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Abstract. A brief description of the basic stages of image processing is given to pay attention to the segmentation stage as a 
possible way to improve efficiency in decision-making. The main characteristics of the presented model are visual signs, such as 
color, shape, the presence of a stem, and others. Due to the different approaches in image processing, a high level of truthfulness is 
achieved, which is expressed in the percentage ratio of the accuracy of decision-making and varies in the range from 90 to 96%. 
Therefore, the results obtained in this work make it possible to automate the process of visual inspection with the prospect of in-
creasing the speed and quality of product sales for the consumer. 
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1. Introduction 

The task of visual inspection to recognize objects 
and assess their quality is one of the most important 
processes in the processing and food industries. Given 
the requirements of the customer, it is mandatory to 
ensure the highest quality of the product. The issue of 
inspecting objects to detect defects such as color, 
scratches, and cracks, or checking surfaces for proper 
coating is related to visual quality control [1]. One alter-
native adopted by many industries to remain competitive 
is to promote lean manufacturing, in which these tech-
niques can work synergistically to create a streamlined, 
high-quality system that produces finished products at 
the pace of consumer demand with little or no waste. 
Unfortunately, criticizing the available data, which sug-
gests that several organizational factors can prevent or 
hinder the implementation of lean manufacturing meth-
ods among manufacturing enterprises. Another alterna-
tive is to give the computer the ability to automatically 
inspect and recognize objects. In our opinion, the use of 
specialized software together with other mechanisms, 
such as cameras, sensors, and the involvement of highly 
qualified specialists, allow us to obtain a powerful tool 
for automatic and rapid product quality control. Such 
automation provides an opportunity to reduce cost and 
speed up production with a high level of accuracy in 
establishing product quality. This technology can play an 
important role in fruit inspection. An important condition 
here is the observance of a non-invasive method, as well 
as taking into account the fact that its quality can be 
almost accurately indicated by the visual state. 

Computer vision (CV) [2] deals with the modeling 
and reproduction of human vision with the help of soft-
ware and hardware. It is the basis for creating artificial 

systems for extracting information from images. Since 
by analogy with a person who perceives more than 70% 
of the information of the surrounding world precisely 
through vision, such a model makes it possible to 
achieve significant success. The main task is to correctly 
interpret the information from the image we receive.  

2. Drawbacks 

Visual inspection remains one of the most impor-
tant and fastest methods of non-invasive inspection of 
products and their classification by quality level during 
production and distribution to the consumer. This is 
usually done by the qualified operator whose task is to 
quickly make a decision and establish the fact of the 
presence of a visual defect. This is especially relevant in 
the food industry. This method has an obvious problem, 
namely the human factor. Since it is impossible not to 
take into account the operator's fatigue factor, and his 
subjectivity when choosing the acceptable level of prod-
uct deviation.  

Therefore, numerous studies have been developed 
in the field of computer vision. Nevertheless, still is 
absent a standardized method that can be proposed to 
evaluate the quality of different types of objects. Special 
characteristics of the object require the setting of the 
computer vision system; it involves an exhaustive re-
search process, not just the purchase of expensive 
equipment to achieve better system performance and 
obtain better input data.  

3. Goal  

The goal of the study is to develop an automated 
model for visual inspection of product (pear) quality, 
with more than 90% correct conclusions on its condition. 
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4. Computer vision  

The task is to present a brief description of the 
main stages and nowadays trends of computer vision 
systems with their critical analysis [3].  

In application, the considered technology allows 
the automation and supplementation of human vision, 
creating many options for application. Due to advances 
in artificial intelligence and innovations in deep learning 
and neural networks, the field has been able to take great 
leaps recently and surpass humans in some tasks related 
to object detection and labeling. Before the advent of 
deep learning, the tasks that computer vision could per-
form were quite limited and required a lot of manual 
coding and effort on the part of developers and human 
operators [4].  

Machine learning provided a different approach to 
solving computer vision problems [5-6]. Thanks to ma-
chine learning, developers no longer have to manually 
code each rule into their vision applications. Instead, they 
program “features,” smaller applications that could detect 
specific patterns in images by applying statistical learning 
algorithms such as linear regression, logistic regression, 
decision trees, or support vector machines (SVM) to detect 
patterns, classify images, and detect objects. To create a 
satisfactory deep-learning algorithm, we gather a certain 
amount of labeled training data and tune the parameters 
such as the type and number of layers of neural networks. 
Compared to previous types of machine learning, deep 
learning is both easier and faster to develop and deploy. 

Most current computer vision applications such as 
cancer detection, self-driving cars, and facial recognition 
utilize deep learning [7]. Deep learning and neural networks 
have moved from the conceptual realm into practical appli-
cations thanks to the availability and advances in hardware 
and cloud computing resources. 

A quintessential example of transportation is the 
company Tesla's technology of manufacturing electric self-
driving cars that rely solely on cameras powered by com-
puter vision models. Computer vision enables self-driving 
cars to make sense of their surroundings. Computer vision 
also plays an important role in facial recognition applica-
tions, the technology that enables computers to match im-
ages of people’s faces to their identities. CV algorithms 
detect facial features in images and compare them to data-
bases of facial profiles. CV also plays an important role in 
augmented and mixed reality [8], the technology that en-
ables computing devices such as smartphones, tablets, and 
smart glasses to overlay and embed virtual objects on real-
world imagery. Using computer vision, AR hardware de-
tects objects in the real world to determine the locations on 
a device’s display to place the virtual object. CV enhances 
health tech. Its algorithms can help automate tasks such as 
detecting cancerous moles in skin images or finding symp-

toms in x-ray and MRI scans. We can see CV revolutioniz-
ing the retail space, such as the Amazon Go program, which 
introduces checkout-free shopping using smart sensors. 

Automated computer visual control (ACVC) relies 
on the CV to capture visual information through cameras 
[9]. As in most industries, automation is useful for visual 
inspection. CV works as well with visual inspection sys-
tems as it does with others. First, provide the algorithm with 
a sample of a well-manufactured product. Once imple-
mented, the system verifies each manufactured product. The 
system detects defects by capturing the product’s image 
from multiple angles and comparing it with the pictures of 
the well-manufactured sample fed to the algorithm during 
setup. 

The Edge Tracking method and anomaly detection 
were also important integrated parts of computer vision in 
tasks of visual control [10]. Anomalies are events that differ 
from the norm, occur infrequently, and don’t fit into the rest 
of the “pattern”. The motivation behind using anomaly 
detection is as follows. Quality Assurance needs to be 
automated to deal with variability (mass customization of 
products).  To guarantee high quality, it is necessary to 
identify various quality problems. Human visual inspection 
does not guarantee reliable inspection for continuously 
changing products. Advances in technologies (both hard-
ware and software) have decreased the cost of anomaly 
detection and made it affordable even for small businesses.  

The edge detection algorithms are composed of 5 
steps [11]: Noise reduction; Gradient calculation; Non-
maximum suppression; Double threshold; Edge Tracking 
by Hysteresis. 

CV has a lot to offer in terms of facilitating practical 
applications [12]. For practitioners or even those who enter-
tain themselves with deep learning, it is very important to 
keep abreast of the latest developments in the field and stay 
up-to-date with the latest trends. Considering the current 
state of CV, several main trends can be identified.  

The first one is Resource-Efficient Model. The main 
reason for its implementation is that the most modern mod-
els are often difficult to run offline on tiny devices such 
as mobile phones, Raspberry Pi, and other microproces-
sors [13]. And more complex models are inherent in the 
significant delay (i.e., the time it takes for the model to 
perform a direct path) and the considerable impact on the 
cost of infrastructure. 

Therefore, sparse training refers to injecting zeros 
into the matrices used to train neural networks. This can 
be done because not all dimensions interact with others, 
or would be significant. Although performance might 
take a hit, resulting in a major reduction in the number of 
multiplications, reducing the time to train the network. 

One closely related technique is pruning, where 
you discard network parameters that are below a certain 
threshold (other criteria exist as well). Using quantiza-
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tion in Deep Learning, to lower the precision (FP16, 
INT8) of models to reduce their size. With Quantization-
aware Training (QAT), you can compensate for the loss 
of information caused by reduced accuracy. Pruning plus 
quantization can be the better approach. Training a high-
performing teacher model and then distilling its "knowl-
edge" by training another smaller student model to 
match the labels yielded by the teacher. 

The next trend is Self-supervised Learning. 
Self-supervised learning doesn't use any ground-

truth labels but pretext tasks [14]. Then, consuming a 
portion of the unlabeled data set, we ask the model to 
learn the data set. Compared to Supervised Learning, 
where a humongous amount of labeled data is needed to 
push performance, labeled data is costly to prepare and 
can be biased as well, duration of training time is high 
for such a big data regime. It has the following features: 
Asking a model to be invariant to different views of the 
same image. Intuitively, the model learns the content that 
makes two images visually different i.e. a cat and a 
mountain. Preparing an unlabeled dataset makes the way 
cheaper. SEER (a self-supervised model) performs better 
than supervised learning counterparts in object detection 
and semantic segmentation in CV. 

Self-supervised learning requires a big data re-
gime to perform real-world tasks such as image classifi-
cation. Therefore, it is quite expensive.  

Another important trend is Robust Vision Models. 
They have been adopted in CV to improve the perform-
ance of feature extraction algorithms at the bottom level 
of the vision hierarchy [15]. These methods tolerate (in 
various degrees) the presence of data points that do not 
obey the assumed model. Such points are typically called 
"outliers". The definition of robustness in this context is 
often focused on the notion of the breakdown point: the 
smallest fraction of outliers in a data set that can cause 
an estimator to produce arbitrarily bad results. The 
breakdown point, as defined in statistics, is a worst-case 
measure. A zero breakdown point only means that there 
exists one potential configuration for which the estimator 
will fail. 

ChatGPT is a completely new approach in the CV 
world [16].  It is a tool that can help CV engineers and 
practitioners to fulfill jobs efficiently. There are 3 main 
categories of CV applications for which ChatGPT is 
fairly reliable: commonplace code, dressed individual 
method calls, and clean concatenations of simple com-
ponents. ChatGPT’s responses to queries in any of these 
categories benefit from being relatively self-contained. A 
generative model that was trained on a large corpus, 
including text and code, is generally satisfactory at gen-
erating blocks of code that occur frequently and with 
little variation across the internet. When a code-based 
solution is essentially canonical (and likely omnipresent 
in the training data), ChatGPT’s probabilistic predilec-

tions are able, with high probability, to generate the tried 
and true result. Examples of this include the fast Fourier 
transform (FFT), which is ubiquitous in signal process-
ing and CV. ChatGPT is compatible with common ma-
chine learning and CV libraries, including PyTorch, 
TensorFlow, Scikit-learn, PIL, Skimage, and OpenCV. 
The chatbot is at its best when it can dress up methods 
from these libraries with the appropriate (boilerplate) 
preprocessing steps, such as input-output handling, con-
verting a color image to grayscale, and reshaping arrays. 

With new technology, the failure modes may be 
potentially powered. While applying the ChatGPT for 
multiple CV tasks, there seem to be a few recurring 
issues: long-tail scenarios, math manipulations, and 
expansive code blocks. There may happen a variety of 
tasks that are staples of certain subfields but are dwarfed 
by more common motifs in the sprawling corpora em-
ployed in training LLMs. ChatGPT has its fair share of 
trouble with these domains and can be quite sensitive to 
minutiae when prompted on niche subjects. One word 
can mean the difference between a desired result, and an 
idea getting lost in the recesses of ChatGPT’s immense 
representational structure. An example of this is 3D 
computer vision, which seems to be a strong subfield of 
CcV that deals with spatial data. 

The closer to our task - quality control, the more 
we apply a standard method with few details that depend 
on the specific situation. With a field as broad and com-
plex as computer vision, the solution isn’t always clear 
[17]. The many standard tasks in CV require special 
consideration: classification, detection, segmentation, 
pose estimation, enhancement and restoration, and action 
recognition. Although the state-of-the-art networks used 
exhibit common patterns, they still need their unique 
design twist. 

Classification. Image classification networks start 
with an input of fixed size. The input image is provided 
by some channels, usually 3 for an RGB image. When 
you design the network, the resolution can technically be 
any size as long as it is large enough to support the 
amount of downsampling you perform by the network. 
For example, if you downsample 4 times within the 
network, then your input needs to at least be 16 x 16 
pixels in size. As go deeper into the network the spatial 
resolution will decrease as we try to squeeze this infor-
mation and get down to a 1-dimensional vector represen-
tation. To ensure that the network always can carry for-
ward the information it extracts, increase the number of 
feature maps proportionally to the depth accommodating 
the reduction in spatial resolution. I.e., we are losing 
spatial information in the down-sampling process. To 
accommodate the loss, we expand our feature maps 
increasing the obtained semantic information. After a 
certain amount of downsampling has been selected, the 
feature maps are vectorized and fed into a series of fully 
connected layers. The last layer has as many outputs as 
there are classes in the dataset. 
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Object Detection. Object detectors come in 2 fla-
vors: one-stage and two-stage [18]. Both of them start 
with “anchor boxes”; these are default bounding boxes. 
Our detector is going to predict the difference between 
those boxes and the ground-truth, rather than predicting 
the boxes directly. A two-stage detector naturally has two 
networks: a box proposal network and a classification 
network. The box proposal network proposes coordinates 
for bounding boxes where it thinks there is a high likeli-
hood that objects are there; these are relative to the anchor 
boxes. The classification network then takes each of these 
bounding boxes and classifies the potential object that lies 
within it. 

Segmentation. Segmentation is one of the most 
unique tasks in CV since the networks need to learn both 
low- and high-level information [19]. Low-level informa-
tion to accurately segment each area and object in the 
image by the pixel, and high-level information to directly 
classify those pixels. This leads to networks being de-
signed to combine the information from earlier layers and 
high-resolution (low-level spatial information) with 
deeper layers and low-resolution (high-level semantic 
information). First, we run our image through a standard 
classification network. Then we extract features from each 
stage of the network, transferring information to a higher 
level. Each information level is processed independently 
before combining in turn. As the information is combined, 
we upsample the feature maps to eventually get to the full 
image resolution. 

Pose Estimation. These models need to accomplish 
2 tasks [20]: (1) detect key points in an image for each 
body part and (2) learn how to properly connect these key 
points. It can be done in 3 stages: 

• Extract features from the image using a stan-
dard classification network 

• Given those features, train a sub-network to 
predict a set of 2D heatmaps. Each heatmap is associated 
with a particular key point and contains confidence values 
for each pixel in the image as to whether the key point is 
likely to exist there or not 

• Again, with the given features, we train a sub-
network to predict a set of 2D vector fields, where each 
vector field encodes the degree of association between the 
key points. Key points with the high association are then 
said to be connected. 

Training the model in this way with the sub-
networks jointly optimizes the detection of key points and 
connecting them. 

5. Determination of quality criteria  

As mentioned in the above point, most computer vi-
sion systems include the previously mentioned stages, but 
according to the specifics, different options are possible.  

Definition of quality criteria.  
A hybrid system offers an opportunity to integrate 

two or more knowledge representations of a certain area 
into one system. One of the main goals is to obtain addi-
tional knowledge that allows for increasing the efficiency 
of the global system. A concrete example of a hybrid sys-
tem is the so-called NSHS, which is mainly based on a 
symbolic representation of an object obtained from a 
human expert in the form of rules and a CV system for 
obtaining numerical information. 

Quality criteria for the assessment of pears were 
obtained by direct visual evaluation by an expert in fruit 
classification based on his own experience. In this case, 
the category is assigned depending on the value of the 
external attributes. There are four categories: category 
extra, category I, category II, and category III. The work 
evaluates only the extra category, according to which a 
pear can belong to one of two classes: good or bad quality. 
Fig. 3 shows an example of pears, which could be classi-
fied as good and poor quality, that is, the second pear has a 
clear visual defect. Additionally, Table 1 reveals a sum-
mary of the external attributes of the pear with the associ-
ated variable name, value, and type. 

Getting an image.  
For the pear category task, 148 images were ob-

tained using a digital camera. For the complete set of 
images, the operation of rotation by 90 and 180° clock-
wise, doubling and reducing scaling, and adding noise 
were performed. At the end of this process, a set of 148 
pears was divided into two categories: poor (74) and good 
(74) quality. Fig. 4 displays an example of different pears 
after changing the rotation and scale. 
 

 

Fig. 1. Examples of a pear, a) good quality and b) poor quality 
with a clear visual defect 

а b 
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Table 1. Criteria defined in dimensionless units for establishing good and 
poor quality, obtained in consultation with relevant experts in the given field 

Attribute Acronym Type Value
An elongated defect LD Range 0–6
Spotted defect SD Range 0–2.5
Various defects VD Range 0–5
Stem S Binary True/false
Red colour RC Range 0–255
Green GC Range 0–255
Blue BC Range 0–255  

 
Pre-processing of images.  

The stage consists of converting the image from 
the RGB color model to the YIQ color model (Lumi-
nance, In-phase, Quadrature). The main reason for this 
transformation is to facilitate the extraction of image 
features. The YIQ model was calculated to separate the 
color from the luminance component due to the ability of 
the human visual system to perceive changes in reflec-
tance more than changes in hue or saturation. The main 
advantage of the model is that reflectance (Y) and color 
information (I and Q) can be processed separately. The 
reflection coefficient is proportional to the amount of 
light perceived by the human eye. 

Pear feature extraction.  
The characteristics of each image were obtained 

based on information defined by a human expert in the 
form of rules and by image processing in the form of 
numerical data. These two types of knowledge informa-
tion were combined to obtain an overall view of the pear. 

The number of rules defined by the experts was 
four, an example of one rule is the following: "If a pear 
has a suitable color, has a stem, has elongated defects not 
exceeding 2 cm, and has several defects not exceeding 1 

cm², and has spotted defects, which do not exceed 1/4 
cm², then the pear belongs to the category of extra with 
good quality. 

At the end of this step, the rules were compiled 
using knowledge of the based artificial neural network to 
obtain the sample that can then be combined with the 
numerical results obtained from the CV system. The 
combination was done using a method called Neusim, 
which is based on the Fahlmann cascade correlation 
algorithm. 

Classification of pears.  
The result of the feature extraction stage is a com-

bined representation of the symbolic and numerical rep-
resentation. Further classification requires clarification 
of these data. This refinement is done by running the 
Neusim method again, but now not for knowledge fu-
sion, but for using it as a classifier. 

The main advantage of using the Neusim algo-
rithm is that one can see the number of hidden units 
added during the learning process, this is quite useful for 
monitoring the complete incremental learning process. 
The result of this stage is a decision about the quality of 
the pear in one of two classes, bad or good. 

 

 

Fig. 2. Good quality pear. a) Original image, b) Rotated 180° clockwise, and c) Halved original size 
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Experiments and results.  
From the total set of 148 images, 74 were used at 

the training stage and 74 at the recognition stage. Three 
different approaches were chosen for the experiments: 
(a) a connectionist approach, which uses only data ob-
tained from a computer vision system, (b) a symbolic 
approach, which uses only data obtained from collected 
rules, and (c) NSHS, which is a combination of connec-
tionist and symbolic approach. 

Three scenarios were defined for tests using the 
connectionist approach: (a) numerical data obtained from 
a total of 148 images (100%), (b) data obtained from 
only 111 images (75%), and (c) only data from 74 im-
ages (50%). Three rules were applied to obtain results 
relevant to the test case using a symbolic approach. The 
first rule, called 7, includes the following seven attrib-
utes: LD, SD, VD, S, RC, GC, and BC. The second rule, 
called R5, considers the following five attributes: RC, 
GC, BC, S, and LD. Finally, the third rule named R4 
includes the following four attributes: LD, SD, VD, and 
S. For the case of the NSHS approach, a combination of 
connectionist and symbolic approaches. The three rules 
R7, R5, and R4 were combined with 100, 75, and 50% 
of the total examples. The general results obtained are 
shown in Table 2. 

Table 2. The achieved results 

Approach Compiled 
rules 

% of 
examples 
used 

percentage of 
correct decisions 

(%) 

Connectionist – 100 95.14 
 – 75 91.21 

 – 50 90.54 
Symbolic R7 – 93 
 R5 – 90.12 
 R4 – 14.19 
NSHS R7 100 96.62 
 R7 75 95.27 
 R7 50 90.54 
 R5 100 95.27 
 R5 75 95.94 
 R5 50 96.62 
 R4 100 91.22 
 R4 75 93.24 

  R4 50 94.59 
 

One of the typical problems causing failures in 
CV systems is the lack of a complete description of the 
object. This can be observed by examining the results 
based on the symbolic and connectionist approaches. 
This shortcoming can be eliminated by using a method 

to supplement the information with data determined by 
the expert's knowledge. Systems that allow these types 
of combinations are called NSHS, as can be seen from 
the results shown in Table 2; these systems are effective 
in supplementing the necessary knowledge for automatic 
object inspection. For example, in a purely symbolic 
approach, the R4 rule was not sufficient for correct clas-
sification, but when it is integrated with a group of nu-
merical examples (100, 75, 50%), a significant im-
provement is obtained, since the knowledge that does not 
contain the rule is supplemented by a numerical example 
base.  

Here, satisfactory results are achieved in almost 
all cases. This indicates that a considered method can be 
implemented to define the quality of a wider list of prod-
ucts.    

6. Conclusions 

1. A computer vision-based quality inspection 
system was studied to create a sustainable evaluation 
environment in the fruit quality inspection process. To 
access the quality of fruits, an image-learning model 
adopting an artificial neural network was developed. 

2. While performing the task, during the verifica-
tion of the results practicing symbolic and connectionist 
approaches, it is possible to observe failures in computer 
vision systems due to the lack of a complete description 
of the object. This shortcoming can be overcome by 
supplying the obtained information with data determined 
by expert knowledge, proving systems that allow these 
types of combinations, or/and the NSHS approach itself.  

3. Due to the proposed different approaches in 
image processing, a high level of truthfulness is 
achieved, which is expressed within the range from 90 to 
96%. The obtained results can automate the process of 
visual inspection with the prospect of increasing the 
speed and quality of product sales for the consumer. 
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