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Currently, feature screening is becoming an important topic in the fields of machine learn-
ing and high-dimensional data analysis. Filtering out irrelevant features from a set of
variables is considered to be an important preliminary step that should be performed be-
fore any data analysis. Many approaches have been proposed to the same topic after the
work of Fan and Lv (J. Royal Stat. Soc., Ser. B. 70 (5), 849–911 (2008)), who introduced
the sure screening property. However, the performance of these methods differs from one
paper to another. In this work, we aim to add to this list a new algorithm performing fea-
ture screening inspired by the Kendall interaction filter (J. Appl. Stat. 50 (7), 1496–1514
(2020)) when the response variable is continuous. The good behavior of our algorithm
is proved through a comparison with an existing method, proposed in this work under
several simulation scenarios.
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1. Introduction

Variable selection has attracted researcher attention in different domains and has demonstrated its
importance and ability to improve the prediction performance of so many statistical learning models.
Over time, a large scientific community was interested in the subject of feature screening whose purpose
is less challenging than that of feature selection [1]. Feature screening remains a necessity. Especially
when the features space is ultra-high dimensional, that is, when the number of features exceeds expo-
nentially the sample size. In this case, the majority of classical prediction methods remain inefficient
and this is what motivated the creation of methods filtering main effects and/or interaction effects.
Among others, there are [2–5].

However, interaction screening is a topic in full bloom. Few researchers have dealt with it in the
literature, and thus only a few methods exist enabling to filter interactive pairs of features that import,
together, useful information. Papers that have tackled this subject count: [3, 4, 6–9] and few others.

Despite the low number of results in this area, interaction screening brings important insights into
the domain of genetics because a lot of genes interact together and cause diseases which means that
identifying these interactions enables researchers and scientists in this domain to understand and take
action to combat these diseases [10]. A limitation of most of the methods tackling feature screening
is the heredity assumption [11]. That is assuming in advance strong or weak heredity. However,
sometimes predictors can act only in pairs without having the main effect on the response [7]. Thus,
ignoring their interactive effect on the outcome can distort the results.

Through our procedure, we aim to add a new efficient way of selecting interactive pairs among all
candidate features of ultra-high dimensional regression models, and this, without assuming necessarily
beforehand neither a strong nor weak heredity. Throughout this paper, we consider the model:

y = a0 +

p∑

j=1

ajXj +

p−1∑

k=1

p∑

l=k+1

bkl ·Xk ·Xl + ε. (1)
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Such that, similar to [4], a0 is the intercept, aj is the regression coefficient for marginal effects, bkl is
the regression coefficient for interaction effects, and ε is a random error variable independent of the
predictors Xj∈{1,...,p}.

In this paper, we present a new algorithm that performs slicing and fusion in 2 steps to enable the
application of the Kendall interaction filter proposed by Y. Anzarmo et al. [6] to regression problems
with a continuous response variable and extends its benefits. The first step of our proposed method
concerns a slicing approach that aims to turn the continuous response variable into a categorical target
variable by grouping its values in labeled intervals. Then, similarly to [1], the second step is fusion. Its
approach consists of considering different partitions with a precise number of slices. Then, we compute
for each partition the KIF measure [6]. And at the end, we sum all the resulting measures. This final
measure is our new filter. This last trick allows us to avoid the results being dependent on the scheme
used for slicing [1] and thus increase the chances of obtaining high performance and good interaction
screening. The procedure used in our approach for the construction of partitions is quantile.

This paper is organized as follows: in Section 2, we present the methodology of our approach in
which we give an overview of the Kendall Interaction Filter method, we detail our proposal, and then
present our simulation scenarios. Section 3 is devoted to simulation studies results and comparison of
our algorithm to another interaction screening method to evaluate its performance. And Section 4 is
the conclusion of our work.

2. Method

2.1. Motivation

The Kendal Interaction Filter is a method of interaction screening proposed by Y Anzarmo et al. [6]
that uses Kendall’s τ to rate the interaction between two features for multi-class classification problems.
The KIF measure is defined by:

ωj,l =

K∑

k=1

πk ·
∣∣τk(Xj ,Xl)− τ(Xj ,Xl)

∣∣.

Such that: K is the number of classes, πk is the prior probability, τ is Kendall’s tau, and τk is the
conditional Kendall’s tau [6].

This method works well with categorical response variables but can not be applied directly to
regression problems with a continuous response variable. The good behavior of the Kendall Interaction
Filter in multi-class classification applications motivated us to test its attitude in the case of high
and ultra-high dimensional models with continuous response. The first idea is to apply the slicing
procedure used in the literature for transforming a continuous variable into a categorical variable.
Then, to increase the performance of the interaction screening, we use a second method which consists
in summing all the KIF measures found after the slicing step. The role of fusion [6,12], is demonstrated
in practice. Therefore, to create our new algorithm, we apply the two steps that use the KIF approach
for interaction screening, and we call it the fused interaction filter.

2.2. The fused filter

The slicing procedure is widely used in literature [1]. It aims to transform a continuous variable into
a categorical variable. Using the slicing approach, some of the proposed methods for feature screening
can be applied to both classification and regression problems. However, the slicing trick is not a
sufficient way to extend a method of classification to a regression setting and expect perfect results.
That is why, our proposal, as indicated previously in the introduction, is a two-step method based on
slicing and fusion [12]. First, we partition the observed data of the response y into slices according
to N different partitions using the quantile method, we calculate the KIF measure for each partition
Pi∈{1,...,N}, then we sum all the N measures founded in the previous step (see Figure 1). The resulted
measure is the new fused interaction filter.
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We define the Pi partitions by



P1 =
{
[as, as+1[, s ∈ {0, . . . , g1 − 1}

}
,

P2 =
{
[as, as+1[, s ∈ {0, . . . , g2 − 1}

}
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

PN =
{
[as, as+1[, s ∈ {0, . . . , gN − 1}

}
.

With: gi is the number of intervals [as, as+1[ in the ith partition and as < as+1.
For each fixed partition, we have:

y ∈ [as, as+1[⇐⇒ ynew = s+ 1. (E)

Slicing the response
using partitionsPi

Calculation of KIF
score for each

fixed partition Pi

Fusion
Selected

interactive pairs of
features

The response
variable Y

Calculation of KIF
scores

Categorical

Input High/Ultra-high
Dimensional Data ( , )X Y

Continuous

Fig. 1. The interaction screening procedure using the Kendall Interaction Filter.

Similarly to [1], throughout this paper, we use the following fixed values: g1 = 3, gn = ⌈log(n)⌉
and N = ⌈log(n)⌉ − 2.

For each pair (j, k), the fused interaction filter measure is defined by

fj,k =
N∑

i=1

ωj,k,Pi
. (2)

Such that j, k ∈ {1, . . . , p} × {1, . . . , p} and j < k. Where ωj,k,Pi
=
∑gi

s=1 πs · |τs(Xj ,Xk)− τ(Xj ,Xk)|
which is the Kendall Interaction Filter [6] for a fixed partition Pi. And πs = P(Y ∈ [as−1, as[) =
P(Y new = s), τs(Xj ,Xk) = 2P((Xj − X̃j)(Xk − X̃k) > 0|Y new = s, Ỹ new = s) − 1, τ(Xj ,Xk) =

2P((Xj − X̃j)(Xk − X̃k) > 0) − 1. With (X̃, Ỹ ) a copy of (X,Y ) such that they are independent of
each other.

The interaction screening filter set, which is the indices set of interactive pairs, is similar to [6]
given by:

I =
{
(j, k);F (Y |(X1, . . . ,Xp)) functionally depends on (Xj ,Xk) rank asociation

}
. (3)

The empirical version of fj,k measure is defined by

f̃j,k =
N∑

i=1

ω̃j,k,Pi
. (4)

Such that j, k ∈ {1, . . . , p} × {1, . . . , p} and j < k. And ω̃j,k,Pi
=
∑gi

s=1 π̃s · |τ̃s(Xj ,Xk) − τ̃ (Xj ,Xk)|,
where: π̃s =

1
n

∑n
i=1 I{Y

new
i = s}, τ̃(Xj ,Xk) =

4
n(n−1)

∑n
i<t=1 I{(Xij −Xtj)(Xik −Xtk) > 0} − 1, and
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τ̃s(Xj ,Xk) =
4

ns·(ns−1)

∑n
i<t=1 I{(Xij −Xtj)(Xik −Xtk) > 0, Y new

i = s, Y new
t = s} − 1, ns corresponds

to the number of observations in the slice s [6].
The empirical version of I is given by:

Î =
{
(j, k); j < k and f̃j,k > c · n−r, such that c, r are positive constants

}
. (5)

In practice, we consider the following estimated set:

Î =
{
(j, k); j < k and f̃j,k is among⌈ n

log(n)⌉ largest of all
}
. (6)

2.3. Theoretical results

This section concerns the main theoretical results of our proposal. We prove that the sure screening
property still holds after the extension of the Kendall interaction filter to the case of a continuous
target variable. Furthermore, the conditions presented here are the same as in the work [6], with only
some differences, due to the slicing-fusion transformation of the algorithm.

To this end, it is important to recall that: π̃s is a consistent estimator of πs and π̃ is a consistent
estimator of π [6].

Before establishing the theorem concerning our main theoretical result, we adapt the conditions
assumed for the Kendall Interaction Filter [6] to our Fused Interaction Filter extension of the first:

Condition 1: ∃c1, c2 > 0 such that: c1
gi

6 min
16s6gi

πs 6 max
16s6gi

πs 6
c2
gi

, for all i ∈ {1, . . . , N}.

Condition 2: ∃(c, r) ∈]0,+∞[×[0, 12 [, such that: min
j,k∈I

fj,k > 2 · c · n−r.

Condition 3: Assume that log(p) = O(nη) for some η > 0.
The following lemma is a necessary preliminary step for understanding and proofing the theorem.

2.3.1. Lemma and Theorem

Lemma 1. Under the conditions above and for all ε > 0, we have:

P
(

max
16j,k6p

|f̃j,k − fj,k| > ε
)
6 2p2 ·

(
⌈log(n)⌉ · exp

(
−n · ε2

18 · ⌈log(n)⌉4

)

+ exp

(
−n · ε2

72 · ⌈log(n)⌉2

)
+ ⌈log(n)⌉ · exp

(
−n · ε2

72 · ⌈log(n)⌉4

))
.

Proof. Similar to [6], we have:

P

(
max

16j,k6p
|f̃j,k − fj,k| > ε

)
6 P

(
N∑

i=1

gi∑

s=1

π̃s · |τ̃s(Xj ,Xk)− τs(Xj ,Xk)| >
ε

3

)

+ P

(
N∑

i=1

giπ̃s · |τ̃ (Xj ,Xk)− τ(Xj ,Xk)| >
ε

3

)

+ P

(
2 ·

N∑

i=1

gi∑

s=1

|π̃s − πs| >
ε

3

)
.

However,

P

(
2 ·

N∑

i=1

gi∑

s=1

|π̃s − πs| >
ε

3

)
6 P

(
2 ·

N∑

i=1

gi · max
s∈{1,...,gi}

|π̃s − πs| >
ε

3

)

6 P

(
2 ·N · ⌈log(n)⌉ · max

s∈{1,...,⌈log(n)⌉}
|π̃s − πs| >

ε

3

)

6 P

(
2 · (⌈log(n)⌉ − 2) · ⌈log(n)⌉ · max

s∈{1,...,⌈log(n)⌉}
|π̃s − πs| >

ε

3

)

6 P

(
2 · ⌈log(n)⌉ · ⌈log(n)⌉ · max

s∈{1,...,⌈log(n)⌉}
|π̃s − πs| >

ε

3

)
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6

⌈log(n)⌉∑

s=1

P

(
|π̃s − πs| >

ε

6 · ⌈log(n)⌉2

)
.

According to Hoeffding inequality, we have:

⌈log(n)⌉∑

s=1

P

(
|π̃s − πs| >

ε

6 · ⌈log(n)⌉2

)
6 2 · ⌈log(n)⌉ · exp

(
−n · ε2

18 · ⌈log(n)⌉4

)
.

And

P

(
N∑

i=1

gi · |τ̃ (Xj ,Xk)− τ(Xj ,Xk)| >
ε

3

)
6 P

(
(⌈log(n)⌉ − 2) · |τ̃(Xj ,Xk)− τ(Xj ,Xk)| >

ε

3

)

6 P

(
|τ̃(Xj ,Xk)− τ(Xj ,Xk)| >

ε

3 · ⌈log(n)⌉

)
.

Using the fact that τ̃ is a consistent estimator of τ [6], we have:

P

(
|τ̃(Xj ,Xk)− τ(Xj ,Xk)| >

ε

3 · ⌈log(n)⌉

)
6 2 · exp

(
−n · ε2

72 · ⌈log(n)⌉2

)
.

So,

P

(
N∑

i=1

gi · |τ̃(Xj ,Xk)− τ(Xj ,Xk)| >
ε

3

)
6 2 · exp

(
−n · ε2

72 · ⌈log(n)⌉2

)
.

And

P

(
N∑

i=1

gi∑

s=1

π̃s · |τ̃(Xj ,Xk)− τ(Xj ,Xk)| >
ε

3

)
6 P

(
N∑

i=1

gi · max
s∈{1,...,gi}

π̃s · |τ̃ (Xj ,Xk)− τ(Xj ,Xk)| >
ε

3

)

6 P

(
N · ⌈log(n)⌉ · max

s∈{1,...,⌈log(n)⌉}
π̃s · |τ̃(Xj ,Xk)− τ(Xj ,Xk)| >

ε

3

)

6

⌈log(n)⌉∑

s=1

P
(
⌈log(n)⌉2 · π̃s · |τ̃(Xj ,Xk)− τ(Xj ,Xk)| >

ε

3

)

6

⌈log(n)⌉∑

s=1

EY new

(
P

(
π̃s · |τ̃ (Xj ,Xk)− τ(Xj ,Xk)| >

ε

3 · ⌈log(n)⌉2
|Y new

))

6 2 · ⌈log(n)⌉ · exp

(
−n · ε2

72 · ⌈log(n)⌉4

)
.

Therefore we have

P

(
max

16j,k6p
|f̃j,k − fj,k| > ε

)
6 2p2 ·

(
⌈log(n)⌉ · exp

(
−n · ε2

18 · ⌈log(n)⌉4

)

+exp

(
−n · ε2

72 · ⌈log(n)⌉2

)
+ ⌈log(n)⌉ · exp

(
−n · ε2

72 · ⌈log(n)⌉4

))
. �

Theorem 1 (The sure screening property). Under Conditions 1–4, ∃(c, r) ∈]0,+∞[×[0, 12 [, such

that:

P(I ⊆ Î)→ 1 as n→ +∞.

Proof. Using Lemma, we took ε = c · n−r. The rest follows as in [6]: If we suppose that I * Ĩ , then

∃(j, k) ∈ I such that f̃j,k 6 c · n−r and according to condition 2, we have min
j,k∈I

f̃j,k > 2 · c · n−r.

Therefore,

P(I ⊆ Ĩ) > 1− 2p2 ·

(
⌈log(n)⌉ · exp

(
−c2 · n−2r+1

18 · ⌈log(n)⌉4

)
+ exp

(
−c2 · n−2r+1

72 · ⌈log(n)⌉2

)
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+⌈log(n)⌉ · exp

(
−c2 · n−2r+1

72 · ⌈log(n)⌉4

))
. �

2.3.2. The fused interaction filter algorithm

Our proposed two-step algorithm is applied to regression models in the form of (1) and presented in
detail below.

Algorithm 1 The fused interaction filter algorithm.

Require: (X i, Y i)ni=1;

1: initialization: (ω̃j,k,Pi
)i∈{1,...,N} as an empty vector of size ⌈log(n)⌉− 2, f̃ as an empty p× p matrix, I = ∅

and r = 1;
2: for j = 1, . . . , p− 1
3: for k = j + 1, . . . , p
4: for gi = 3, . . . , ⌈log(n)⌉
5: Construction of a number gi of intervals using the quantile method,

Compute Y new as in (E),
Compute ω̃j,k,Pi

← KIF (Xj, Xk, Y
new) (the KIF measure for a fixed partition Pi);

6: f̃j,k ← sum((ω̃j,k,Pi
)i∈{1,...,N})

7: for all (j, k) ∈ {1, . . . , p} × {1, . . . , p} such that j < k

8: while r 6 ⌈ n
log(n)⌉

9: if (j, k) = argmax
j,k

f̃j,k then

10: Update Ĩ: Ĩ ← Ĩ ∪ {(j, k)},

Set f̃j,k ← 0;
11: r← r + 1
12: Output: the selected indices set Ĩ.

We performed our algorithm on R.

2.4. Simulation studies

Throughout this section, we compare the results of our proposed algorithm to those of JCIS [7],
which is a method of interaction screening. JCIS stands for Joint Cumulant Interaction Screening,
accepts continuous response variables, and has demonstrated its success in selecting interactive pairs
of features [7] for ultra-high dimensional data. We repeat each scenario of the two first simulations
100 times, the third simulation scenario 47 times, the fourth 50 times and the last one is repeated
100 times. Concerning the analysis of the results, we compute for simulations 1, 3, 4 and 5 the
selection frequency of the supposedly interactive pairs, and we plot a violin graph, for the results of
simulation 2, to compare the FIF scores of the interactive couples with the maximum FIF scores of
the other pairs of features.

2.4.1. Simulation 1

In this scenario, we consider the regression model:

Y = X1 ·X2 + ε1.

Where X1, X2 are, respectively, the first and second columns of the matrix X composed of n = 100
rows and p = 500 columns. The n corresponds to the sample size and p to the number of predictors.
It is easy to remark that p = 5× n which means that p is much larger than n.

X is generated such that: Xi ∼ N(0p,Σ) for all i ∈ {1, . . . , n}, where Σ = (Σjk) = (0.2|j−k|) and
j, k ∈ {1, . . . , n} × {1, . . . , n}.

ε1 = (ε11 , . . . , ε1n) is independent of X and each ε1i∈{1,...,n}
∼ N(0, 0.1).

From the above model, we can easily say that the only interaction that influences the target variable
is the interaction between the features X1 and X2.
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2.4.2. Simulation 2

In this second example of simulation, we consider the following regression model:

Y = X1 ·X2 +X3 ·X4 + ε2.

Where X is a matrix with n = 100 rows and p = 600 columns, such that each row is generated as follows:
Xi ∼ N(0p,Σ) for all i ∈ {1, . . . , n}, where Σ = (Σjk) = (0.2|j−k|) and (j, k) ∈ {1, . . . , p} × {1, . . . , p}.

ε2 = (ε21 , . . . , ε2n) is independent of X and each ε2i∈{1,...,n}
∼ N(0, 0.04).

Here, the interactive couples are (X1,X2) and (X3,X4).

2.4.3. Simulation 3

In this example, we consider the following model:

Y = X1 + 4X6 + 3X1 ·X6 + ε3.

Where X is a matrix of n = 400 rows and p = 1000 columns. Each row is generated as follows:
Xi ∼ N(0p,Σ) for all i ∈ {1, . . . , n}, where Σ = (Σjk) = (0.1|j−k|) and (j, k) ∈ {1, . . . , p} × {1, . . . , p}.

ε3 = (ε31 , . . . , ε3n) is independent of X and each ε3i∈{1,...,n}
∼ N(0, 0.1).

The interactive couple is (X1,X6).

2.4.4. Simulation 4

In this scenario of simulation, we consider:

Y = X10 ·X51 + ε4.

Where X is a matrix of n ∈ {50, 100, 150} rows and p ∈ {100, 200, 300} columns. Each row is
generated as follows: Xi ∼ N(0p,Σ) for all i ∈ {1, . . . , n}, where Σ = (Σjk) = (0.1|j−k|) and (j, k) ∈
{1, . . . , p} × {1, . . . , p}.

ε4 = (ε41 , . . . , ε4n) is independent of X and each ε4i∈{1,...,n}
∼ N(0, 0.3).

The interactive couple is (X1,X6).

2.4.5. Simulation 5

We consider a simulation scenario used in [7], precisely the fourth one:

Y = X1 +X3 +X6 +X10 + 3 · (X1 ×X3) + 3 · (X6 ×X10).

Such that (n, p) = (100, 500) and the number of replicates is 100. Also each row of the matrix X

is generated as follows: Xi ∼ N(0p,Σ) for all i ∈ {1, . . . , n}, where Σ = (Σjk) = (0.1|j−k|) and
(j, k) ∈ {1, . . . , p} × {1, . . . , p}.

And here, similar to [7], we will compare the performance of our algorithm with that of iForm [8].

3. Results and discussion

3.1. Results of simulation 1

The analysis results of this example are given in Table 1 which contains the selection frequency of the
supposedly interactive pair (X1,X2 ) by our algorithm FIF and by the JCIS method.

Table 1. Frequencies of replicates se-
lecting interactive couples using FIF

and JCIS methods in Simulation 1.

Interactive pair FIF JCIS

(X1,X2) 0.90 1

After applying 100 times our Fused Interaction Filter algo-
rithm and the JCIS algorithm, we computed the probabilities
of selecting interaction effects by the two methods, knowing
from the expression of the model for this simulation scenario
that the important couple index is {(1, 2)}. The results show a
good performance of the two approaches with these simulated
data (see Table 1 above).
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3.2. Results of simulation 2

Fig. 2. Shows the interaction screening procedure
using the Fused Interaction Filter.

In this example, we verify the abil-
ity of our approach FIF to detect
interactive pairs among the p(p−1)

2
pairs of features by comparing the
FIF scores of pairs (X1,X2) and
(X3,X4) to the maximum FIF score
of other pairs of features using a vi-
olin plot [6] (see Figure 2).

3.3. Results of simulation 3

Table 2. Frequencies of replicates selecting interactive
couples using FIF and JCIS methods in simulation 3.

Interactive pair FIF JCIS

(X1,X6) 1 1

We compute the frequencies of replicates select-
ing interactive couples (X1,X6) using FIF and
JCIS methods. Table 2 summarizes our findings.

The results show a good performance of our
algorithm and its competitiveness (see Table 2).

3.4. Results of simulation 4

For this example, we compute the selection frequency of the interactive pair (X10, X51) by our algorithm
and analyze the results found when increasing the dimension of data from (n, p) = (50, 100) then
(n, p) = (100, 200) to (n, p) = (150, 300).

Table 3. Frequencies of replicates selecting interactive couples
using our algorithm for different values of (n, p) in simulation 4.

(n, p) Frequency of selecting (X10,X51)

(n, p) = (50, 100) 0.76

(n, p) = (100, 200) 1

(n, p) = (150, 300) 1

The results are given in Table 3 be-
low.

After applying 50 times our Fused
Interaction Filter algorithm, we com-
puted the probabilities of selecting in-
teraction effects. The results show a
good performance of our approach, es-
pecially when the dimension is high.

3.5. Results of simulation 5

Table 4. Frequencies of replicates selecting interactive cou-
ples using our algorithm and iform method in simulation 5.

Interactive pair FIF iform

(X1,X3) 0.42 0.21

(X6,X10) 0.36 0.19

In this example, we calculate, over 100 repli-
cates, the selection frequency of the two in-
teractive pairs: (X1,X3) and (X6,X10) us-
ing our algorithm and iform method [8].
Then we compare the performance of the two
methods (see Table 4 below).

The results assert the good behavior of our algorithm that performs better than the other method.

4. Conclusion

In this paper, we have presented a new method in 2 steps for interaction screening in the case of a
continuous response variable for ultra-high dimensional regression models. Our algorithm has been
implemented on R with data generated in 5 different scenarios, and the process has been repeated
100 times in simulations 1, 2 and 5, 47 times in simulation 3 and 50 times in simulation 4 to ensure
a good simulation study. The performance evaluation phase has demonstrated the advantages of our
proposal. In addition to its good behavior in practice, the proposed fused interaction filter enjoys the
theoretical property of sure screening. Thus in ultra-high dimensional spaces, our approach estimates
the right set of interactive pairs with a probability tending to 1.
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Алгоритм скринiнгу ознак для багатовимiрних даних

Чамлал Х., Бенцмане А., Уадерман Т.

Факультет наук Айн Чок, Унiверситет Хасана II,

8 км Дороги Ель Джадiда, пошт. скр. 5366 Маарiф 20100, Касабланка 20000, Марокко

На даний час скринiнг ознак стає важливою темою в галузi машинного навчання й
аналiзу багатовимiрних даних. Вiдфiльтрування нерелевантних ознак iз набору змiн-
них вважається важливим попереднiм кроком, який слiд виконувати перед будь-яким
аналiзом даних. Багато дослiдникiв запропонували новi пiдходи до цiєї теми пiсля
того, як Фан та Лв (J. Royal Stat. Soc. 70 (5), 849–911 (2008)) ввели властивiсть
надiйного скринiнгу. Однак продуктивнiсть цих пiдходiв вiдрiзняється вiд методу до
методу. У запропонованiй роботi є намагання додати до цього списку новий алгоритм,
який виконує скринiнг ознак на основi фiльтра взаємодiї Кендалла (J. Appl. Stat. 50

(7), 1496–1514 (2020)), коли змiнна вiдповiдь є неперервною. Добра поведiнка нашо-
го алгоритму доводиться за декiлькома сценарiями моделювання через порiвняння з
iснуючим методом.

Ключовi слова: скринiнг ознак; дискретизацiя; багатовимiрнi данi; регресiя.

Mathematical Modeling and Computing, Vol. 10, No. 3, pp. 703–711 (2023)


