26∆10.

5. Graphical interpretations

The graphs which are discussion in this section are plotted by considering critical Rayleigh number
Rc along y-axis and saline depth ε along x-axis with 0 6 ε 6 1 for step function, salting below

Fig. 2. Critical Rayleigh number Rc versus the saline
depth ε.

and desalting above salinity profiles for triple
diffusive magneto convection. The graphs are
projected for known fixed set of values Da = 0.1,
κ = 1, µ̂ = 2.5, τ1 = τ2 = 0.25, τpm1 = τpm2 =

0.75, Ŝ1 = Ŝ2 = T̂ = 1, d̂ = 1, Rs1 = Rs2 = 5
and Q = 2 for all the salinity profiles discussed
in previous section.

The effect of step function, salting below and
desalting above salinity profiles on the onset of
magneto convection with three diffusive compo-
nents is depicted in Figure 2. Table 1 infers that
a suitable choice of salinity profile can be made
in order to control the onset of convection in the
composite system.

Table 1.

Saline depth range Stable profile Unstable profile

0 6 ε 6 0.05 salting from below profile step function profile

0.05 6 ε 6 0.6 desalting from above profile salting from below profile

0.6 6 ε 6 1 step function profile salting from below profile

Figure 3 depicts the influence of the Darcy number Da =
√
β, which is the porous parameter in

concern of critical Rayleigh number Rc for salting below, desalting above and step function profiles.
Figure 3 indicates that critical Rayleigh number Rc increases as Darcy number Da enhances in all
profiles for a fixed number of saline depth ε. This delays the onset of convection in the composite
system. Thus the system is stabilized.

The effect of the porosity e, depicted graphically in Figure 4 for salting below, desalting above
and step function profiles. Figure 4 indicates that critical Rayleigh number Rc decreases as porosity e

enhances in all profiles for fixed number of saline depth ε. This accelerates the onset of convection in
composite system. Thus the system is destabilized.

The effects of the magnetic field Q on Rc is graphically shown in Figure 5 for salting below, desalting
above and step function profiles. From the graph, for fixed values of saline depth ε critical Rayleigh
number Rc increases as Q enhances in all profiles. This delays the convection in the composite system.
Thus the system is stabilized.
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Fig. 3. The effect of Darcy number Da = 0.01, 0.1, 1.

Fig. 4. The effect of porosity e = 0.5, 0.75, 1.

Fig. 5. The effect of the magnetic field Q = 50, 60, 70.

Fig. 6. The effect of solute Rayleigh number Rs2 = 5, 10, 15.

The influence of the solute Rayleigh number Rs2 of the second solute is seen in Figure 6 for salting
below, desalting above and step function profiles. From the curves in Figure 6, for a fixed number
of saline depth ε, increasing the value of the solute Rayleigh number Rs2 enhances the value of the
critical Rayleigh number Rc. The onset of convection in the composite system is slowed as a result of
this. Also as a consequence, the system has been stabilized.

6. Conclusions

The onset of triple diffusive magneto convection in the composite system is investigated using regular
perturbation technique for the composite system with rigid–rigid boundaries. The graphs are projected
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with critical Rayleigh number along y-axis and saline depth along the x-axis with the saline depth ε

varying from 0 to 1. The influence of various physical parameters on the onset of triple diffusive
magneto convection are shown graphically in Section 5.

1. With the increase in the value of the physical parameters solute Rayleigh number Rs2, Darcy
number Da and Chandrashekara’s number Q, the critical Rayleigh number Rc enhances in all the
salinity profiles as observed from the graphs in Section 6, because of which the convection sets in
slowly. Thus, these parameters stabilizes the composite system.

2. As a result of managing these parameters, stability-demanding conditions such as solar pond, crystal
growth can be effectively managed.

3. The critical Rayleigh number Rc decreases with the increase in the value of porosity e of the porous
layer in fluid-porous composite system for all the salinity profiles considered in Section 5. The
convection sets in at a faster pace due to this decrease in critical Rayleigh number. Thus the
porosity of the porous layer destabilizes the composite system.

4. In the process of manufacture of permanent magnetic material, the destabilizing effects under
normal gravity conditions are more efficient. Thus, by increasing the porosity of the porous medium,
a high-quality permanent magnetic material can be made.
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Потрiйна дифузiйна магнетоконвекцiя у рiдинно-пористiй
композитнiй системi

Сумiтра Р.1, Комала Б.2, Манджунатха Н.3
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Дослiджено потрiйну дифузiйну магнетоконвекцiю для рiдинно-пористої композитної
системи з жорсткими межами, якi iзольованi вiд температури та концентрацiї. По-
ристий шар композитної системи моделюється за допомогою моделi Дарсi–Брiнкмана.
Для визначення власного значення розглядуваної задачi використовується метод ре-
гулярних збурень. Критичне число Релея, яке є критерiєм для початку конвекцiї, от-
римано для ступiнчастої функцiї, засолювання нижче та знесолення вище профiлiв
солоностi. Графiчно зображено вплив рiзних фiзичних параметрiв на початок кон-
векцiї та проаналiзовано стiйкiсть системи.

Ключовi слова: потрiйна дифузiйна магнетоконвекцiя; неоднорiднi градiєнти со-

лоностi; метод регулярных возмущений.
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