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1. Introduction and preliminary results

1.1. Introduction

This paper will deal with the following problem

94 4 Au=f, in Q,
u=0, on I'=0Q x (0,7, (1)
u(z,0) =0, in €,

where
Au = —div(a(z, t,u)a(z, t,u, Vu)),

feL™@Q), m>1,Qis an open bounded subset of RY (N > 2), Q is the cylinder Q x (0,T) (T > 0),
I" the lateral surface 092 x (0,7T").

Let a: @ x R — R be a Carathéodory function satisfying for almost every (z,t) € @ and every
seR

[0
) < 7t7 < ) 2
and »
<O<p—1+—, 3
0 <p +N (3)

where p is a real number such that 2 < p < N, and «, [ are two positive constants.
We assume that @: 2x]0, T[xRxRY — R¥ is a Carathéodory function, satisfying for a.e. (x,t,s) €
Q xR, V¢, ¢ e RY:

a(;v,t,s,f) ' 6 = |£|p’ (4)
@, t,5,6) < b, t) + |sP~" 4¢P, (5)
(a(gj>t737£) _a($7t787£/)) : (6 - g/) >0, (6)

b is a nonnegative function in L (Q), where p’ = p%l'

When the degenerate term does not appear in (1) (i.e., a(z,t,u) = 1) and u(z,0) = ug € L'(Q),
the existence and regularity of entropy solution of (1) are proved in [1|. The uniqueness results has
been developed in [2]. If @(x,t,u, Vu) = |Vu|P~2Vu, in [3], existence and regularity results for the

(© 2023 Lviv Polytechnic National University 119



120 Khelifi H

problem (1) were proved. The existence and uniqueness of a renormalised solution of problem (1)
proved in [4]. In the case 6 #0, p=2,0< 0 <1+ % and f € LY(Q), the existence and regularity of
entropy solutions studied in [5]. In [6] the authors prove the following result

Theorem 1. Under the hypotheses (2)—(6), if f € L"™(Q) with m > % + 1, then there exists a
bounded weak solution u € LP(0,T Wol’p(Q)) N L*>®(Q) to problem (1).

1.2. Preliminary results

Let k > 0 and Tj: R — R the truncating function equal to Tk (s) := sgn(s) min{|s|, £}, and its primitive
Sk: R — RT

Sk(x) = /090 Tk (s) ds. (7)
It results

1
§\Tk(s)\2 < Sk(s) < kls|, Vk>0, VseR. (8)

We use the following definition of the entropy solutions.

Definition 1. A measurable function u € L>(0,T;L*(Q2)) will be called an entropy solution to
problem (1) if Ty (u) € LP(0,T; Wol’p(Q)), for every k > 0, and if

/Q Se(u(t) — o(t))dz € C([0,T]), (9)

T
/st(u(T) daz—/S da:+/ (0, T (1 — &) dt
/ a(z,t,u)a (m,t,u,Vu)VTMu—@dwdté/ka(u—qﬁ)dxdt, (10)
Q Q

for every k > 0 and ¢ € LP(0,T; Wy*(Q)) N L®(Q) such that

o € LP(0,T;WH(Q) + L1(Q).
Lemma 1. For every k > 0, if Ty(u) € LP(0,T; Wol’p(Q)), then there exists a unique measurable
function v: Q + RY such that VT}(u) = UX{u|<k} &€ in Q, where x{jy <k} denotes the characteristic
function over the set {|u| < k}. Defining the derivative Vu of u as the unique function v which satisfies

the above equality. Furthermore, u € LP(0,T; Wol’p(Q)) if and only if v € LP(Q), and then v = Vu in
the usual weak sense.

Proof. The proof of Lemma 1 is the same as that of Lemma 2.2 in [7], we omit the details. [

Definition 2 (Refs. [8,9]). Let g be a positive number. The Marcinkiewicz space M4(Q) is the set
of all measurable functions u: () — R such that

meas({(z,t) € Q: |u(z,t)| > k}) < %, for every k>0, (11)
for some constant C' > 0. The norm of u in M%(Q) is defined by

Hqul\/lq(Q) = inf{C > 0 such that (11) holds}.

The alternate name of weak L? space is due to the fact that, if () has finite measure, then

{ MUQ) c M7(Q),
LUQ) € MUQ) c M(Q),

for every v < q.
We also recall a consequence of the Gagliardo—Nirenberg embedding theorem.
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Regularity for entropy solutions of degenerate parabolic equations with L™ data 121

Lemma 2 (Ref. [13]). Let v € L"(0,T; W, "(Q)) N L=(0,T; L2(R)), h,o > 1. Then v belongs to
LY(Q), where ¢ = hN+9 and there exists a positive constant M7 depending only on N, h, o such that

h
~
/]v(a:,t)\qudthl <ess sup /\v(x,t)]%x) /]Dv(a:,t)\hdxdt. (12)
Q Q

0<t<T JQ

Before the proof, we need a technical lemma.

Lemma 3. Let u be a measurable function in MH(Q) for some p > 0, and assume that there exist
two nonegative constants v > ~v such that

/|VTk WP dzdt < My(1+ kYR, Yk >0,

where M, is a positive constant independent of k. Then |Vu| belongs to M*(Q), with s = “’fy

Proof. We follow the lines of the proof of [7], Lemma 4.1. and 4.2. Let A be a fixed positive real
number. We have, for every k > 0,

meas ({|Vul? > A}) = meas ({|Vul? > A, |u| < k}) +meas ({|VulP > X, |u| > k})
< meas ({|Vul? > A, [u] < k}) + meas ({|u] > k}). (13)
Moreover,
1 1
meas ({|[VuP > A, |u| < k}) = Nz dt < —/ Yl da dt
A J(vulr>AJul<k} {lul<k)
1 14+ k)YEY=
< _/ VT (w)|P da dt < pERTRT
X o A
If £ > 1, then the above inequality turns into
2k kY kY
meas ({|Vul? > A, Ju] <k}) < M()f VMT

By Definition 2 of the Marcinkiewicz space and u € MH(Q), then there exists a positive constant M
independent of k such that

meas ({|u] > k}) < Mlk;_lu' (14)
Using (13)—(14), we obtain
meas ({|Vul? > A}) < 27Mku + M1 < My il i (15)
A kH By k” ’

where My = max{27M, Ml} and (15) holds for every k > 1. Minimizing with respect to k, we easily

prove that as k = (V) =z )\H+V the minimum value of the right side term in (15) is achieved, and
setting A = hP for every h > 0 we get

(kY 1 E W\~ 1 Ms Ms
< ~ pt ~ pt < <
meas ({|Vu| > h}) < My mkln< k#) My [(V> + (y) ] DI S TS R (16)

where Mj is a positive constant independent of h. However, the above conclusion is obtained under

the assumpation k£ > 1, that is h > (ﬁ) PoIfh < (ﬁ) P since @ is bounded, the above inequality
obviously holds. By (16) and Definition 2 yield |Vu| € M*(Q). [
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122 Khelifi H.

2. Statement of main results and approximate solutions

2.1. Statement of main results

Theorem 2. Under the hypotheses (2)—(6), if f € L™(Q) with
N+60+2 }
9 1 )
(p— 1N +p+1-6(N—-1)
then there exists an entropy solution u to problem (1) in the sence of Definition 1 with
ueM(Q), and |Vul € MIQ), (18)

where M%(Q), M9(Q) are Marcinkiewicz spaces defind in Definition 2, and

5. mp+Np-1-9) m[N(p—1—10)+p]

1<m<max{

, and = . 19
N+p—pm N+1-0+1)(m-1) (19)
Remark 1. If0 <60 <p—1+F&— %, then (17) becomes m = 1, thus § = W > 1,
q = W;\,li;f)ﬂ’ > 1. By the embedding theorems between Marcinkiewicz and Lebesgue spaces, we
can deduce that u belongs to L*(0, T} WOI’S(Q)) for every 1 < s < q= ]\f(p;vli;f)"'p.

Remark 2. Ifp—1+4 & — % <0 <p—1+ %, then (17) becomes 1 < m < (p—l)N]—i\-f;_ff_ge(N—l)

and ¢ < 1. It is not possible to deduce that |Vu| belongs to some Sobolev space even if 1 < m <
N+4642
(p—1)N+p+1-0(N-1)"

2.2. Approximate solutions

In the remainder of this section, we denote by ¢ various positive constants depending only on the data
of the problem, but not on n and k.
Let (fn) be a sequence of bounded functions defined in @, where f, € D(Q) and satisfy

[ fallLm@) < IfllLm@) < ¢ Vn, (20)

fn— f, strongly in L™(Q). (21)

We approximate the problem (1) by the following problems

B _ div(a(z,t, Ty (un))a(2, t, un, Vun)) = fn, in Q,
up = 0, on I (22)
un(x70) = 07 iIl Q

For n € N, we define the operator A, by A, = —div(a(.,., T, (u))a(.,.,u, Vu)).
From (2) and (4), we have

1

a(z,t,Ty(u))a(z, t,u, Vu) - Vudz dt > g(n)/ |VulPdx dt, with g(n)=-—"—,
/Q Q (14 |n])?

so that the operator A, from LP(0,T; Wol’p(Q)) into its dual LP (0,T; W~ (Q)) is coercive and
satisfies the classical Leary—Lions conditions. Then from the well-known result of [10], there exists at
least a solution u, in C([0,T]; L%(2)) to problem (22) such that u/, € L¥' (0, T; W~ (Q)) and satisfies

/u;LQSd:Edt—I—/ a(:n,t,Tn(un))a(:E,t,un,Vun)qudazdt:/ fnodzdt,
Q Q Q

for any ¢ € LP(0,T; Wol’p(Q)) and uy,(x,0) = 0.
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3. A priori estimates

Throughout this section we assume that hypotheses (20)—(21) hold. Let u, be a solution of prob-
lem (22).

In this section, we prove some a priori estimates for the approximate solutions wu, and its partial
derivatives.

Lemma 4. Let f € L™(Q), with m satisfies (17), and (2)—(6) hold. Then there exists a positive
constant ¢ such that

meas({un| > k) < 75, (23)
meas({|Vu,| > k}) < k:i (24)
|unll oo 0,01 0)) < ¢, and (25)
1T oo rgwrt ey < €1+ K) (26)

where ¢ and q as in (19).

Proof. The proof is divided into three cases.

Case 1. Suppose that m > %

lem (22), using (7), (2), (4) and Holder’s inequality, we get

Choosing T (un(2,t))x(0,r)(t) a test function for prob-

1

[ sutwnte e va [ [ Bl G g < i) ([ ] mtwrawa) ™. )
(1+ [un])? 0o Ja

By (8) and (27), we have

a1
ess sup /|Tk(un(:n )] d:E—I—ZOé/ / |Vl drdt < 2|/ fllzm g </ /|Tk Up)| d:ndt) .
0<t<T 1+ Jun))?

(28)
Moreover
|V T (un) [P 0
VT ()P d dlt = / W) g ) ) da d
/Q @ (1+ [Ti(un)])?
1S w7
< Q) (1 4 k) </ T (un) ™ dxdt) . (29)
a
If m> (p‘i(f\)fij\}i)zp, we have m’ < p(]\]fvw) thus we can choose p < p such that p(]\]f\;rz) m/. Then
Nm
P IN+2)(m—1) (30)

For the above p, (28) and Holder’s inequality imply that

/\VTk(un)\pdxdt:/ VTl () 4 103 ) v
Q Q (14 [T (un)l) »

< (/Q %dmcﬁ)z </Q(1+|Tk(un)|):ppdxdt>p

p=p

<c</Q ]Tk(un)]m/dxdt>pgll </Q(1+\Tk(un)y)f”pdxdt> SN ES,

By Lemma 2, applied to v(z,t) = Tj(u,(x,t)), o = 2, and h = p, using (28), (31), we obtain
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(N+2)p 2 %
‘Tk (un)‘ < | ess sup ’Tk (un)‘ dx ’DTk (un)’pd‘r dt
Q 0<t<T JQ Q

_P P
c< / |Tk(un)|m’dxdt> o < / |Tk(un)|m’dxdt> o
Q Q

pP—p

x (/Q(l | T (un)|) 77 dee dt> v

p(N+p) p=p

(/ T ()™ dxdt) B </Q(1+|Tk(un)|)%dmdt> T (32)

Nowm>(p‘i(f\)77j\}i)2pand (17) imply
N+0+2
m < . 33
pP—1)N+p+1-6(N-1) (33)
However, by virtue of # < p — 1+ &, then
N 2 N+2)—N
+0 + p(N +2) — N6 (34)

p-—DN+p+1-0N—-1) (p—1)N+2p—No

Thus from (30), ( 3) and (34), we can deduce that % >m/ if k> 1, (32) yields

/]Tk up)| pee “de dt = /\Tk (un)|™ "dx dt

p(N+p) P—p

‘ </Q i ()" do dt) o (/Q(l [ Te(un)) 7™ (14 [T ()™ de dt> N

p(N+p) p—p
/ pNm/ __m , p
c (/ (T ()™ d dt> (2k)F ( (1 + |To(un) )™ da dt>
Q
p(N+p) p—p
, pNm/ p
c (/ (T ()™ d:ndt) (2k)% <2m Q] + 2™ / T ()™ d dt>
Q
p(N+p) P—p

@_(P*P)m/ ’
< ok BT </ (T ()™ dxdt)
Q

If fQ | Ty (un)|™ daz dt > 1, it follows from (35) that

<1+/Qka )| dxdt)T. (35)

p(N+p) +p p

’ p—p Op_  (p— )m/ , Nm/
/ T ()™ ds e < 25" k8~ 5 (/ (T ()™ d:ndt) ’
Q Q

Hence 1_p(N+p) _p—p ,
/ pNm/ P p=p Op_ (p—p)m
</ | Ty (up)|™ dx dt) <c2r ko P
Q
Thus we get
[@_ (p—p)m’ ]
m’ P P 1— p(N+p) _p—p
| T (upn)|™ dx dt < ck pNm/ P (36)
Q
From (30) we obtain
bp  (p—p)m/ 1 __ Np—1)m—p) +2p(m —1) — ON(m —1) (37)
p p 1 — eEp)  pep (m —1)(N —pm + p) '

pNm/ P
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It follows from (36)—(37) that

N((p—1)m—p)+2p(m—1)—ON (m—1)

/ ’Tk(un)‘mld(t dt < k™™ (m—1)(N—pm-+p)
Q

New 6 <p—1+ %, (33) and (34) imply

N—-—pm+p>0, and

N((p—1)m —p)+2p(m —1) —ON(m —1) <O0.
Combining (37) and (39), we obtain

_mN((P— )m —p)+2p(m —1) —ON(m —1)

(m —1)(N — pm +p) >0

It [o T, (un )| da dt < 1, by virtue of k > 1, then

N((p—1)m—p)+2p(m—1)—ON(m—1)

/ Ty (un) ™ dzdt <1< k™ (m—D(N—pm+p)
Q

By (38) and (40) we get for any k > 1,

N((p—1)m—p)+2p(m—1)—ON(m—1)

/ To(un)[™ ddt < ck™ T8t
Q

The condition m > 1 ensures that
> — N2 = Vm —p) +2p(m — 1) — ON(m — 1)
(m —1)(N —pm +p)

If £ < 1, using (42), we have

N((p—1)m—p)+2p(m—1)—ON(m—1)

/ T ()™ d dt < |QUF™ < QU™ R )
Q

It follows from (41) and (43) that for any k > 0,

N((p—1)m—p)+2p(m—1)—ON(m—1)

/ |Tk(un)|m/dl’ dt < Ck,‘_m (m—1)(N—pm+p)
Q

Therefore we have

m

_ N((p=1)m—p)+2p(m—1)—ON(m—1)

E™ meas{(z,t) € Q: |un(z,t)| > k} < ck

Namely,

N((p—1)m—p)+2p(m—1)—6N(m—-1) s _m(p+N(p—1-6))

m

meas{(z,t) € Q: |u,(z,t)| >k} <ck™ ™ (m—1)(N—pm+p) < ck

Thus (23) is proved.
Now, (29) and (43) yield
/ | DT}, (un)[Pda dt < c(1 + k)? (/ T ()™ da dt>
Q Q

1
v

_ N((p=1)m—p)+2p(m—1)—N (m—1)

(m—1)(N—pm+p)

<e(1+ k) N—pm+p

Thus, by the Lemma 3, applied to v(z,t) = wu(z,t), p = 9, v =
—(N(p—1)m—Np+2p(m—1))+6(Nm—pm+p)
N—pm+p

, we can obtain (24).
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p(N+2)

Case 2. Suppose that 1 <m < DN Note that m/ > p(l\]7V+2)

. Then we have

1

a
</ (T ()™ d:ltdt) < </ |Tk(un)|p(1\r+2) |Tk(Un)|m/_p(N+2) e dt)
Q Q

1
( ) m/
R tac < / T ()| o dt) _ (44)

a1
ess sup / |Tk(un($,t))|2d$ < ckl_p(N+2) </ T (un)| O dm dt>m , (45)

0<t<T JQ

From (28)—(29) and (44), we have

and

1
/Q|DT,€(un)|pdxdt c(1 1 k)RS </ T (un)| )’” . (46)

Thus, by the Gagliardo—Nirenberg inequality (12) (Lemma 2), applied to v(x,t) = Tk (up(z,t)), 0 = 2,
and h = p, using (45)—(46), we have

p

~
/]Tk(un)\p( +2)d:vdt <ess sup /]Tk(un(x,t))\2dx> /\DTk(un)]pdxdt
Q Q Q

o<t<T
p+N

c(1+ k)gk(l_p(fvﬁf))(%ﬂ) </ T (1) | P52 i dt) Nl
Q

By virtue of m < %, then 1 — ’]7\;;]:,[ > (0. Thus we get

< /Q 1T (1) 252 dxdt)
/Q|Tk(un) pP(N+2)

If £ > 1, it follows from (47) that

p(N+2) (N+p) (Nm—p(N+2)(m—1))+6N2m
|Tk Up)| N t < ck N(N—pm+p) . (48)

+N
1-2t5

)

Hence

1
e[+ kRO RG] R

Nmb (N+p)(Nm—p(N+2)(m—1))

So(l+R)Tmmg N (47)

Ifk<1. NOW9<p—1+%, imply
p(N +2) - (N 4+ p)(Nm — p(N +2)(m — 1)) + ON?m

N N(N — pm +p) ’
which implies
(N+2) (N+2) (N+p) (Nm—p(N+2)(m—1))+6N2m
/ T )| [+ o a— (49)
It follows from (48)—(49) that for any k& > 0,
p(N+2) (N+p)(Nm7p(N+2)(77L*1))+9N2m
\Tk (up)|” W t < ck N(N—pm+p) . (50)

Therefore from (50) we can obtain (23). Finally, (24) can be deduced from (46), (50) and Lemma 3.
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1
oy

Case 3. Suppose that m = 1. We only need to replace <fQ | T (u)|™ da dt) with |Q|%k‘
n (27)-(29). That is

Vu, 1
/sk wn(2,7)) dx+a// Nl et < Sl @1 R

(14 Jun])?

S0,
Vg, |P
ess su T (un(x, t 2d:n—|—oz/ ‘7ndazdt<ck¢. 51
sup [ T 0) Reeain: (51)
Therefore
IV Ty (un)P 0 0
VT (uy, pdxdtz/—l—k Ti(u)))dx dt < c(1 + k)k. 52
197t a0 Tt (1+H) (52)

By (51)—(52) and Lemma 2 (here v(x,t) = Ti(un(x,t)), h = p, 0 = 2), going through the same process

as that of (51), we obtain
[ D) "N < k™R (53)
Q

Thus it’s easy to get (23) by (53). Now (52)—(53) and Lemma (3) imply that (24) holds.
Taking 71 (un )X (0,r) (t) as a test function for problem (22), and using (2), (4) and Hélder’s inequality,
we get

1
’ ‘VTl(un)’p < T / ml
St (up(x, 7 da:+a/ ————drdt < ||fullm //T uy)|"™ dz dt .
[ Situatariz o [ GG < il ([ ] 1T

Note that by (7)—(8) for any s € R, |s| — 3 < Si(s) < |s|. Then we have

a1
ess sup / [un (2, t)|dre < || fullLm @) Q™ + 5]9\ (54)

0<t<T JQ

So, (20) and (54) yield (25).
By (53), and Hoélder’s inequality, we obtain

/Q (T () P it < < /Q T ()|

New by (52), we have

NL N+p+6N 2
|Q|N+2 < ck N2 |Q|N+2,

/ DTy (w)|Pdz dt < c|Q|7 (1 + k)
Q

The above two inequalities imply (26). [

4. Proof of the main theorem
Proof. Let
hi(s) = 1 — |Ty(s — Th(s))l,  Ha(s) = / ho(r)dr, ¥seR, k>0,
0

Taking ¢ = hy(uy,) in (22), we get in the sense of distributions

(Hp(un)): = div(hg (un)a(z, t, Ty, (up))a(x, t,u,, Vuy,))
—a(z,t, Ty (un))a(z, t, un, Vg ) Vughy (un) + fahe(ug).  (55)

Note that supp(hg) € [—k — 1L,k +1],0< hy <1, [h| < 1,if n > k+ 1,
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hi(up)a(x, t, Ty (uy))a(z, t, uy, Vug) = hg(up)a(x, t, T (ug))a(z, t, Ter1 (), VI (ug)),

and
a(z,t, Ty (up))a(x, t, uy, Vug)Vug by (uy,)
= a(x, t, Tyy1(un))a(z, t, Ter1(un), Vi (un)) VTt (un) Ry (un).

By Lemma 4, (9) and the above equalities, for fixed k > 0, we can deduce that
hi(up)a(x, t, Ty (uy))a(x, t, uy, Vuy,) is bounded in LP(Q),
a(x,t, Ty (un))a(z, t, un, Vg ) Vuphy (u,) s bounded in L'(Q).

Hence
(Hp(up))e is bounded in LP (0, T; W~ () + LY(Q). (56)
(56) implies (Hy(uy)): is bounded in LY(0,T; W=15)(Q) for all s > 1. By virtue of VHy(u,) =
hi(un) Vg = h(un)VTi11(uy), (26) implies that Hy(uy,) is bounded in LP(0, T} Wol’p(Q)).
So, we can use Corollary 4 of [11] to see that Hy,(uy,) is relatively compact in L' (Q). By Theorem 1.1
in [12], we have Hy,(u,,) € C([0,T], L*(£2)). Thus there exists a subsequence of { H,(uy,)} (still denoted

by {H(uy,)}) such that it also converges in measure and almost everywhere in Q.
Let o, k, and € be positive numbers. Noting that

meas{|u, — uny| > 0} < meas{|u,| > k} + meas{|uy,| > k} + meas{|Hg(u,) — Hi(um)| > o}.  (57)
By (23) in Lemma 4, we can choose k large enough to have

meas{|u,| > k} + meas{|u,,| > k} < g, Yn,m. (58)

Furthermore, for the above fixed k, we can choose a large Ny such that

meas{|Hg(u,) — Hx(um)| > o} < g, Vn,m > Ny. (59)
57)—(59) yield
(57)~(59) yie meas{|u, — uy| >0} <e, VYn,m > Nj. (60)

Now, (60) implies that {u,} is a Cauchy sequence in measure in ). Hence there exists a measurable
function u such that

Up, = u a.e. in Q. (61)
Thus we get
Hi(up) — Hi(u) ae. in Q. (62)
Since |Hy| < k+ 1, (62) and Lebesgue’s dominated convergence theorem yield
Hy(uy) — Hg(u) strongly in LP(Q). (63)

Since Hy(uy,) is bounded in LP(0, T Wol’p(Q)) and noting that (63) holds, we have
Hy,(up) — Hy(u) weakly in LP(0,T; W, (52)).

Now, (61) yields
Ti(up) = T(u) ae. in Q. (64)

Using Lebesgue’s dominated convergence theorem once again, we get
Ti(upn) — Tg(u) strongly in LP(Q). (65)
From (26) and (65), it follows that
T (upn) — T (u) weakly in LP(0, T} Wol’p(Q)).
Then (25), (61) and Fatou’s lemma yield u € L>(0,T; L*()).
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Similarly to Theorem 2.1 in [12], we can prove

Th(un) = Ti(u) strongly in LP(0,T; Wy*(Q)). (66)
Hence
VTi(un) = VIg(u) ae. in Q. (67)
Choosing 11 (u, — Tk (uy)) as a test function for problem (22), using (4) we obtain
/ T(un(T)) d + / o, T () [V PPz i < / (ol da i,
Q {k<lun|<k+1} {lun|>k}

where

un (T)
T(un(T)) = /0 Ti(s — Tx(s)) ds.

It is easy to see that T'(un,(T)) > 0 a.e. in Q. Hence we have

/ a(z,t, Ty (up))|Vu, |[Pdr dt < / | fr] dz dt. (68)
{k<|un|<k+1} {lun|>k}

Letting n — oo in (68) and using Fatou’s lemma in the left side and Vitali’s theorem on the right side
of (68), we get

/ o, )| VulPde dt < / (| da d. (69)
{k<lul<k+1} {lul=k}
Thus from (69) we can deduce that

lim a(z,t,u)|VulPdx dt = 0. (70)

k=00 J{k<|ul<k+1}
Then (61), (64), (66) and Vitali’s theorem imply that
k(un)a(z, t, T (un))a(z, t, un, Vun) = hi(w)a(@, t, Tipr (w))a(e, ¢, Tepa (w), Vg ()
strongly in LP(Q), and
a(z,t, Ty (up))a(z, t, un, Vup)Vuphy (uy) — a(z,t, Tryq (w)a(x, t, Ty (w), Ve (0)) VTt (u)hy, (w)
strongly in L'(Q). Let n — oo in (55). We obtain in the sense of distributions that

(H())e = div (i (w)a(, 1, Tes1 ()3, b, Tos s (), VT (0)))
—a(z,t, Tpr1(w)a(z, t, Tyr1(u), V1 (w)) VT (w)hy(u) + fhi(uw). (71)

Hence (Hj(u)), € L¥(0,T;W~4(Q)) + LY(Q). By Theorem 1.1 in [12], we have Hj(u) €
C([0,T), L' (). Since Hy(un,(0)) = 0, thus we get Hy(u(0)) = 0. For every ¢ € LP(0,T; Wol’p(Q)) N
L>°(Q) such that ¢, € L¥' (0, T; W= (Q)) + L*(Q) and for all 7 € (0,T), using Ty (Hy(u) — ?)X (0,7 (t)
as a test function in (71), and integrating by parts we obtain

/QSI(Hk(u) T)dx — / Si(—#(0)) dx + /()T(@,ﬂ(Hk(u) — ¢))dt
i /0 /Q (e, £, Ty ()@, £, Ty (), Vg () VT () — ) e dt
+ /0 ' /Q (2,1, Thows (w))a( £, T (), VT (1)) T ()l () Ty (B (as) — ) dr

— [ [ it ) - ) de dr.
0 Q
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Noting that if £ — oo, we have

hip(u) — 1 ae. in Q, (72)
Hi(u) — u ae. in Q. (73)

Since hj,(u) = — sign(u)X {r<|u|<k+1}, Sign(Hg(u)) = sign(u), and |Hy,(u)| > kif |u| > k; and Hy,(u) = u
if [u| < k. Moreover, if [Hy(u)| > | + ||§||~(q) = L, we have VTj(Hy(u) — ¢) = 0. Hence if k > L,

thus we have

/OT /Q hi(w)a(z,t, Ty (u))a(x, t, Tgrr (w), VI () VT (Hy (u) — ¢) dz dt

- /0 /Q a(z,t, Ty, (u))a(z, t, Tp(u), VI (w) VI (TL(v) — ¢) dudt. (T4)
It follows from (70) that

lim/ / a(z,t, Ter1(w))a(z,t, Trr1(u), V1 (u)) Vg1 (w)hy, (u)T(Hy(u) — ¢)dzdt = 0. (75)

k—o0

Lebesgue’s dominated convergence theorem and (72)—(73) imply that

im [* [ @i - ) dedi = [ [ 1iu— o) dode. (76)

k—o0 0

We can also prove if k& — oo,

Ti(Hy(u) — ¢) = Ty(u— ¢) strongly in LP(0,T; Wy?(Q2)), (77)
Ti(Hy(u) — ¢) — Ti(u— ¢) weak® in L(Q). (78)

From (77) and (78) we get
dm [ (o TiCH ) - 6)) dt = [ (60 Tiu— ). (79)

Since for a.e. 7 € [0,7T], a.e. x € Q,
[Hi(uw)| <ful,  0<Si(Hi(u) = ¢)(7) < L(lu(m)] + |¢(1)])
combining with u € L>(0,7; L*(2)) and ¢ € C([0,T]; L*(2)), by Lebesgue’s dominated convergence

theorem and (73), we get

hm Sl(Hk( dl‘ = / Sl u - (80)
Q

Now (74)—(76), (79)—(80) yield for a.e. 7 € [0,T7,
/Sl u—¢ da:—/Sl da:+/0T(¢t,Tl(u—¢)>dt

+/0 /Qa(x,t,u)a(x,t,u,Vu)VTl(u—qS)dxdt:/()T/Qle(u—QS)dxdt. (81)

This shows that the first term on the left side of the above equality is almost everywhere equal to
a continuous function on [0,7]. Replacing [ with k in (81), we obtain (9)—(10) and u is an entropy
solution to problem (1). By (23), we have

/ X{Jun|>k}dT dt = meas{|u,| > k} < (82)
Q

c
ﬁ-
Thus (61), (82) and Fatou’s lemma yield
c
>k} = dedt < —.
meas(ful > k) = | Xy dt <
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Rewriting (73) as follows
k meas{|u| > k:}% = 3. (83)

Thus by Definition 2, we obtain u € M%(Q).
The complete the proof of (18), we need to prove

Vu, — Vu ae.in Q. (84)
If fact, for all ¢ > 0 and € > 0, we have
meas{|Vu, — Vu| > o} < meas{|uy,| > k} + meas{|u| > k} + meas{|Tj(u,) — Ti(u)| > o}.

By (23) and (18), we can choose k large enough to prove

meas{|u,| > k} + meas{|u| > k} < %, vn. (85)
For the above k, (67) implies that there exists a large Ny such that

meas{|Ty (un) — Tp(u)| > 0} < %, Vn > Np. (86)
Now, (85) and (86) yield

meas{|Vu, — Vu| >0} <e, ¥n> Nj.

Hence from (83), we can deduce that (84) holds. Similarly to (82)—(83), by (24) and (84), we obtain
|[Vu| € M(Q). Thus the proof of Theorem 2 is completed. [
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PerynsipHicTb eHTponiviHNX po3B'sA3KiB BUPOA>KEHUNX
napabonivyHux piBHSIHb i3 gaHumn L™

Xemidi X.12

L @axyavmem mamemamurxu Aasicupcvroeo yrisepcumemy, Anotcup,
eyn. ido Mypada, 2, Anorcup, Anorcup
2 Jlabopamopis mamemamuunozo anaisy ma sacmocysann, Ywicepcumem Anoicupy 1, Arsicup, Ansicup

V miit crarTi JOCTIKYIOTHCS PEry/IsipHi Pe3yIbTaTh JJIsd €HTPOIIHHIUX PO3B’sA3KiB K1acy
mapaboJIiYHAX HEJIHINHNX PIBHSHB i3 BUPOXKEHOIO KOEPIIUTUBHICTIO, KOJIU [TPABa IaCTUHA
3HaxoIuThCca B L™ 3 m > 1.

Knto4voBi cnoBa: pezyaaphicmov; enmponiting po3e’azku; cupoodicena KoepuumueHicms;
dani L™.
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