odeling
MATHEMATICAL MODELING AND COMPUTING, Vol. 10, No. 2, pp. 387-399 (2023) I\/I @P”ti"g

athematical

Numerical modeling of heat and mass transfer processes
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The problem of conductive (contact) drying of a capillary-porous body in a steam-air (gas)
environment by heat transfer to the material during its contact with the heated surfaces of
the material is considered. A system of significantly nonlinear differential equations of heat
and mass transfer to describe such a process is obtained. To solve the formulated problem
of heat and mass transfer (without taking into account deformability), the method of
solving nonlinear boundary value problems is applied in the form of an iterative process,
at each step of which a linear boundary value problem is solved. The results of the
application of the method are verified based on the popular numerical scheme used. They
agree well. A numerical experiment is conducted for materials of three types of porosity.
The results are presented graphically and tabularly. The regularities of contact drying of
capillary-porous materials in a steam-air environment are deduced.

Keywords: contact drying; capillary-porous materia; system of monlinear differential
equations; iterative process; linear boundary value problem.
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1. Introduction

When studying the processes of heat and mass transfer in porous bodies, sufficiently universal
continuum-thermodynamic approaches of continuum mechanics are used, which are based on the meth-
ods of thermodynamics of non-equilibrium processes, as well as new approaches are being developing
actively. Thus, the non-equilibrium thermodynamic relations for the non-equilibrium one-particle dis-
tribution function of particles are obtained in [1]. A kinetic approach based on a modified chain
of BBGKI equations for nonequilibrium particle distribution functions is used in [2] to describe the
ion transfer processes in the ionic solution—porous medium system. The issue of accounting for the
temperature inhomogeneity in the model of heat transfer for the structure being attributed to the
heating-cooling cycles, or nonuniform heating, is considered in [3]|. Stefan’s linear problem for drying
capillary-porous material is solved under quasi-averaged formulation in [4]. In [5], the problem of de-
termination of the coefficients of internal diffusion of moisture for capillary-porous materials of plant
origin during filtration drying is solved based on integral transformations. The problem of mutual
phase distribution in investigation of drying the capillary-porous solid of a cylindrical shape in [6] is
solved using the principle of local phase equilibrium. The algorithm for numerical analysis of the math-
ematical model of coupled heat and mass transfer problems of drying material in pulsed drying mode
is suggested in [7]. The diffusion of heat in the material is described by the generalized version of the
Cattaneo-Maxwell diffusion equation [8]. A complex algorithm comprising the specific mechanisms of
drying in the first and second periods of drying is constructed in [9]. In [10], there are adopted the long
short-term memory neural network, backpropagation neural network, and Central-Composite response
surface method to establish a moisture content prediction model and a process parameter optimization
model based on single-factor experiments. The model of drying capillary porous materials, such as

(© 2023 Lviv Polytechnic National University 387



388 Gayvas B. I., Markovych B. M., Dmytruk A. A., Havran M. V., Dmytruk V. A.

fruits and vegetables, which takes into account simultaneous heat and mass transport with anisotropic
deformation, is developed in [11].

When performing structural analysis of conductive (contact) drying in a steam-air (gas) environ-
ment when heat is transferred under its contact with the material, researchers often face the diffi-
culties with solving the governing equations describing models, which are significantly nonlinear [12].
As a method of solving non-linear contact-boundary value problems, we suggest applying an iterative
method, at each step of which a linear boundary value problem will be solved. Deformability is not
taken into account.

2. The problem formulation and a system of basic equations

Let us consider the following problem.

Consider a thin plane plate, a surface of which from one side
is subjected to the external heat flow g.(t) (Figure 1). Conductive
contact drying takes place in a steam-air (gas) environment by trans-

. ferring heat to the material when it is in contact with heated surfaces.
The plate has an area S, thickness h,,, its material is characterized
by density p.,, specific heat capacity Cy,. A layer of capillary-porous
moisture-saturated material of the thickness [ is placed on this plate.
h The capillary-porous material has the porosity II, density p8, spe-
cific heat capacity Cp, and thermal conductivity coefficient in the
dry state Ag.

From the open side of the capillary-porous material, the moisture
evaporates into the cavity of the volume V' and the depth L = V/S. There is an outlet in the cavity
through which the steam-air mixture flows into the environment under pressure P.. The cavity is
thermally insulated. We neglect the heat capacity of its walls. Such an installation can serve as an
example of a drying chamber for conductive drying.

The system of heat and mass transfer equations is described as follows:

T d
TO dr [

z

l

Fig.1. Schematic representa-
tion of the model.

poCefT + ToH(l — a)pg] =V [)\erT —rody — Z CpiTJi] , (1)

i=l,v,a
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1§:<p”+£i>Rﬂ

M, M,
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d[(1—a)pl]
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o YV, =0 (3)
M 4105
0_ v B
pv__133R7,aq><1&681 T__35>. (4)

IL, o, rg, Aey, Ji are the porosity, relative moisture saturation, specific heat of vaporization, effective
thermal conductivity, and moisture, steam, and air flows, respectively. If the evaporation is not strong,
then it can be roughly assumed that the steam pressure in the cavity is equal to the saturation pressure.
In this system of equations, the temperature T, moisture saturation a, and air density pQ are unknown.
At the initial moment, there can be moisture, air, steam in the pores. We assume that the steam-air
mixture is a mixture of ideal gases and in the wet state, when the capillary-porous material is saturated
with moisture o > 0, the density of steam-air mixture is a function of temperature only. The equation
does not include the phase transition criterion, the dependence of which on the parameters is complex.
The equations remain valid in the dry zone, where there is no moisture, and a = 0, I, = 0 in this
domain, Eq. (3) serves to determine the moisture density.
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The boundary conditions are formulated as follows: at the initial moment of time, the pressure
of the steam-air mixture in the capillary-porous material and in the cavity is equal to the external
atmospheric pressure P.: Py = P.(0) = P.

The initial temperature

T(z,0) = Tp. (5)
The moisture saturation a(z,0) = ap < 1.
The air density pd(x,0) = Lo=Les pf, .

RTy
The boundary conditions on the side of the heated plate are as follows:

e = —AVT + pwcwhwg—T + T’*JU, T‘*(T) =17y — (CL — va) T. (6)
T

The moisture and air flows at the interface from the side of the plate are zero:
Jn =0, J,=0.
The boundary conditions on the surface of the capillary-porous material from the side of the cavity
with the opening for x = [ are as follows:
* Vo 0 )
“AVT =r"Jp 4 < (PaClua + PoCuv) o T g By "5
where the first term AVT characterizes the heat flow that penetrates inside the body; the second term
is equal to the product of the specific heat of vaporization multiplied by the density of the moisture
flow that evaporates; the third term is the power spent on heating the surface; the fourth term is the
flow of heat transmitted by the movement of the steam-air mixture.
The total flow of vaporized moisture should be equal to the flow rate of the moisture flowing out
through the hole, to estimate which we will use the formula for adiabatic output from the cavity [13].
To determine the flow of moisture, the equation of conservation of moisture mass in the cavity is used

T 0
KA ) Rl

T, (7)

0 0
Po | 1, 0Py
SIm = Qe— +V—1, 8
Q o +V (8)
the air flow: 0 5,0
pa pa 0
ST, =Q.—=+V , o = Pus(Le)- 9

The vapor density is equal to the saturated vapor density. The movement of gas in the cavity into
which evaporation occurs is neglected. The gas temperature in the cavity is assumed to be the same
throughout the volume.

The flow of the steam-air mixture through the drainage hole is determined by the formulae of
output from the cavity

5 L3 1/2 p
y—1 _ e
@ =s|7(53) ] Qe PR, 2y = 1. "o
YAHINTT 1y [y +1 =Nk 2 \71
T Ep j 1—€p 5 5p> ? )
QeQ(y) = ! Ty
1 <(—) -
) b <7+1>

Here T,., P. are temperature and pressure in the cavity, Q). is the gas flow through the drainage
hole [14], v is the adiabatic index, R4 is a gas constant. The boundary conditions are obtained
under the assumption that the gradients of temperature, pressure, and concentration across the cavity
are negligible, and the vapor pressure in the cavity is close to the saturation pressure for the cavity
temperature.

Let us write the system of nonlinear differential Eqs. (1)—(3) in a matrix form

B+ T =0, (1)
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where u = (T, a, pQ); E is a vector, the components of which are the total content of enthalpy, moisture,
and air in a unit volume of the material; J is a vector composed of heat, moisture, and air flows, it is
linearly related to the gradients T, v, P; ¢q = pg/pg; J(u) = —A(u)ag—g(cu); F =F(T,a,P,c,); A(u) is
the 3 x 4 matrix, and the 3 x 5 matrix (if capillary pressure is taken into account) [15-17]

where a11 = A; a1 = 0; a13 = L(l — ) (ropv + TC’papa + TC’pUpv)
a1 =D (1 — a) (09 + p2) (ro — CpaT — CpT); @21 = arpod; aze = DiIpY;

Kp° K(l-a
a9 =« PL + ( )pg; age =11Dg¢(1 — @) (pg—i-pg); az1 = 0;
HL Hef

K(1-a
agg =0; asz = 7& ; )p2; agy = —IDes(1 — o) (p) + pY) -
e
Here Dy, Cpq, Cpy are the coefficients of effective diffusion, specific heat capacities of air and steam

at a constant pressure, respectively; A is the coefficient of effective thermal conductivity,
T{poCo—l—H[p%CLa—i-(l—a)( Cw+pC )]—l—ToHl—a }

E(T,a,p}) = [0 — %) a+ o] :
(1 - a)p
A 0 [;I;g (TOPU + T(Cpap + vapg)) IDes(1 — 04)/)2 (ro = (Cpa + Cpo)T)
KK KK g0
A= | Dppos Dpplll [ Cupl Kfj’”} IDs (1 —a) (o) + p) ;
% 0
0 0 Kff—gfp —TID4(1 - a) (p% + p2)
K, =1 — «a is a relative gas permeability; rg is the heat of vaporization for 7' = 0 K;
T
Q@
F=| (s 2
(4 +4) BT
o
PO+3

The system of equations have to satisfy the boundary conditions

J|,_ow)=Qo, J| _ (u)=Q
and the initial conditions: (0 < z <, t = 0), T="Ty aa=ay <1,
M,
=[Py — Pys(T)] — 12
[ 0 US( )] RTy’ ( )
ar
PrCph Gy
Qo = 0 is the gas flow from the side of the plate,
i 0
[ v [ (90 4 ey or 0 T P9 ar Qe (P2Cua+p)Cuv)T+r0p)
F{(cha a7 ot Cv ) + (P2Cua + PCu) Gt + 1057 W}Jr? Fop.
= 1 Qepy | V Op)aT
Q1 ST + 51 ot
1 erv + Vapa
i Spd+p) TS OT

3. The method of solving the nonlinear problem

We solve the formulated nonlinear boundary value problem by two methods for comparing the accuracy
of our results.
Construction of a difference scheme.
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Let us integrate the matrix Eq. (11) with respect to z over the interval x, — %, Tn + % for

t =t = kAt. We obtain R
S OBk k k
_/m% S daJf = TE =0, (13)
Equation (13) after the difference approximation is reduced to the difference scheme. A three-point
approximation of the spatial variables is used. The system of nonlinear algebraic equations is solved
by Newton’s method.

The second solution method is a linearization method.

In order to solve the boundary value problem, in addition, an iterative process is built, at each
step of which a linear boundary value problem is solved for the next approximation, which uses the
information of the previous one. A small time step is used to ensure convergence of iterations.

If an approximation u; = (T, a, p!) of the problem solution is known, then the exact solution u*
can be presented as follows u* = u; + Au;.

Put v* = wu;41.

Based on the Lagrange formula

: : . / . / . / Tit1—T;
Euii(t,x)] = E [u(t,x)] + {[E[ui(t,a;)]]T, [Elui(t, z)]] [E[ui(t,x)]]pa} [pfﬁi:?;l
Bt )] [Blustt, )] Bl )], Lfi;; ] ; (14)
J(t,x,uiq) = —A(t,x,ui+1)%—i(t,w,ui+1,ui+1)
Tip1—T;
= Jui(t, x)] + {J[ui(t, )7, Juit, )]y, Jui(t, )], } |:Pj::1:g21:|
Tz‘/+1_Til
+ {J[ui(t,x)]ép,,J[u,-(t,x)]’a,,J[u,-(t,x)];),a} [ lagﬂ—al; ] (15)
Pait17Pai

Using quadrature formulae of the interpolation type according to the 3/8 rule [18], we obtain the
difference scheme

1/AEF |
= +6
s\ At At At

where AAE; = & [EF — EF1], EF = E(ul),

AEF  AEE 1
+ +1> + M(Jv]fﬂ/z - Jflf—1/2) =0, (16)

T r/aspe = = {[A]éf/a/t’a [g_i] 4l [66_5:|/T/a/pa}’

Yo, = {[A] Edl } , (1)

T/ o
by | ]ﬁf Jot) pa the differentiations with respect to T, a, p, are denoted.
Denote oF
[E(uy tv :E):| = [Ezkn] ) [J(’LL, t7 x)]ui7tk,x7l = [Jzkn] ) (18)
Ui, tk,Tn

B — B

1 n
Ji (tkaﬂfn+1/2) =73 (Aﬁ + Aﬁﬂ) Ax

Taking into account Egs. (14), (15) and the boundary conditions
< AEk AE{f) 1

1 L _

sUa ) T A @) =0

1 ( AEk AEY_, 1 "

§<3 Ar T A ) A (@ Ivap) =0 (19)
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we arrive at the iterative scheme of linear equations. If the i iteration of the solution u is known,
then using Lagrange’s formula E2k+1,n =EF + Efm(ufn — uk ), we obtain

Iz—i—l n+1/2 — Iik,n—i-l/Z + [fin+l/2 (uf-i-l,n-‘rl - ufn-l—l) + Igi,n+1/2 (uf—i-l,n - ufn)
Here EF | IZ n1/2 A€ values of the vectors E;, I; at the points (n, k), (n +1/2,k).

To verlfy the result, we apply a slightly modified method of linearization, which is less time-
consuming for the difference scheme. We proceed from Egs. (11), (12), (16)—(19), where Qo =
(qho, @m0, qa0) are the flows of enthalpy, moisture, and air through the surface x = 0. Then g, = 0,
G20 = 0, gno = @1 — ppcyhATE /AL, N is the number of nodes on x; Q1 = (qn1,¢m1,¢a1) are flows
through the surface z = [:

qn1 = ‘S/ AAt [(paNCva + poncon) TN + Topin | + ﬁ [(XNCpa + cpo)Tn +70);
VA Qe
dm1 = ‘S/AAtp”N * 5(22+XXN);
eAN
Gl = G AN T ST Xy (20)
Based on Lagrange s formula, we present
Ef 1, = EF + B, (uf, — ), (21)

uk k k k k
Jz+1 n+1/2 = Jzn+1/2 + J1m+1/2( it1,n+l i,n—i—l) + sz+1/2 (ui—i-l,n - ui,n)a

where E¥ | J2n+1/2 the values of the vectors E;, J; at the points (n, k), (n+1/2, k), respectively. E¥, |
me +1/2) Jéfm 41/ ATe matrices formed as follows:
Bl = OEF OEF 8Eﬁ} Jk 8Jn+1/2 OT% 1o O 1o
in T ’ ’ ’ 1 1/2 = !
" LOTE Ok Opl, |yt TR 0T, 0ak Ly Ok,
Jk _ aJn—i—l/2 8Jn-i—l/2 8Jn-i—l/2 (22)
12 = | TOTE " " dak " opk,
By analogy

k k k k k k k
J2+1 n—1/2 = = Jip— 12t Jlm—1/2 (ui+1,n—1 - ui,n—l) + sz_1/2 (ui+1,n - ui,n)a
k _ 7k k k
where Ji, = [T 1/2] ins1/2 = [Jm+1/2]7

Jk. _ 8Jn 1/2 a']rli 1/2 a']n 1/2 Jk _ a']n 1/2 a']n 1/2 a']n 1/2
lin—1/2 3T7]f_1 9ok ok 8pan—l iv 2in—1/2 8Tr’f ) 80[5 ) 8pan iv
where
QAT 1 () Fpg —F | [AR+ AL ] OFy,
+l/an+1/pa n+1 2 n—i—l/an—i-l/pa n+1 Az Az Trlf+1/alri+1//7§ n+1
8J5+1/2 _ 1 Frg —F | [AL+ A7 ] OF}
Tk [k [k, 2 3T’“/a’“/pan Az Az Ty [og | pli
AIN_y s 1 k) Fpoa —Fy | [Ay+ AL ] OFk
aTk l/an l/pan 1 2 o1, n l/an l/pan 1 Az Az 8Trlf—1/afz—1/p];n—1 ’
aJ)_ 2 1 OA (uy) Fy—Fy 4 [Af + Ay OFy
aTy/ak/pk, Ty /oy / plim Az Az OT}/af/pky
The variables Qg, Q1 are presented in the form:
(Qolf11.0 = [Qolio + [Qb1Eo (w0 — ulo) + [QF1Eo (wiF — i),
[Qo]i-i-l,N = [Qo]i,N + [Ql]i,N( f+1 N~ ) Q31 v (u f+11N ui]_\fl)7 (23)
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where
A[Qo]F A[Qo]F
y = 0.0 y = 0.0
[QO]Z,O aTé“ » Vs _ia [QO]Z,O 8Té€_1 » Vs ia
Olfy = 0[Q1lfy 01Q1lfy O1Q1fy ] Ok — O[QIF N 0@y D1ty
LN ory ook T opky | LN OTE=L " okt phyl

Taking into account these ratios, Eqs.

(16)—(19) are written as follows:

|:8ztE110 + Al <J§Z% - (Q(l))?o)} (U?ﬂo - U?o) - [%Eﬁ_ol + 13: <(Q%)fo)] (u fﬂlo ufo_l)
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where [Qo]%, = [qe—ppcphOTéAﬁ(? 1] |
0 i
Q1 =1[bj], i=13,
b = % { <5((;acva gg(j (ZCW) T+ (p2Cua + p2C0) (Z ngo ‘Z}
Qe (P2C0a + PCu0) T + 10p})
5 (Pl + £Y) ’
1 Qe VOLIT 1 Qb VoL
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The transfer coefficients are taken from the Luikov’s work [19]. This model describes mass transfer
processes under moderate heat loads.

The capillary-porous material for which

5\ Ao+ (AL —Ao)sin g, a < ay,
AL, o > Q).
Here \;, = 0.06 W/(m K), a;y = 0.1;
ON [ gh-(AL—Ao)eos g, a < ay,
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PC = — | T ) a0 a5 30 a5 a7 EVE .
(MU * Ma> B 50 =30, a0 My or  \, ", )
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4. Results and discussion

Calculations are made for an aluminum plate and a capillary-porous material of different porosity (cork
tree). The flow of the continuous phase is assumed to be slow. Inertial terms are neglected. Transfer
coefficients are considered to be known functions of saturation and temperature, Ty = 290K, h =
2-1073m, Dyp = 1.5Drg, g = 0.2, Py = 1.01325 - 10° Pa, R = 8.31J/Kmol, M, = 1.8 - 10~3 kg/mol,
M, = 2.9-1073kg/mol, Cp, = 1.006 - 10* J/(kg-K), Cp, = 1.103 - 103 J/(kg'K), Cpa = 718 J/(kgK),
Cypy = 862 /(kg'K), ar, =9.5-107L, rf =2.3-10°J /kg, P. = 10Pa, [ =5-102m, L = 3-10"%m,
IM=9-10"" Cp = 4.190 - 103J/(kg'K), Cop = 103J/(kg'K), K = 10~ m?, u; = 5-10~*kg/(m-s),
pef = phg = 1075 kg/(m:s), Doy =5-107m? /s, \g = 6- 1072 W/(m-K), A\, =6 - 107! W/(mK), oy =
85-1071 ay = a, = 1071, pg = 6- 1072 kg/m?, pr, = 103kg/m?, §p = 1073 1/K, Do = 1073 m? /s,
T.=327TK, s/S =107 V/S =3-10"2m.
A comparison of the accuracy of the calculation results is given in Table 1.

Table 1. Temperature and moisture calculation results (division along z =4, t =5).

The first method of linearization | The second method of linearization
Temperature Moisture Temperature Moisture
297.17 0.59 297.17 0.59
297.03 0.58 297.03 0.58
290.01 0.57 290.01 0.57
267.71 0.72 267.70 0.72
304.49 0.57 304.50 0.57
301.83 0.55 301.83 0.55
284.67 0.56 284.66 0.56
259.74 0.81 259.72 0.81
311.52 0.54 311.52 0.54
304.07 0.53 304.08 0.53
279.45 0.57 279.44 0.57
257.16 0.87 257.14 0.87
317.80 0.50 317.80 0.50
304.88 0.50 304.88 0.50
275.91 0.59 275.90 0.59
256.85 0.92 256.85 0.92
323.06 0.46 323.06 0.46
305.28 0.49 305.28 0.49
274.05 0.60 274.04 0.60
255.93 0.95 255.91 0.95

As an example, porous materials with the porosity II = 0.4, 0.6, and 0.8 heated by heat flows
g =3-10% 5-103, 10* are considered and the influence of various parameters on drying processes is
investigated. The results of the calculations are shown in Figures 2-7.

The solutions of the problem are obtained by finite-difference and iterative methods, and the
comparison of the results of these solutions is used to study their accuracy.

Calculations show that depending on the amount of heat flow, porosity, and initial saturation of
the capillary-porous material, evaporation proceeds in different ways. Concerning the dependence
of temperature on porosity, under the action of the flow ¢ = 10%, 5-103, 3103 and II = 0.4, 0.6
during 5 - 10%s, the temperature is a monotonically increasing function; but at ¢ = 10% and II = 0.8,
this dependence is no longer monotonous either inside the material or on its surfaces. With these
parameters already at 1.5 - 10%s, moisture of a certain mass is released from the material, while the
temperature first drops slightly and then increases over time more slowly than in a material with the
same characteristics but with lower porosity. At the same time, the less the porosity, the greater the
growth gradient.

At the same porosity and the amount of heat flow, at the beginning of the evaporation process,
the temperature increases faster with a lower initial moisture content. Figures 2, 6, and 7 demonstrate
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the change in temperature over time for different heat flows and different porosities; Figures 4, 5 show
a change in time of relative saturation for the same flows and porosities in the process of an irregular
regime of conductive drying. Studies of the influence of the initial saturation for the heat flow intensity
of ¢ = 5-102 W/m? and the porosity of the material II = 0.8 have shown that the greater the initial
saturation, the faster it increases at the beginning of drying and the slower it decreases over time. At
the initial saturation o = 0.8 at the beginning of the process, the saturation increases faster from the
side of the plate heating at a porosity of a = 0.6 and more slowly for II = 0.4. Graphs of temperature
variations in time show that the greater the porosity, the slower the temperature increases on the
surface from the heating side and from the cavity side. At the same time, with porosity II = 0.8, the
temperature variation for the flow rate of 10* W/m? has an oscillatory character.

5. Conclusions

In the article, a system of essentially non-linear differential equations of heat and mass transfer for
the dense packing of capillary-porous materials based on the approaches of the theory of a mixture
of porous and dense packing of dispersed materials of multicomponent three-phase media is obtained.
The change in the characteristics of the phases making up the body, depending on the temperature
and the initial relative saturation, affects the behavior of both the temperature and the saturation of
the porous body during contact drying of the material. These characteristics are especially affected
in the first stage of drying when the influence of the initial conditions is important. Therefore, the
phenomena occurring at the stage of heating, with high initial moisture content, are considered.

Calculations have shown that, depending on the magnitude of the heat flux, porosity, and initial
saturation of the capillary-porous material, evaporation proceeds differently. The temperature (depen-
dent on porosity) under the action of the flow ¢ = 3-103, 5-10%, 10* W/m? with the porosity IT = 0.4,
0.6 during 500s is a monotonically increasing function of time, but for ¢ = 10* W/m? and II = 0.8,
this dependence is no longer monotonous either inside or on the surfaces of the material. With a heat
flux ¢ = 10 W/m? and the porosity II = 0.8, already at the 150" second of drying, moisture of a
certain mass is released from the material (condensation caused by oncoming warm and cold flows),
while the temperature first decreases slightly and then increases with time slower than in a material
with the same characteristics but with less porosity. In this case, the lower the porosity, the greater
the gradient of temperature rise. This property is used in problems of thermal protection of materials.
With the same porosity and heat flow at the beginning of the evaporation process, the temperature
increases faster with a lower initial moisture content of the material.
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PosrysiayTo npobsieMy KOHJLyKTUBHOIO (KOHTAKTHOIO) CYIIIHHS KAILJISPO-IIOPUCTOrO Ti-
JIa B IAPOIOBITPSHOMY (Ta30BOMY) CEPEIOBHII II€PEIAdeio TEIIOTH 0 MaTepiasy npu
KOHTAKTIi fI0ro 3 HArpiTUMu MoBepxXHsAME Marepiasy. OTpUMaHO CUCTEMY CYTTEBO HEJTiHi-
HUX JudepeHIiaJIbHUX PIBHIHD TeIIOMAacOlepeHeCeHH s /Il OIIUCY TaKoro mporecy. s
po3B’s3yBaHHs cHOPMYIbOBaHOI 33/ 1a4i TerioMaconepenecents (6e3 BpaxyBaHHs Jedop-
MATHBHOCTI) 3aCTOCOBAHO METOJIMKY PO3B’ I3y BAaHHsI HEJIIHIHHNX KPaloBUX 3189 Y BUTJISIL
iTepariiifHoro mporiecy, Ha KOXKHOMY KPOIIl STKOT'O PO3B’sA3yeThes JiiHiliHA KpaiioBa 3a1ada.
IIpoBeneno mepeBipKy pe3yiabTaTiB MeTOLy ABOMa crrocobamu. Boru mobpe y3romKyoThes.
IIpoBeieno uncenbHUT €KCIIEPUMEHT JIJIsT MaTEPiaiB TPhOX BU/IIB MOPUCTOCTi. Pe3ynbraTu
npejcTaBieno rpadidao Ta TadbauntuHo. BuBegeHo 3aKOHOMIPHOCTI KOHTAKTHOI'O CYIITiHHS
KalllJITPO-TIOPUCTUX MaTepiasiB B MapONOBITPIHOMY CEPEJIOBUIILL.

KntwouoBi cnoBa: xonmaxmme Cywinmi;, KaniAapHO-noOPpucCmul Mamepias; Cucmema
HEATHITHUT QUPEPEHUIAALHUT PIBHAHD; IMEPAUItiHUl npouec; AiHItiHna Kpatiosa 3a0a4a.
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