
Measuring equipment and metrology. Vol. 84, No. 2, 2023 34

COMPUTERIZED AUTOMATIC SYSTEMS

DATABASE MIGRATION IN CODE-FREE FORMAT

Ulyana Dzelendzyak, PhD, As.-Prof., Danylo Nikulshyn, MS Student,
 Andriy Pavelchak, PhD, As.-Prof.,

Lviv Polytechnic National University, Ukraine; e-mail: uliana.y.dzelendziak@lpnu.ua
Leonid Moroz, DSc, Prof.,

Cracow University of Technology, Poland

https://doi.org/

Abstract. Database migration is a critical process for businesses that need to maintain their data integrity and functionality as they transi-
tion to new technologies or systems [7]. The paper has researched the concept of database migration in a code-free format, including the benefits
and challenges of this approach. Code-free migration tools provide an interface that allows users to drag and drop data and automate the migration
process. This eliminates the need for manual coding and speeds up the migration process. Code-free solutions also provide users with visual repre-
sentations of the data, making it easier to understand and manage. However, these tools require careful consideration of data quality and security to
ensure that the migration process is successful.

The article provides different types of code-free migration tools, including data mapping software and drag-and-drop interfaces, and how
they can be used to facilitate the migration process [3]. Best practices are provided for successful code-free database migration, including testing
and validation.

Key words: Database migration, code-free format, representations of the data, web application, cloud technologies,
Lambda function, cloud platform.

1. Introduction

As technology continues to evolve at a rapid pace,
businesses are finding it increasingly important to main-
tain the integrity and functionality of their databases
during migration to new systems or technologies. Tradi-
tional database migration methods can be complex and
require technical expertise, which can pose a significant
challenge for businesses that lack specialized IT depart-
ments.

Furthermore, traditional migration methods can be
time-consuming and prone to errors, which can lead to
data quality issues and potential security vulnerabilities.
These challenges have made it difficult for businesses to
migrate their databases efficiently and effectively, which
can harm their operations and competitive advantage.

Code-free solutions have emerged as potential so-
lutions to these challenges. The rise of these solutions
has provided a simpler and more intuitive approach to
database migration. Code-free migration tools provide an
interface that allows users to automate the migration
process and manage data more effectively. This elimi-
nates the need for manual coding, which can save time
and reduce the risk of errors.

2. Drawbacks

Finally, we highlight best practices for successful
code-free database migration, including testing and vali-
dation. We conclude with some considerations for future
research in this area, as the use of code-free solutions for
database migration continues to grow in popularity.

3. Goal

The goal of the current article is the research
benefits and challenges of codeless database migration
solutions and guide best practices to ensure successful
database migrations while maintaining data quality and
security.

4. Migration Mechanism of Database

The main mechanism of any migrator is the rec-
ognition of data that have been migrating from one place
to another. If we are considering relational databases,
when everything is simpler, we can collect data about
table schemas in the specified database with the help of
SQL query [6].

For non-relational databases like MongoDB, Dy-
namoDB, or Firestore we cannot act in the same way [1,
4]. Assuming we have a table with multiple columns, the
schema can be derived as follows:

1. For the first column, we take the first element
and evaluate its type using the parser method.

2. For the same column, we take the second
element and evaluate its type using the parser method.

3. If the type of the second element matches the
type of the first element, then we assume that this is the
data type of the column.

4. If the types do not match, we continue to
evaluate the types of subsequent elements in the column
until we find the largest number of matches, which will
be our type as a result.

5. We repeat steps 1-4 for all columns in the table.

Measuring equipment and metrology. Vol. 84, No. 2, 2023 35

Using this method, we can derive a schema for the
table that reflects the data types of each column based on
the data present in the table.

Loading data into a new database after deriving
schemas for the tables can indeed be a straightforward
process, especially if the new database is compatible
with the data types identified in the schema. However,
there are still some important considerations to keep in
mind to ensure a successful data migration.

Firstly, it is important to ensure that the new data-
base has been properly set up and configured to receive
the data. This may involve creating new tables, setting
up appropriate indexes and constraints, and configuring
any necessary database parameters.

Secondly, it is important to carefully map the data
from the old database to the new database, taking into ac-
count any differences in table structure, data types, and
other factors that may affect the mapping process. This may
involve writing scripts or using specialized data migration
tools to ensure that the data is loaded correctly.

Fig. 1 A simplified graphic representation
of the database migration algorithm

Fig. 2 Code example for database migration from PostgreSQL to MongoDB

Fig. 3 Example code to determine the type of a column in a database table

Measuring equipment and metrology. Vol. 84, No. 2, 2023 36

In conclusion, it is important to test the data mi-
gration thoroughly to ensure that the data has been
loaded correctly and that necessary constraints and in-
dexes have been applied. This may involve performing
data validation checks, comparing the data in the old and
new databases, and testing the performance of the new
database with the migrated data.

While loading data into a new database after de-
riving schemas can be a relatively simple process, it is
still important to approach the migration with care and
attention to detail to ensure a successful outcome.

For instance, when it comes to inserting data into
MongoDB, it's important to ensure that you have the
correct data types before sending it to the database. This
is because MongoDB is a document-oriented database,
which means that data is stored as documents with their
unique structure.

To ensure that your data is properly inserted into
MongoDB, you can think of the process as being similar
to a table scraper. Just like how a scraper would collect
data from a table, you'll need to collect the correct data
types for each field in your document.

Once you have all of the correct data types, you
can then send the data to the database. This is important
because MongoDB is quite strict about data types, and if
you send data with the wrong data type, it can cause
issues in the future when you try to read the data.

By ensuring that you have the correct data types be-
fore inserting data into MongoDB, you can be sure that
your data will be read correctly in the future, without any
issues related to data types. This can help to prevent prob-
lems down the line and ensure that your data is stored and
retrieved as expected. Below is the code of the method that
allows you to overwrite data from a table of this database
into a newly created table of another database.

const keys = Object.keys(row);
const values = keys.map(key => row[key]);

for (const key of keys) {
 if (columns.indexOf(key) < 0) {
 const result = await pgClient.query(`SELECT data_type FROM informa-
tion_schema.columns WHERE table_name = '${table}' AND column_name = '${key}'`);
 if (result.rows.length === 0) {
 const value = row[key];
 if (isString(value)) { await pgClient.query(`ALTER TABLE ${table} ADD
COLUMN ${key} TEXT`); }
 else if (isDate(value)) { await pgClient.query(`ALTER TABLE ${table} ADD
COLUMN ${key} DATE`); }
 else if (isNumber(value) && Number(value) > int32Max) { await pgCli-
ent.query(`ALTER TABLE ${table} ADD COLUMN ${key} BIGINT`); }
 else if (isNumber(value) && Number(value) <= int32Max) { await pgCli-
ent.query(`ALTER TABLE ${table} ADD COLUMN ${key} INTEGER`); }
 else if (isArray(value) && !isArrayEmpty(value) && isArrayOfNum-
bers(value)) { await pgClient.query(`ALTER TABLE ${table} ADD COLUMN ${key}
INTEGER[]`); }
 else if (isArray(value) && !isArrayEmpty(value) && isArrayOf-
Strings(value)) { await pgClient.query(`ALTER TABLE ${table} ADD COLUMN ${key}
TEXT[]`); }
 else if (isArray(value) && isArrayEmpty(value)) { await pgCli-
ent.query(`ALTER TABLE ${table} ADD COLUMN ${key} TEXT[]`); }
 else if (isBoolean(value)) { await pgClient.query(`ALTER TABLE ${table}
ADD COLUMN ${key} BOOLEAN`); }
 else { await pgClient.query(`ALTER TABLE ${table} ADD COLUMN ${key} TEXT`); }
 columns.push(key);
 }
 }
}
const query = `INSERT INTO ${table} (${keys.join(',')}) VALUES (${values.map((value,
index) => `$${index + 1}`).join(',')})`;

If you have followed the correct procedures when
inserting data into MongoDB, you would end up with a
table structure that is both consistent and accurate. This
is because MongoDB is designed to store data flexibly
and dynamically, which means that it can handle a wide
variety of data types and structures.

By taking the time to define your data structure
beforehand, you can ensure that your data is organized in
a way that makes sense, and then it will be easier in the
future to access and manipulate. This can help in devel-
oping the process smoother and in improving the per-
formance and scalability of the application.

Measuring equipment and metrology. Vol. 84, No. 2, 2023 37

Fig. 4 Example of migrated PostgreSQL database to MongoDB

Fig. 5 A graphical representation of the architecture of a cloud solution on Amazon Web Services

5. Big Data Gap

There is an additional technical challenge associ-
ated with data migration, which is the sheer quantity of
data that needs to be moved. For large databases, migrat-
ing the data can take hours or even days of continuous
computing power. To address this challenge, it is often
necessary to implement a cloud architecture that is opti-
mized for data migration, with the necessary computa-
tional resources and infrastructure to ensure a smooth
and efficient migration process.

The combination of AWS Gateway, AWS
Lambda, and a relational database management system
(RDBMS) provides a powerful and scalable architecture
for building web applications and services. AWS Gate-
way acts as a front-end for the application, providing an
interface for users to interact with the system. It allows
users to send requests to the system via HTTP or other
protocols, which are then forwarded to AWS Lambda for
processing (fig. 4).

AWS Lambda is a serverless computing service
provided by AWS that allows users to run code without
having to manage servers. It can be used to implement
business logic, data processing, and other functions re-

quired by the application. Lambda functions are trig-
gered by events, such as requests from AWS Gateway,
and can be written in a variety of programming lan-
guages, including Python, Node.js, and Java.

The flow of data in this architecture is as follows:
when a user sends a request to AWS Gateway, the request
is forwarded to AWS Lambda, which executes the appro-
priate function to process the request. The Lambda function
can then read or write data to the RDBMS, depending on
the requirements of the application. Once the data has been
processed, the Lambda function returns a response to AWS
Gateway, which in turn sends the response back to the user.

In summary, this architecture provides a scalable and
flexible solution for building web applications and services,
with the ability to handle large volumes of traffic and proc-
ess data quickly and efficiently [8]. The cost of using AWS
Lambda for database migration depends on various factors
such as the size of the database, the amount of data being
migrated, the duration of the migration process, and the
number of Lambda function invocations required to com-
plete the migration [2].

Assuming a 2GB database migration, the cost would
depend on the time taken to complete the migration process.
Lambda charges are based on the number of invocations,

Measuring equipment and metrology. Vol. 84, No. 2, 2023 38

duration of the function execution, and memory usage. As
an example, let's assume that the migration process takes 2
hours to complete and requires a Lambda function with
512MB of memory.

The estimated cost of the Lambda function is deter-
mined by the following factors:

- execution Time: 2 hours or 7200 seconds;
- memory: 512 MB;
- number of Function invocations: 1.
The cost of running this lambda function is calcu-

lated as follows:
- compute time:
7200 seconds * 512 MB = 3,686,400 MB-seconds;
- compute cost:
$0.00001667 per GB-second * 3,686,400 MB-

seconds / 1,000,000 = $0.0614;
- request cost:
$0.20 per 1 million requests * 1 = $0.0002.
Therefore, the estimated cost for migrating a 2GB

database using AWS Lambda is accessed as $0.0616.
Please note that this is just an estimation since the actual
cost can vary depending on some factors.

6. Alternatives
Several alternatives for database migration can be

used depending on needs:
1. Backup and Restore: You can create a backup of

your database and restore it on a new server. This method
allows you to preserve the structure of the database and
data, but it can be time and resource-consuming.

2. Database Replication: This method allows you to
create a copy of your database on a new server and syn-
chronize data between them. This method can be faster and
less resource-intensive, but it requires additional configura-
tion and maintenance.

3. ETL Process: This method allows you to collect
data from different sources, transform it, and load it into a
new database. This method can be useful if you want to
change the format or structure of data in your database.

4. Cloud-based Solutions: You can use cloud data-
bases, such as Amazon RDS or Microsoft Azure SQL, to
easily migrate your database to a new server. This method
can be fast and convenient, but it can be more expensive
than other methods.

5. Docker Containers: Docker containers allow you
to package your database and all its dependencies into one
container that can be easily moved to a new server. This
method can be convenient if you want to ensure the stan-
dardization of your servers.

Usually, specialized tools such as SQL scripts or
ETL (Extract, Transform, Load) tools are applied for data-
base migration. These tools typically provide a deeper level
of control and customization, which can be important when
migrating complex databases [5].

However, a code-free process can be useful for migra-
ting simple databases or automating routine tasks during da-
tabase migration. For example, you can create a simple inter-
face for managing database migration using a code-free
process.

7. Conclusions
In conclusion, migrating databases from one system to

another can be a challenging process, particularly when deal-
ing with large amounts of data. However, by leveraging the
power of cloud computing technologies, such as AWS
Lambda, data scientists and developers can implement effi-
cient and scalable architectures for data migration and proc-
essing.

AWS Lambda, in particular, offers a serverless com-
puting model that eliminates the need to manage servers and
infrastructure, allowing data scientists to focus on writing and
executing code [9]. High scalability and parallel processing
capabilities make it an ideal choice for processing large data-
sets, while its integration with other AWS services, such as
AWS Gateway and RDBMS, provides a complete solution
for building web applications and services.

Given the advancements in cloud computing tech-
nology, data migration, and processing have become in-
creasingly efficient and accessible. Finally, data scientists
and developers become capable of handling even the most
complex datasets with greater ease and achieving more
profound insights.

8. Gratitude
The authors thank the Team of the Department of

Computerized automation systems for their support.

9. Mutual claims of authors
The authors have no claims against each other.

References
[1] Ain El Hayat S., Bahaj M. Modeling and transformation from

temporal object relational database into MongoDB: Rules. Ad-
vances in Science, Technology and Engineering Systems.
2020. № 5 (4). С. 618–625. DOI: https://doi.org/10.25046/
aj050473.

[2] Andreas Wittig, Michael Wittig, “Amazon Web Services in
Action”, Second Edition, Manning Publications Co., 2018.

[3] CRUD REST API with Node.js, Express, and PostgreSQL,
2022. [Online]. Available: https://blog.logrocket.com/crud-
rest-api-node-js-express-postgresql/

[4] Ji L. F., Azmi N. F. M. The development of a new data migra-
tion model for NOSQL databases with different schemas in
the environment management system. Journal of Environ-
mental Treatment Techniques, № 8 (2). p. 787 – 793, 2020.
http://www.jett.dormaj.com/docs/Volume8/Issue%202/The%
20Development%20of.pdf

[5] Michael J Hernandez, “Database Design for Mere Mortals: 25th
Anniversary Edition”, Addison-Wesley Professional, 2020.

[6] PostgreSQL, 2023. [Online]. Available:
https://www.postgresql.org/docs/

[7] Preston Z., Practical Guide to Large Database Migration.
CRC Press, USA, 2021, https://www.routledge.com/ Practi-
cal-Guide-to-Large-Database-Migration/Zhang/p/book

[8] Real-Time AWS Cloud Migration Monitoring, 2023.
[Online]. Available: https://www.striim.com/blog/real-time-
aws-cloud-migration-monitoring/

[9] Steve M. Burnett, “Amazon Web Services For Beginners”,
US, chapt.1, pp. 10-16, 2021. https://www.studypool.com/
documents/23651179/aws-for-beginners

