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The COVID-19 is a major danger that threatens the whole world. In this context, math-
ematical modeling is a very powerful tool for knowing more about how such a disease is
transmitted within a host population of humans. In this regard, we propose in the current
study a stochastic epidemic model that describes the COVID-19 dynamics under the appli-
cation of quarantine and coverage media strategies, and we give a rigorous mathematical
analysis of this model to obtain an overview of COVID-19 dissemination behavior.
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1. Introduction

The deterministic formulations analysis is very necessary and commonly used in the mathematical
epidemiology, and it can be seen as the first tool for modeling new diseases spread and getting an
overview of their asymptotic behavior. But, the real phenomena are not always deterministic and
may be subject to some uncertainties and randomness due to fluctuations in the natural environment.
Therefore, an adapted mathematical formulation that considers this stochasticity is required in the case
of COVID-19. For this purpose, we will treat in this study a probabilistic version that incorporates
proportional Gaussian white noises of the compartmental model presented in [1]. More precisely, we
will analyze the following stochastic differential equations system:

45 = [~ (51— Bty ) SU+04)43Q — (e S| e+ 15aB1(0),
dQ = [¢S — (n+ N)Q]dt + 02Q dBs(t),
dE = <,81 — ﬁgﬁ) S(I +9A) - (,u + O’)E:| dt + UgEng(t),

dA = [(1—p)oE — (u+ea+va+da)A]dt + o4 AdBy(t),
[opE — (u+er + 1 +dp)I]dt + o5I dBs(t),
dH = [ef] + eaA — (u+dy +vyu)H|dt + o6 H dBg(t),

dR = [y H + il +~vaA — pR]dt + o7 RABr(t).

Here, (01,...,07) € RZF designate the intensities of the mutually independent Brownian motions B;
(i = 1,...,7). These latter, and all the random variables that will be evoked in our analysis, are
supposed to be defined on a complete probability space (2, §,P) that is endowed with an usual filtration
(Ft)i=0 (it is increasing and right continuous while §y contains all P—null sets). The analysis of the
stochastic model (1) is divided into four parts. First, we check in detail its well-posedness in the sense
that it admits one and only one solution which is global in time, positive, and bounded. Then, and
under appropriate conditions, some interesting asymptotic properties are proved, namely: extinction
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and persistence in the mean. The theoretical results show that the dynamics of the perturbed COVID-
19 model are determined by parameters that are closely related to the magnitude of the stochastic
noise. Finally, we present some numerical illustrations to confirm our theoretical results and to show
the impact of media intervention and quarantine strategies on the COVID-19 prevalence [2-5].

2. Well-posedness

In this subsection, we show that the model (1) is well posed, in the sense that if S(0), Q(0), £(0),
A(0), I(0), H(0), and R(0) are positive, then the system admits one and only one solution which is
global in time, positive, and bounded.

Theorem 1. For any initial value Xy € RZF, there is a unique solution X(t) to the sys-
tem (1) on t > 0, and it will remain in RZ_ with probability one, which means that, if
(5(0),Q(0), E(0), A(0), 1(0), H(0), R(0)) is in RY, then (S(t),Q(t), E(t), A(t),I(t), H(t),R(t)) € R
for all t > 0 almost surely (a.s. for short).
Proof. In the system (1), the coefficients are continuously differentiable on their domains of definition,
so they satisfy the local Lipschitz condition, and for this reason, there exists for any given initial value
Xo € R7, a unique maximal local solution X (¢) on ¢t € [0, 7.), where 7, is the explosion time [6]. At
this pomt our goal will be to demonstrate that this solution is global, that is 7. = 0o a.s.

To this purpose, let kg € N be very large such that X(0) € [ky L ko], and define for each integer
k > ko the stopping time 7 as follows:

me=inf{t €[0,7) | (Fie{l,....T}): Xi(t) & (L,k)} = inf{t €l0,7.) | X(t) ¢ (%,kf}
mf{t €[0,7) | IIlZl??X( )< 1 or 112?<><7X,-(t) > k‘} (2)

Set Too = limy_so0 Tg, clearly, (7x)k>k, is increasing; hence, limy_,oc 7% = SUpPg>, 7x, and according to
Lemma 2.11 of [7] supyy, 7x is a stopping time, then so is 7o.. By adopting the convention inf @ = oo
for the rest of this paper, we can easily affirm that 7., < 7. a.s. Hence, 7. = 0o a.s. will follow directly
if we show that 7., = 0o a.s., and that is exactly what we are going to do to finish the proof.

Assume that 7.c = o0 a.s. is untrue, then there exists a positive constant T such that
Pt < T) > 0.

Therefore, there exists an € > 0 for which

P(r, <T) > ¢ forall k> k. (3)

Consider the C?function V defined for z = (z1,...,z7) 6 R7 by
V(x):[ajl—a—aln—}—l—z i — 1 —In(x;)),

where a is a positive constant to be chosen suitably later. The nonnegativity of this function can be
deduced from the following inequality: * —1 —Inx > 0, Va > 0.
Applying the multi-dimensional It6’s formula to V(X (¢)), we obtain for all k > ko and ¢ € [0, 7%)

AV (S(t), Q(t), E(), A(t).1(t), H(¢), R(t))
— LV(S(1), Q(t), E(t), At), I(t), H(t), R(t))dt + (S(¢) — a)or d By (¢)
(Q(t) — o2 dBa(t) + (B(t) — 1) dBy(t) + (A(t) — 1) dBa(t)
+ ([(t) = 1)o5 dBs(t) + (H(t) — 1)oe dBg(t) + (R(t) — 1)o7 dBr(t),
where £V : RY. — R is defined by
LV(S,Q,E,A I, H R)

- (1—%) X [A— (51 52“[) (I+9A)+>\Q—(u+q)5}

+ <1—%> % [45 — (u+NQ] + <1—%> x [(51 52b+1> S(I+04) — (1 + 0)E
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+ 1——) X [(1=p)oE — (p+ea+va+da)A] + (1—l> X [opE — (pw+er + 1 +dp)I]

A I

1 1
+ 1_ﬁ> X lerl +eaA— (p+dy +yu) H + <1_E> X [yaH 4+ vl +vaA — pR]

_I_
—A—pu(S+Q+E+A+I+H+R)—dsA—dil —dyH
I(+04)  2Q s

b1l "5 QH"“)]

> S(I+9A) (u+a)} + [—(1—p)0§+(u+€A+’YA+dA):|

AN W

[ao? + 03 + 03 + 0} + 0% + 0§ + 07

A
=2 4GB+ 04) — abs

5 +alp+ Q)] + [—q

+ | = <ﬁ1 B2

b+1

E I A
+|—opp + (uter +w+d1)} + [—sjﬁ —eag +(u+7H+dH)}
H I
+ TVH R TR

— A

A 1
E+M] +E[aa%—l—ag—kag—kai—kag—kag—i-a?]

1
< A+6u+A+a+sA+fyA+dA+aI+fn+d1+dH+fyH+a(u+q)+§(aa%+a§+a§+a§

+d +d
+a?,+a§+a3)] —~uw(S+Q+E+R)—05 <“95 A —a)A—ﬁl <”5 ! —a> I.
1 1
By choosing a = %min { “(;"Bdl"‘, ‘Hﬁ'ldf }, the coefficients of A and I will be negatives, therefore

V(S,Q,E, A, I, HR) < A+6u+A+0+ea+va+dater+vy+dr+dy+vg+alg+p

—<aal+Za ) 2K

Hence, we get for all k > ko and ¢ € [0, 7%)
AV (S(),Q(t), E(t), A(t), I(t), H(t), R(t))

SKdt+ (S(t) — a)or dBi(t) + (Q(t) — 1)o2dBa(t) + (E(t) — 1)o3 dBs(t)

+ (A(t) — 1)oadBu(t) + (I(t) — 1)o5dBs(t) + (H(t) — 1)o6 dBs(t) + (R(t) — 1)o7 dBr(t).
Integrating from 0 to 74 A T and then taking the expectation on both sides of the above inequality

leads to
' E[V(X(T A7i)] < V(X(0) + KE [r AT] < V(X(0)) + KT (4)

We have V(z) > 0 for all z > 0, then

E[V(X(TAm)] = E[V(X(T A7) X L, <y | + B[V (X (EATR) X D, oy 2 B[V(X (1) X L <1y ], (5)
where 1 4 denotes the indicator function of a measurable set A € S Note that for every w € {w € Q |
T(w) < T'}, there is some component of V(X (7)) equals to k or + so

k 1 1 1 1
>(k—a—aln= - —a—aln— 1 ~1-In- ).
V(X (k) = <l<: a alna>/\<k a alnka>/\(k‘ 1 lnk)/\<k 1 lnk>
Therefore

k 1 1
E[V(X (1) X Lipemy] = P(rp < T) <k: —a—aln a) A <E - a—alnE> A(k—1—-1Ink)

A(%—l—ln%). (6)

Combining (4), (5) and (6) with (3), we conclude that
k 1 1 1 1
> —a— - - —a— — —1- ——1—In-).
V(X(O))+ICT/€<k: a alna>/\<k7 a alnka>/\(k 1 lnk‘)/\(k7 1 lnk>

Letting k — oo leads to the contradiction V(X (0)) + KT = oo, which completes the proof. n
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3. Extinction of COVID-19

In this section, we will give some conditions for the extinction of the model (1) expressed in terms of
system parameters and mtensities of noises. For the sake of simplicity, we will denote from now on the
temporary mean fo 5)ds of a continuous function ¢ by (@(t)). Also, and for all (z,y) € R?, we
adopt the followmg notatlons x Ay :=min(z,y) and z Vy := max(x,y).

Definition 1 (Stochastic extinction). For system (1), the infected individuals E(t), A(t) and I(t)
are said to be stochastically extinct, or extinctive, if limy_, o E(t) + I(t) + A(t) = 0 almost surely.
Before stating the result to be proved, we must firstly give the following useful lemma.

Lemma 1. For any initial value X € R, the solution X (t) = (S(t),Q(t), E(t), A(t),I(t), H(t), R(t))
of system (1) verifies the following properties:

1. lim 2@ — 0 a5 VEe {1,2,...,7}.

t—o00

2. Moreover, if > = (01 Voivaivoelvaeivoelv 0%), then
m DX _ o oo vge (12,7}

t—)oo

Proof. The proof of this lemma is similar in spirit to that of lemmas 2.1 and 2.2 of [8] and therefore
it is omitted here. |

Theorem 2. Let us denote by X(t) = (S(t),Q(t),...,R(t)) the solution of system (1) that starts
from a given value Xy = (5(0),Q(0), E(0), A(0), I(0 ) H(0),R(0)) € RT. If pu > % and
ming<;<5 02 > 6 X (815° — p), with S° = % )\j‘r L then
In(E(t) + A(t) + I(t iN3<ics 02
lim sup n(E®) + A®) + I( )) < 518 — e SR a.s.,

t—o00 t 6
which means that the disease will die out exponentially with probability one.

Proof. From Ito’s formula and system (1), we have

d1n<E+A+I>:[ﬁ<(m—ab I)S<I+0A>—<sA+wA+dA>A—<sI+w+dI>I)

- O'%E‘2 —|—O’2 A? —l—Ug 12:| -+ JgEng(t) —I—O'4AdB4( )+U5IdB5( )

20E+A+1)? E+A+1
Thus 2 2 2 2 2 2
oS NosNo EFc+ A+ 17
In(E+A+1)< 3475
dIn(E+A+1) [(51 ﬁ2b+]> 5 X(E+A+I)2]
o EABy(t) + 04— dBy(t) + 05— dBs(t)
BE+ A+ Y T A P T A 1 Y

By using the famous Cauchy Schwartz inequality (see for instance [9] and the references given there),

E24A%HI2 S 1
we can assert that (E+ATI)? Z 3. Hence

2 2 2
o5 Noj N\ os E
< 237745
dln(E—l—A—l—I)\ |:515 1 6 :|d7f—|—O'3E+A+Ing()—|—O'4E A—I—Id 4(t)
I
+05E+A+IdB5(t)7 (7)

Integrating (7) from 0 to ¢, and then dividing by ¢ on both sides, we get

In(B(t) + A(t) + (1)) _ W(E(0) + A(O) + 1(0)) N 04 A o?

: +Bu(S () -
a E(s A(s)
n / E(s)+ A(s) + I(s) dB?’ / E(s) 4+ A(s) + I(s) B4 (s)
I(s )
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On the other hand, the first equation of (1) gives

S(t) — S(0) = At — /0 (51 By b+(12 )> S(s)(I(s) + 0A(s))ds + A /0 Q(s)ds

—(q—i—u)/o S(s)ds+01/0 S(s)dBy(s)
<At+)\/0 Q(s)ds—(q—k,u)/o S(s)ds—i—al/o S(s)dBi(s).

/5 < /Q d+—+—/s )dB (s _@>

ﬁ<A+A(Q()+—+—/5 )dBi(s ) (9)

Therefore

N

Also, the second one gives

t t t
Q) — Q(0) = ¢ /0 S(s)ds — (s + A /0 Qds + o /0 Q(s) dBa(s),
which shows that

<@<t>>=%/0t@<s>ds=AiM(Q(O);Q“H%/Ota d+—/@ ) dBy(s ) (10)
g2

1 QO 4
< M sy + 7kt [ Q@am.

Combining (9) with (11) yields

(S(1) < ﬁ <A A <(AQ+(OZ)t + 2 —(5() + %/OtQ(S) d32(8)>
+@ + Ot S(s) dBl(s)>
Hence,
SO < St Ty T M syt
+ u(qiﬁ / Q(s) dBs(s) + Jl#(q)—\F—',;lj- 3 / S(s)dB (s (12)

Since p > % (61 Vo3 Vo3 VoiVoeiVogVos), wecan conclude by virtue of Lemma 1(2) and inequal-
ity (12) that
A A
lim (S(t)) < = x —2H_
{—00 wooog+pu+A
According to the strong law of large numbers for local martingales (see |6, page 12]), we have

tIHEOT/E +A) T(s) 4B3(s) =0 as,

= 5. (13)

A(s) _
tIHEOT | B T AQ) £ 1(s) (Pe) =0 as, (14)
lim 75 t I(s)

. dBs(s) =0 a.s.

From (8), (13) and (14) we get

20 2 4 2
lim sup In(E() + A1) + I(?)) < PSS —p— RERALE RALH <0 a.s.,
t—o0 t 6
which is exactly the desired conclusion. ]
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4. Persistence in the mean of COVID-19

In the following, we give a condition for the persistence in the mean of the disease, but before stating
the main result, we shall first recall the concept of persistence in the mean.

Definition 2 (Persistence in the mean [10, 11]). For system (1), the infectious individuals
A(t) and I(t) are said to be strongly persistent in the mean, or just persistent in the mean, if
liminf, oo (A(t) + I(t)) > 0 almost surely.

For brevity and simplicity in writing the next results, it will be convenient to adopt the following
notations:

o pi(a) =3x YRGB =)o x (YA —p) xa+ Ypx (1 —a)), Ya e (0,1),
o po=Tu+o+(Eatya+da)+(er+y+di)+(dy+vu)+ N =g+ 33,07,
a _ /0(-p)
0,1).
= Vo < O
Lemma 2. For any o € (0,1), the following inequality is satisfied pi(a) < pi(@). In other terms,
p1(@) is the maximum value of p1(«) on the open interval (0,1).

Proof. We start our proof by observing that the function p;(«) is differentiable on (0,1), with the
first derivative given by:

oy (@) e (VBT g
pl(a) = da - A(Bl 52) ( \3/62_2 m)
_ V/A(B1 — B2)o " 9(1— p)(1 — a)? — pa?
Viex (=)l (y/p=p) 1—a2) + /00— p)p(1 — a)2a2 + ({/pa?)’
_ YAGL =B (VOO —p)(1 — a) + ypo) (VO —p) + VD) (@ a).
(1-a) o1 —p)a)2 - \/Gp 1—p)at(l —a)t + (ai/p(1 —a))2

As it can be seen, the derivative p}(«) and the linear function L(a) = @ — « have the same sign, so
the function p;(a) decreases for a € (0, @) and increases for o € (@, 1). Therefore, the highest value
of p1 in the interval (0,1) is p;(@), and this is precisely the assertion of the lemma. [
Theorem 3. If pi(Q) > pa, then for any X, € R", the solution X (t) = (S(t),Q(t), E(t), A(t), I(t),
H(t), R(t)) of the initial-value problem (1) verifies the following property:

litm inf(I(t) + A(t)) > % (p1(@) —p2) >0 as.,
—c0 1

which is to say that the infectious individuals A(t) and I(t) are persistent in the mean.

Proof. Consider the function
V: RT — R
r — S Inz;
From It6’s formula and system (1), we have

avxo) = (|5 (- oy 9

I) (I+0A)+>\§—(q+,u)] + [q%—()\+u):|

+|(m- @M4>ﬁﬁwm )|+ (=0 — i eatact da)|

FE I A
+ [Up— —(p+er+v —I-dj)] + [51— +ea— — (dg +vm —I—,u)}

I H H

H I A 1« r

- - - _ = 2 ) )
+ [7]{ I —I-WR + ’YAR ,U] 5 2221 UZ> dt + i; 0; dB;(t)
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2(%—51(1—1—914) ()\/\q)<g g) (61 — 52)%(]-1-914)—1—(1—1))0%—1-0’]9?

>dt

7
1
7M+)\+q+0+(€A+’7A+dA)+(€[+’7]+d[)+(dH+’7H)+§ZO'i2

i=1
7
+Y oy dBi(t)
i=1
Noticing that A A g = Hq_fl)‘_ql and (% Q) > 2, we get forall t >0

W) > ([S52% 4 6 - Y+ ov |+ |G 400 - B T + (1=

— (I +0A) - p2>dt+ ZaidBi(t)a
i=1

and from the relation between arithmetic and geometric means (the first is greater than or equal to
the second, see [12]), it results that

AV(X(1) > (3 x YT —a)ABr = Ba)op+3 x YaA(Br — Fa)io(L—p) — Aui(l +6A) — po)dt

7
+) 0 dBi(t)
i=1
7
> ((p1(@) — p2) — (I +04)) dt + > o;dB;(t). (15)

i=1
Integrating from 0 to ¢ and dividing by ¢ on both sides of (15) gives
V(X(t)) — V(X(0))
t

7

> (p1(@) — p2) — Bu(I(t) + OA( Z

Hence

(I(0) + AW) > (1) +0AD) > (V(X(O”‘V(X“”+(m ) Z

16
B ; (16)
Since Iny <y — 1 < gy for all y > 0, one can assert that ‘7(33) < Zzzl x; for any = € RZF.

Combining the last inequality with (16) yields

1 (V(X(0) 1< R "\ o; By(t)
(I(t)+ A(t)) > B <f—;;Xi(t)+(m(a)—pg)>+;E .

By using the strong law of large numbers for local martingales and the first assertion of Lemma 1, we
obtain

liminf(1(2) + A®) > 5 ((@) ~ p2) >0 s,

which is the required assertion. ]

Remark 1. In the last proof, we can notice that any constant o € (0,1) can play the role of a,
but the peculiarity of the latter lies essentially in its capacity to weaken the hypothesis of Theorem 3.
Indeed, according to Lemma 2, if p;(a) > po for some a € (0, 1) then necessarily pi (@) > pa.

5. Numerical simulation examples

In this section, using the parameter values as shown in Table 1, we present some numerical simulations
to validate the various results proved in this paper. Most of the parametric values appearing in this table
(Table 1) are selected from real data available in existing literature (Refs. [1,13-15] more precisely) and
the rest of them are just assumed for numerical calculations. The solution of our stochastic COVID-19
model, is simulated in our case with the initial state given by S(0) = 1.8 x 105, Q(0) = 0, F(0) = 10,
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A(0) =15, I(0) = 8, H(0) = 5 and R(0) = 0 (see [13]). In what follows, the unity of time is one day
and the number of individuals is expressed in one million population.

Table 1. Definitions and values (per day) of COVID-19 model parameters used in the simulation.

Parameter | Description Nominal value

A Recruitment rate 108.63

b1 Contact rate in absence of media coverage (1.7x1079,5.2 x 1073)
B2 Awareness rate (or also response intensity) [0, 3]

b Constant of media’s half saturation 70

0 Modification ratio of asymptomatic infectiousness 0.0494

q Quarantine rate 0.071

A Rate of release from quarantine 0.1003

I Natural death rate 0.00029

o The transition rate of exposed individuals to the infective classes 0.2

P Probability of having symptoms among infected individuals (0,1)

€A The hospitalization rate of asymptomatic infected individuals 0.1

YA Recovery rate of asymptomatic infected individuals 0.15

da Disease-induced death rate for asymptomatic infected individuals 0.005

€1 The hospitalization rate of symptomatic infected individuals 0.33

Y1 Recovery rate of symptomatic infected individuals 0.1001

dy Disease-induced death rate for symptomatic infected individuals 0.008
YH Recovery rate of hospitalized individuals 0.14

dy Disease-induced death rate for hospitalized individuals 0.004

Example 1 (Asymptotic behavior). In order to exhibit the random fluctuations effect on COVID-
19 dynamics, we present in Figures 1 and 2 a collection of numerical simulations. In the first instance,
we take 31 = 2.08x 107?, By = 0.6 x 31, p = 0.6201, and we choose the stochastic intensities as follows:
o1 = 0.024, 09 = 0.0235, 03 = 0.015, 04 = 0.0174, 05 = 0.019, 06 = 0.0213, and o7 = 0.0238. Then,

1

5 (07 V o3 Vo5 VoiVorVogVoz) =0.000288 < 0.000290 = 4,

and ag A a2 A O'g = 0.000225 > 0.000202 = 6(B15° — u). Hence, the assumptions of Theorem 2 are
verified, and consequently

limn sup In(E(t) + A(t) + 1(t)) < B1S°—
t—o0 t 6
That is to say that the COVID-19 dies out exponentially almost surely. The last result is confirmed
by the curves depicted in Figure 1. To make the condition p1(@) > po true, we take 31 = 4.1 x 1073,
B2 = 0.1 x 51 and we select new values of stochastic intensities as follows: o1 = 0.019, o9 = 0.0185,
o3 = 0.014, o4 = 0.017, o5 = 0.0158, 0¢ = 0.0136, and o7 = 0.0182. Thus, the main result of
Theorem 3 is satisfied and this time, the COVID-19 persists in the mean as shown in Figure 2.

2 2 2
Nog A
- BLORT . 383% 1070 <0 as.

Example 2 (The effectiveness of media intervention and quarantine strategies). We aim
during this example to examine numerically the impact of media intrusion and quarantine strategies
on the COVID-19 spread. To this end, we simulate the progression of the total infected population
number with various values of 82, A and gq. Through Figure 3, we can perceive that the increase of the
quarantine rate and duration can delay the arrival of infection peak, reduce remarkably the impact of
the disease, and even lead it to the extinction sometimes (see for example the last two curves presented
in Figure 3). On the other hand, and as it can be seen from Figures 3 and 4, the media alert strategy
is able also to diminish the severity of the COVID-19 spread, but it can not make it disappear, and we
explain this theoretically by the absence of the parameters S5 and b in the persistence and extinction
conditions (for example Ry does not involve these parameters). Roughly speaking, the role of the
quarantine and the information intervention about COVID-19 is critically important, particularly in
its beginnings. The growth of the positive response in susceptible individuals leads to reduce the gravity
of the infection and creates a conscious public able to overcome this new pandemic by respecting social
distancing and self-isolation procedures.
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Fig. 1. Trajectories of COVID-19 stochastic model (1) taking 3; = 2.08 x 1079, 32 = 0.6 x $; and p = 0.6201.

Mathematical Modeling and Computing, Vol. 10, No. 3, pp. 784-795 (2023)



A mathematical study of the COVID-19 propagation through a stochastic epidemic model

793

individuals

181

16}

141

1.2

0.8

0.6

0.4 !

0.2H

0.1

individuals

0.05

03r

02f

0.15

individuals

40

80

120

160

200 240 280 320 360 400
Time t

E)
<E(t)>

40

80

120

160

200 240 280 320 360 400
Time t

Stochastic

Time t

025

individuals
o
s
&
T

0.05

individuals

Individuals

individuals

08

=3
=Y

o
IS

0.2

0.1

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

AQ)
<A®)>

40 80 120 160 200 240 280 320

360 400

Stochastic
<H(>

Stochastic
<R(t)>

280 320 360 400

120

240

280 320 360

400

Fig. 2. Trajectories of COVID-19 stochastic model (1) taking 81 = 4.1 x 1073, B3 = 0.1 x 1 and p = 0.6201
(p1(&) = 1.0266 > 0.9694 = py).

Mathematical Modeling and Computing, Vol. 10, No. 3, pp. 784-795 (2023)



794

Kiouach D., El-idrissi S. E. A., Sabbar Y.

Fig.

Fig.

04r

=0, g=0

0.35 A=0.1, g=0.05
A=0.071, q=0.05
A=0.071, g=0.1
1=0.033, g=0.15

037

0.25

0.2 f

individuals

0.15

|
0.1
0.05 \
40 80 120

Time t

3. The impact of the quarantine parameters A\ and g on the trajectories of the total infected individuals
Liota1(t) := E(t) + A(t) + I(t). The rest of the parameters is taken respectively as in Figures 1 and 2.

-3
410 04r

8,=0.18. 0351 4,=0.18,

4,=0.30, 03

0.25

0.2

individuals
individuals

0.15

40 80 120 0 40 80 120 160 200 240 280 320 360 400
Time t Time t

4. Stochastic paths of the total infected individuals Liota (t) := E(t) + A(t) + I(t) under different response
intensities B2. The other parameters are taken respectively as in Figures 1 and 2.

6. Conclusion

In this study, we have analyzed and explored the COVID-19 perturbed system (1). First, we have
demonstrated the existence and uniqueness of a global positive solution to this system. Then, we have
derived the conditions for COVID-19 extinction and persistence, and we remarked that they are mainly
depending on the magnitude of the noises intensities as well as the system parameters. Finally, we
have presented some numerical simulation examples to support and visualize our findings.
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MaTtemaTunyHe gocnig)xeHHsa posnosctogxxeHHss COVID-19
Yyepe3 CTOXaCTU4YHY MoAesib enigemii

Kiyax ., Exb-igpicci C. E. A., Catbap HO.

Jlabopamopis LPAILS, gaxysomem wayx Axap FEav Mapas,
Vuieepcumem Cidi Moxameda Ben A6deana, Dec, Mapoxko

COVID-19 € BesmmKoO HEOE3IEKOIO, KA 3arPOXKY€ BCbOMY CBITY. ¥ IbOMY KOHTEKCTI Ma-
TeMAaTHUYHE MOJEJIOBAHHS € JIyzKe IOTYKHHUM 1HCTPYMEHTOM, 11100 Ji3HaTucs Oijbiie Ipo
Te, K TaKa XBOpPOOa IepeIaeThCsd BCEPeIuHi JIIOACHKOI MOMYJIsIii. ¥ 3B’a3Ky 3 UM Yy
1iif cTaTTi MPOIOHYETHCS CTOXACTHYHA MOJEJIb emigeMil, sika onucye guHamiky COVID-19
i1 Jac 3aCTOCYBAHHS KapaHTHHY Ta CTPATeriil Me/ia-BUCBITJIEHHS, 1 3/IIICHEHO CTPOTHI
MaTeMaTUIHUI aHasi3 Iiel Mojesi, mobd OTPUMATH 3arajibHe YSBJIEHHS PO MONIMPEHHS

COVID-19.

Kntouosi cnoea: COVID-19; 6poyniscoruts pyx; cmoracmuuha modeasb enidemii; eu-
cetmaenms 3MI; kaparmun.
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