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The Allee effect is an important phenomena in the context of ecology characterized by a
correlation between population density and the mean individual fitness of a population.
In this work, we examine the influences of Allee effect on the dynamics of a delayed prey–
predator model with Hattaf–Yousfi functional response. We first prove that the proposed
model with Allee effect is mathematically and ecologically well-posed. Moreover, we study
the stability of equilibriums and discuss the local existence of Hopf bifurcation.
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1. Introduction

Mathematical ecology is the application of mathematics to describe and understand ecosystems. The
prey–predator models are the best models used in ecology to describe different types of interactions.
These models can be used to describe the population dynamics of any two species that are affected
by predation, competition, disease and parasitism. For more details about prey–predator models, we
refer the reader to the works [1–4].

In 1931, Allee [5] brought attention to the possibility of a positive relationship between aspects
of fitness and population. However, this concept was generally regarded as an intriguing because in
population dynamics, when the population density is very low, it corresponds to the positive correlation
between population density and the mean individual fitness and that is exactly what Allee wanted to
explain, this mechanisms can be called the Allee effect. Due to its definition as the positive correlation
between population density and mean individual fitness, the mechanisms for which an Allee effect
arises are therefore inherently tied to survival, reproduction and arise from cooperation or facilitation
among individuals in the population. The Allee effect is an important concept in ecology because it
shows how the density of a species population can directly affect its overall survival rate. For example,
species that form giant colonies or group together in large numbers are more likely to survive and
grow compared to species that are isolated and scattered. This is because large groups of organisms
can take advantage of the available resources and greater amounts of protection from environmental
threats. This can ultimately help keep the population size in check and improve its chances of survival.
Recently, Pal et al. [6] considered a delayed predator-prey system with intraspecific competition among
predator and a strong Allee effect in prey population growth. Ye et al. [7] established a prey-predator
model with Allee effect and Holling type I functional response [8]. Garain et and Mandal [9] presented
a continuous time predator–prey model and predator’s growth subjected to component Allee effect.

In this paper, we focus on the stability analysis and Hopf bifurcation of a delayed prey-predator
model with Hattaf–Yousfi functional response [10] and Allee effect. Therefore, we propose the following
nonlinear system
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− cY (t)− dY 2(t),

(1)

where X(t) and Y (t) denote the prey and predator densities at time t, respectively. The parameter r

is the prey intrinsic growth rate; K is the environmental carrying capacity for prey; a is the rate of
prey capture by the predator called also consumption rate; A is the Allee constant corresponding to
the strong Allee effect satisfying 0 < A < K; b is the conversion rate of prey to predator; c is the death
rate of predator; d is the rate of competition between predators and τ is a time delay that represents
the gestation period of predators.

The rest of this paper is organized as follows. The next section deals with the positivity, the
boundedness of solutions as well as the existence of steady states. In Section 3, we investigate the
stability analysis and Hopf bifurcation. Finally, a brief conclusion is drawn ends the paper.

2. Well-posedness and steady states

In this section, we prove the positivity, the boundedness of the solutions and the existence of steady
states of system (1).

Theorem 1. Any solution of system (1) starting with nonnegative initial conditions remains positive
for all time t > 0.

Proof. From (1), we get
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,

Y (t) = Y (0) exp

[
∫ t

0

(

abX(s− τ)Y (s− τ)

Y (s)(α0 + α1X(s− τ) + α2Y (s− τ) + α3X(s − τ)Y (s− τ))
− c− dY (s)

)

ds

]

,

which leads to X(t) > 0 and Y (t) > 0 for all t > 0. �

Theorem 2. Any solution of the system (1) remains bounded for all time t > 0.
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which implies that X(t) and Y (t) are bounded. �

Next, we study the existence of equilibria of system (1). We easily see that system (1) exhibits four
equilibrium points

E0(0, 0), E1(K, 0), E2(A, 0), E∗(X∗, Y ∗),

where X∗ ∈ (0,+∞) and Y ∗ =
r(1− 1

K
X∗)( 1

A
X∗−1)(α0+α1X

∗)

a−r(1− 1

K
X∗)( 1

A
X∗−1)(α2+α3X∗)

.
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3. Stability analysis and Hopf bifurcation

In this section, we analyze the local asymptotic stability of equilibria and the existence of Hopf bifur-
cation. Let E(X,Y ) be an arbitrary equilibrium of system (1). Hence, the characteristic equation at
E is given by

∣

∣

∣

∣

j11 − λ j12
j21e

−λτ j23 + j22e
−λτ − λ

∣

∣

∣

∣

= 0, (2)

where
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(
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)(
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,
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(α0 + α1X + α2Y + α3XY )2
,

j21 =
abY (α0 + α2Y )

(α0 + α1X + α2Y + α3XY )2
,

j22 =
abX(α0 + α1X)

(α0 + α1X + α2Y + α3XY )2
,

j23 = −(c+ 2dY ).

Theorem 3. The equilibrium E0(0, 0) is locally asymptotically stable.

Proof. It is clear to see that at E0(0, 0), equation (2) becomes

(λ+ r)(c+ λ) = 0, (3)

where the roots of Eq. (3) are λ1 = −r < 0 and λ2 = −c < 0, we deduce that E0(0, 0) is locally
asymptotically stable. �

Theorem 4. Let R0 = abK
c(α0+α1K) . If R0 < 1, then the predator free axial equilibrium E1(K, 0) is

locally asymptotically stable for any time delay τ > 0 and becomes unstable if R0 > 1.

Proof. At E1(K, 0), the characteristic equation (2) reduces to
[

r

(

K

A
− 1

)

+ λ

]

[

λ+ c
(

1−R0e
−λτ
)

]

= 0. (4)

Since λ = r(1− K
A
) < 0 the first eigenvalue of equation (4) is negative because A < K. The remaining

roots are provided by solving the following equation:

λ+ c
(

1−R0e
−λτ
)

= 0. (5)

For R0 < 1 and τ = 0, we have λ = c(R0 − 1) < 0. Then E1(K, 0) is locally asymptotically stable.
For τ 6= 0, we set λ = iω (ω > 0) to be a purley imaginary root of (5). Then

{

c = cR0 cosωτ,

ω = −cR0 sinωτ,

which leads to

ω2 + c2(1−R2
0) = 0. (6)

Thus, Eq. (6) has no positive root if R0 < 1. Therefore, E1(K, 0) is locally asymptotically stable for
R0 < 1.

For R0 > 1, we consider the following function

g(λ) = λ+ c
(

1−R0e
−λτ
)

.

We have g(0) = c(1 − R0) < 0 and lim
λ→+∞

g(λ) = +∞. Then the equation g(λ) = 0 has at least one

positive root when R0 > 1. This implies that the characteristic equation has at least one positive
eigenvalue when R0 > 1. Thus, E1(K, 0) is unstable. This completes the proof. �
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Theorem 5. The equilibrium E2(A, 0) is unstable for any time delay τ > 0.

Proof. At E2(A, 0), the characteristic equation (2) becomes
[

r

(

A

K
− 1

)

+ λ

] [

λ+ c− abA

α0 + α1A
e−λτ

]

= 0, (7)

since λ = r(1 − A
K
) > 0 the first eigenvalue of equation (7) is positive because A < K. Hence, the

equilibrium E2(A, 0) is necessary unstable. �

Finally, we discuss the stability of the equilibrium E∗(X∗, Y ∗). The characteristic equation of (2)
around E∗ is given by

λ2 − (j11 + j23)λ+ j11j23 − j12(bj11 + j21 − bλ)e−λτ = 0. (8)

For τ = 0, Eq. (8) becomes

λ2 − (j11 + j23 − bj12)λ+ j11j23 − j12(bj11 + j21) = 0. (9)

By Routh–Hurwitz criterion, all the roots of Eq. (9) have negative real parts if and only if

j11 + j23 < bj12, j11j23 > j12(bj11 + j21). (10)

We deduce that E∗ is locally asymptotically stable if the condition (10) holds.
For τ 6= 0, let λ = iω(ω > 0) be a root of (8) and separating real and imaginary parts, we obtain

{

−ω2 + j11j23 = j12((bj11 + j21) cosωτ − bω sinωτ),

−(j11 + j23)ω = −j12((bj11 + j21) sinωτ + bω cosωτ),
(11)

which implies that

ω4 + (−2j11j23 + (j11 + j23)
2 − b2j212)ω

2 − j212(bj11 + j21)
2 + j211j

2
23 = 0. (12)

Let z = ω2, then (12) reduces to

g(z) := z2 + p1z + p0 = 0, (13)

where p1 = −2j11j23 + (j11 + j23)
2 − b2j212 and p0 = −j212(bj11 + j21)

2 + j211j
2
23.

Obviously, Eq. (13) has at least one positive root if p0 < 0. Further, we have

• If p0 > 0, ∆ = p21 − 4p0 6 0 or p1 > 0, then Eq. (13) has no positive roots.
• If p0 > 0, ∆ = p21 − 4p0 > 0 and p1 < 0, then Eq. (13) has at least one positive root.

Summary of the above discussions gives rise to the following lemma.

Lemma 1.

(i) If p0 < 0, then Eq. (13) has at least one positive root.
(ii) If p0 > 0, ∆ 6 0 or p1 > 0, then Eq. (13) has no positive roots.
(iii) If p0 > 0, ∆ > 0 and p1 < 0, then Eq. (13) has at least one positive root.

Based on the above lemma, we consider the following conditions:
(a) p0 > 0, ∆ 6 0 or p1 > 0,
(b) p0 > 0, ∆ > 0, p1 > 0 and z∗ 6 0.

Theorem 6. If the condition (10) holds and one of the conditions (a)–(b) is satisfied, then the
equilibrium E∗(X∗, Y ∗) is locally asymptotically stable for any time delay τ > 0.

Next, we suppose that the equation (13) has positive roots. We assume that it has two positive
roots, denoted by z1 and z2. Then the equation has two positive roots that are:

ω1 =
√
z1 and ω2 =

√
z2.

From (11), we get

τ jn = − 1

ωj

arcsin
ωj

(

j21j23 + j11(j21 + bj11) + bω2
j

)

−j12(bj11 + j21)2 + b2ω2
j

+
2πn

ωj

, (14)

where j = 1, 2 and n ∈ N. Hence, λj =
+
− iωj is a pair of purly imaginary roots of (8) with τ = τ

j
n.
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Define

τ0 = τ
j0
0 = min

j∈{1,2}
{τ j0} and ω0 = ωj0 .

Let λ = µ+ iω is the root of equation (8) satisfying µ(τ jn) = 0 and ω(τ jn) = ωj.
Differentiating both sides of equation (8) with respect to τ , we obtain

(

dλ

dτ

)−1

=
2λ− (j11 + j23) + bj12e

−λτ

λ
(

− j12(bj11 + j21) + bλj12
)

e−λτ
− τ

λ
,

which implies that

Re

(

dλ

dτ

)−1

τ=τ
j
n

=
2ω2

j − 2j11j23 + (j11 + j23)
2 − b2j212

−j12(bj11 + j21)2 + b2ω2
j

=
g′(ω2

j )

−j12(bj11 + j21)2 + b2ω2
j

.

It is simple to find out that g′(ω2
j ) 6= 0 for all j = 1, 2. Hence, the transversality condition holds and

we get the following result.

Theorem 7. Assume that the condition (10) holds. If either p0 < 0 or p0 > 0, ∆ > 0 and p1 < 0,
then the equilibrium E∗ of system 1 is locally asymptotically stable for τ < τ0 and becomes unstable
when τ > τ0. Moreover, when τ = τ

j
n, the system (1) undergoes a Hopf bifurcation at E∗.

4. Conclusion

In this work, we have proposed and analyzed a delayed prey–predator model with Hattaf–Yousfi func-
tional response and Allee effect. Firstly, we proved that the proposed model is mathematically and
ecologically well-posed, and the existence of the different possible stationary points (i.e. the trivial
equilibrium E0, the first predator free equilibrium E1, the second predator free equilibrium E2 and
interior coexistence equilibrium E∗). Secondly, we discussed the local stability of the four equilibriums
by analyzing the corresponding characteristic equations. We have demonstrated that E0 is locally
asymptotically stable, E1 is locally asymptotically stable if R0 < 1 and becomes unstable if R0 > 1
and E2 is always unstable for any time delay τ > 0. Additionally, we have established some sufficient
conditions for the local asymptotic stability of the interior equilibrium E∗. Finally, we showed the
existence of the Hopf bifurcation.

As our future work, we will study the memory effect on the dynamics of our proposed model by
using the new generalized Hattaf fractional (GHF) derivative introduced in [11, 12]. In addition, we
will improve the proposed model by considering other Allee effects acting on the growth rate of the
prey population [13, 14].
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Аналiз стiйкостi та бiфуркацiя Хопфа сповiльненої моделi
“жертва–хижак” з функцiональним вiдгуком

Хаттафа–Юсфi та ефектом Аллi

Бузiан С.1, Лотфi Е. М.1, Хаттаф К.1,2, Юсфi Н.1

1Лабораторiя аналiзу, моделювання та симуляцiї (LAMS), факультет наук Бен М’Сiк,
Унiверситет Хасана II Касабланки, P.O. Box 7955 Сiдi Отман, Касабланка, Марокко

2Дослiдницька група з математичного моделювання та навчання (ERMEM),
Регiональний центр освiти i пiдготовки професiй (CRMEF),
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Ефект Аллi є важливим явищем у контекстi екологiї, що характеризується кореля-
цiєю мiж щiльнiстю популяцiї та середньою iндивiдуальною пристосованiстю популя-
цiї. У цiй роботi дослiджується вплив ефекту Аллi на динамiку сповiльненої моделi
“жертва–хижак” з функцiональним вiдгуком Хаттафа–Юсфi. Спочатку доведено, що
запропонована модель з ефектом Аллi є математично та екологiчно коректною. Крiм
того, дослiджено стiйкiсть рiвноваги та обговорено локальне iснування бiфуркацiї
Хопфа.

Ключовi слова: екологiя; ефект Аллi; функцiональний вiдгук Хаттаф–Юсфi;
стiйкiсть; бiфуркацiя Хопфа.
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