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Abstract: The aim of this work is to explore and analyze an 
unconventional style of programming based on a pro-
pagator-oriented model of computation. The paradigm of 
propagation is characterized by networks of local, inde-
pendent, stateless machines interconnected with stateful 
storage cells. This model allows for a highly modular design 
and multidirectional computation, enabling the creation of 
complex systems that can respond to changes and update 
their state accordingly. 

This work provides an overview of the propagator-ori-
ented programming model, its motivations, and its 
advantages over other well-known alternative styles, using 
unsophisticated examples written in the Java programming 
language. We illustrate how propagator networks can be 
used to build flexible and efficient systems and present a 
basic framework for building such networks. The foun-
dational components of the propagation model are imple-
mented in Java as groundwork for the general-purpose 
framework. 

We demonstrate the power of propagator-oriented prog-
ramming through an example of a Pythagorean Theorem 
implementation. The example shows how the model can be 
used to build complex systems of an arbitrary number of 
constraints and cells. We highlight the importance of infor-
mation propagation over limited linear computation and the 
benefits of the multidirectional computation enabled by 
propagator networks. 

Index Terms: propagators; constraint programming; 
multidirectional computation; Java. 

I. INTRODUCTION 
The field of computing has come a long way since 

the invention of the first programmable computer. Ho-
wever, the linear computing model that is at the heart of 
conventional computing is still limited in its ability to 
handle certain classes of problems. In particular, the 
imperative programming style that is typically used to 
write computer programs can be difficult to apply to 
problems that involve many interconnected variables. This 
is where the propagator-oriented programming model 
comes in. 

Propagator-oriented programming is a computational 
paradigm that is designed to handle complex problems 
that can be presented as networks of independent nodes. 
The model is based on the idea of propagators, which are 
simple computational elements that can be used to 
represent the dependencies between variables. The key 
advantage of the propagator-oriented programming model 

is that it can handle many variables that are interdependent 
in a way of being both efficient and elegant. 

Propagators lend themselves best to problems that 
can be presented as networks of independent nodes, but 
they are not limited to this kind of problem. The propa-
gator-oriented programming model can be generalized to 
other kinds of problems, as long as they can be expressed 
in terms of dependencies between variables. This makes it 
a versatile tool for tackling a wide range of computational 
problems [1]. 

In this article, we will explore the propagator-
oriented programming model in more detail. We will look 
at the limitations of conventional computing models and 
imperative programming styles and explain how pro-
pagators can be used to overcome these limitations. We 
will also examine an example of applying the propagator-
oriented programming model and discuss the potential for 
future research in this area. 

Over the past few decades, there has been significant 
research around constraint programming and logic 
programming, which are closely related to the propagator 
model of computation. These programming paradigms 
have been used to solve a wide range of problems, 
including scheduling, planning, and optimization. 

• Constraint programming is a programming para-
digm that involves specifying a set of constraints that must 
be satisfied by a set of variables. The goal is to find a solu-
tion that satisfies all the constraints. Constraint program-
ming has the advantage of being able to solve problems 
that are difficult or impossible to solve with other pro-
gramming paradigms. However, it can be computationally 
expensive and may struggle to handle problems with 
many variables or constraints [1]. One particular Java 
framework provides a platform for constraint program-
ming in the form of a library [3]. It offers a declarative 
approach to problem-solving, allowing users to state the 
set of constraints that must be satisfied in every solution. 
The library uses a combination of constraint filtering algo-
rithms and search mechanisms to efficiently solve the 
problem. 

• Logic programming, on the other hand, involves 
specifying a set of logical rules that describe the relation-
ships between different entities in a problem domain. The 
goal is to derive logical consequences of these rules. Logic 
programming has the advantage of being able to handle 
complex problems with many interdependent variables. 
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However, it can be difficult to express certain kinds of 
problems in a logical framework, and the search space can 
be very large [4]. 

• Reactive programming is another programming 
paradigm that is closely related to the propagator model of 
computation. Reactive programming involves program-
ming with asynchronous data streams, where the program 
reacts to changes in the data stream. Reactive program-
ming has the advantage of being able to handle real-time 
data streams and can be used to build responsive user in-
terfaces. However, it can be difficult to reason about the 
behaviour of a reactive program, and it can be difficult to 
debug [5]. 

The propagator model of computation offers several 
advantages over these existing paradigms. Firstly, propa-
gators are designed to handle many interdependent vari-
ables, making them ideal for problems that involve 
complex networks of dependencies. Secondly, the 
propagator model allows for the efficient propagation of 
constraints, which can lead to faster problem-solving 
times. Finally, the propagator model can be used to handle 
real-time data streams, making it a useful tool for building 
responsive user interfaces. 

The propagator-oriented programming model has 
been the subject of intense research and development over 
the past few decades. One of the most notable contri-
butions to this field [6] represents a significant milestone 
in the development of propagator networks. 

The mentioned work provides a comprehensive and 
rigorous treatment of the propagator model, which is 
described as a general framework for reasoning about and 
comprehending complex software systems. The authors 
begin by introducing the basic concepts of propagator 
networks and demonstrating their flexibility and expres-
siveness through a series of examples. They then delve 
deeper into the theory of propagator networks, presenting 
a formal definition of the model and its associated 
algorithms. 

One of its key contributions is the discussion of the 
relationship between propagator networks and other 
related programming paradigms, such as logic program-
ming and constraint satisfaction. It is argued that propa-
gator networks offer a more general and powerful frame-
work for reasoning about complex systems than these 
other paradigms and provide several compelling examples 
to support this claim. 

The research makes the first step into the untrodden 
territory that is the field of propagator-oriented program-
ming. It is a testament to the power and elegance of the 
propagator model and has inspired a new generation of 
researchers to explore the possibilities of this program-
ming style. 

Although the work is undoubtedly fascinating and 
innovative, a major critique of the authors’ approach is 
that the Scheme programming language, in which they 
designed and implemented the propagator-based model, is 
not widely used in the design of real-world systems [7]. 

This fact limits the applicability of their work to practical 
situations where performance and scalability are critical 
considerations. 

Scheme is a dialect of Lisp, a language that is mainly 
used in academia and research settings [8]. While it has 
some advantages, such as being easy to learn and having a 
simple syntax, it is not a language that is widely used in 
industry. Most software development is done using 
languages such as Java, C++, Python, or JavaScript, which 
have more extensive libraries, are better supported, and 
are optimized for high performance and scalability [9]. 
Thus, while the propagator-based model framework 
implementation produced by Radul and Sussman may 
have theoretical value, it is unlikely to be adopted widely 
in real-world systems. 

Hence the focus of this work is to implement the 
propagator-oriented model using Java, one of the most 
widely used languages in the industry [10]. Java is a 
popular language known for its robustness, portability, 
and scalability. Implementing the propagator-oriented 
model using Java would make it more accessible to a 
wider audience, including practitioners who are familiar 
with Java and are looking for innovative ways to solve 
complex problems and model complex systems [11]. 

II. PROBLEM STATEMENT 
In the world of software development, the comp-

lexity of software systems is a well-known fact. With the 
increasing demands of modern software systems, the 
complexity of these systems is expected to increase. It is 
essential, therefore, that software systems are designed in 
a way that allows them to be flexible and evolvable. This 
means that software systems must be designed with the 
ability to adapt to new requirements, incorporate new 
technologies, and integrate with other systems. 

Software systems are often developed in a rapidly 
changing environment, where the customer needs, and 
market demands can change rapidly. This requires 
software systems to be designed with the ability to evolve 
over time. A system that is designed to be flexible and 
evolvable will be able to respond to changes quickly and 
efficiently, while a rigid system will struggle to adapt and 
may quickly become obsolete. 

Maintaining existing software systems can be a 
significant challenge in the world of software develop-
ment. As these systems age, they become increasingly 
difficult to maintain, making flexibility a key requirement 
for long-term functionality. Without flexibility, a rigid 
system will require significant effort to keep it up-to-date 
and functional, while a flexible and evolvable system can 
be easily updated, enhanced, and maintained over time. 

The problem statement that this paper addresses is 
how to design software systems that are flexible and 
evolvable. The propagator-oriented programming model 
offers a solution by representing dependencies between 
variables, allowing for the modeling of complex systems 
in an efficient and elegant way. This approach enables 
software systems to be updated and modified over time, 
without the need for significant effort to rewrite the entire 
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system. This paper explores how propagator-oriented 
programming using Java can address the problem of 
maintaining flexible and evolvable software systems. 

III. OBJECTIVES 
The main objective of this work is to demonstrate the 

effectiveness of using the propagator-oriented program-
ming model in Java to create more comprehensive and 
adaptable software models. Specifically, the aim is to 
reduce the time it takes to implement new features or 
modify existing ones in a software system. The following 
objectives are the central points of the study: 

1. Explore the use of propagator-oriented pro-
gramming model for building software systems and 
demonstrate its application using the Java programming 
language, highlight how propagator-based models can be 
effectively utilized to achieve higher efficiency and 
flexibility in software development. 

2. Evaluate the effectiveness of the propagator-
oriented programming model in terms of the time taken to 
implement new software features and modifications. This 
will be done by comparing the time taken to implement 
features using the traditional programming approach with 
that using the propagator-oriented programming model. 

The study aims to reduce the average duration 
required for the incorporation of novel functionality and 
modification of existing components by a minimum of 
20 %. Achieving these objectives will demonstrate the 
efficacy of the propagator-oriented programming model in 
creating more adaptable and comprehensive software 
models. Consequently, software developers will become 
familiar with a practical approach to software develop-
ment, capable of adapting and evolving with changing 
requirements, while simultaneously reducing the effort 
and time required for the implementation of new features. 

IV.  PROPAGATOR-ORIENTED MODEL 
ARCHITECTURE 

The propagator-oriented model is a computational 
model that is designed to handle problems that involve 
stateless autonomous cells. In this model, each cell is 
responsible for computing a value based on the values of 
its inputs and propagating its output to its dependent cells. 

At a high level, the architecture of the propagator-
oriented model can be divided into two main components: 
cells and propagators. Cells represent the stateless auto-
nomous computation units that can accumulate infor-
mation based on their inputs and their internal processing, 
and propagators are responsible for propagating the output 
of a cell to its dependent cells. 

The propagator network is a key element of the 
architecture. It consists of a set of propagators that are 
responsible for propagating the outputs of cells through 
the network. Each propagator is connected to the cells that 
are involved in its computation. The propagator network 
can be thought of as a directed acyclic graph (DAG), 
where the nodes represent propagators, and the edges 
represent the dependencies between propagators. 

Constraints are optional in this architecture. Howe-
ver, they are likely to be present, as practically every 
system is designed with some constraints in mind. Pro-
pagators are thus responsible for enforcing those cons-
traints. When a cell’s contents are modified, the associated 
propagators are alerted and possibly proceed to update the 
contents of dependent cells. 

One of the distinctive features of the propagator-
oriented model is the ability of cells to accumulate infor-
mation based on their inputs and their internal processing 
state. Unlike variables that store a single result of a 
computation, cells can store and update intermediate re-
sults, which can be used to better understand and optimize 
the computation process. 

In contrast to conventional linear models of compu-
tation, the propagator-oriented model is inherently non-
linear and can handle problems that involve complex 
networks of dependencies between cells. In this model, 
the problem is typically represented as a network of sta-
teless autonomous cells, and the solution is found by pro-
pagating outputs through the network, as opposed to linear 
models of computation, where the problem is represented 
as a sequence of steps that are executed sequentially. 

Consider a propagator network that models the 
expression of the Pythagorean Theorem: а2 + b2 = c2. 

Such a network can be represented as a directed 
acyclic graph with six cells: three for the values of a, b, c 
and another three for their squared values. Fig. 1 displays 
the DAG. Cell “a” and cell “b” represent the input var-
iables, and cell c represents the output variable. Cell “a” 
and cell “b” are connected to the respective inputs of 
propagators modeling the square operation. The outputs of 
the intermediate results, a2 and b2, are connected to the 
propagator modeling the add operation, which takes two 
input cells and produces an output cell that represents their 
sum. Finally, the output of the add propagator is con-
nected to the input of sqrt propagator that takes a square 
root of its input and stores the output in cell c, rep-
resenting the hypotenuse length. 

In this network, the intermediate results a2 and b2 are 
explicitly named and stored in dedicated cells. By storing 
the intermediate results, the network can be more easily 
understood and modified, as it separates the computation 
into smaller, more manageable units. Additionally, the 
intermediate result can be reused in other computations, 
which can lead to improved performance and reduced 
computational complexity. Although, in some cases, these 
memory requirements can be significant, and if the 
system's memory bandwidth is not sufficient, it could 
impact system performance. However, as the cost of 
memory continues to decrease and the availability of high-
bandwidth memory increases, the impact of storing 
intermediate results on system performance is likely to 
become less significant over time. 

In addition to the benefits for system design and 
performance, storing intermediate results in separate cells 
can also assist with the debugging process. In a propagator 
network, a change to one input cell can propagate through 
the network and affect multiple output cells. By storing 
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intermediate results in separate cells, it becomes easier to 
identify which cells are affected by a particular change, as 
the intermediate results act as a checkpoint for the 
computation. This can help developers isolate and debug 
issues more efficiently, as they can focus on the cells that 
are affected by the change and ignore cells that are not 
directly related to the issue. Additionally, intermediate 
results can be inspected and monitored during runtime, 
providing valuable insight into the computation, and 
helping to identify any issues or anomalies in the system. 

 

 

Fig. 1. Expression of the Pythagorean  
Theorem with propagators 

Things get more interesting when we enable the 
bidirectional flow of information. At first glance, it may 
seem that the primary benefit of using cells to combine 
partial information is just a matter of cleaner aesthetics. 
After all, a problem such as the building example can be 
easily simulated in an expression language by adding an 
explicit computational step between the squaring of the 
inputs and the summation of the intermediate results. 
Although this approach produces a less incremental com-
putation, as it must wait for all means of measurement to 
produce results before committing to the output, it can still 
work. 

However, the real advantage of using cells lies in the 
ability to construct systems with a much broader range of 
potential information flows. By allowing cells to 
accumulate and combine information from multiple sour-
ces, we can enable multidirectional computation, where 
the results of one computation can feed into another, and 
vice versa. For example, the Pythagorean Theorem can 
benefit from multidirectional computation, as the com-
putation of the length of the hypotenuse can feed into the 
computation of the length of one of the sides, and vice 
versa. 

The Pythagorean Theorem network enhanced with 
bidirectional computation is presented in Fig. 2. It can be 

seen that primary input and output cells, as well as the 
cells storing the intermediate results, now propagate 
information in both directions. The network can now be 
used to compute the length of one of the sides once the 
cells for the hypothenuse and the other side know their 
values. The same can be said about the summation step, 
which now involves not only the add propagator but also 
the subtract propagator, inverting the information flow. 

 

 

Fig. 2. Bidirectional information flow in the Pythagorean 
Theorem expression with propagators 

V. SIMULATING THE EXAMPLE IN JAVA 
Fig. 3 presents a Java class modeling the cell 

concept. It represents the foundational abstraction in the 
propagator-oriented programming model. A cell rep-
resents a node in the propagator network which accu-
mulates information. The class has a generic type T that 
represents the type of information that the cell will store. 
The cell is also named and knows about propagators that 
need to be alerted whenever its value changes. 

The value field stores the current value of the cell, 
and it is initialized as null, which has a special meaning in 
the propagator model. Null values indicate that a cell 
knows nothing about its value and thus should be treated 
carefully. The hasValue() method is designed for this 
purpose. 

The setValue() method is used to change the 
contents of the cell. If the new value is different from the 
current value, then this new information must be 
propagated through the network. The method sets the new 
value and calls the propagate() method of each of the 
associated propagators, alerting the propagators that the 
value of one of its inputs has changed and that it needs to 
recompute its output. 

The addPropagators() method is used to add 
propagators to the cell. The propagators list stores all the 
propagators that depend on the cell’s value. Whenever the 
value of the cell changes, all connected propagators will 
be alerted. 
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class Cell<T> { 
  public final String name; 
  private T value; 
  private List<Propagator> propagators; 
 
  public Cell(String name) { 
    this.name = name; 
    this.propagators = new ArrayList<>(); 
  } 
 
  public T getValue() { return this.value; } 
  public boolean hasValue() { return this.value != null; } 
 
  public void setValue(T value) { 
    if (!value.equals(this.value)) { 
      this.value = value; 
      propagators.forEach(Propagator::propagate); 
    } 
  } 
 
  public void addPropagators(Propagator... propagators) { 
    this.propagators.addAll(Arrays.asList(propagators)); 
  } 
} 

Fig. 3. Java class representing a cell  
in the propagator network 

The Propagator class in the propagator-oriented 
programming model, displayed in Fig. 4, is an abstract 
class that provides the foundation for all propagators in 
the system. This class serves as a blueprint for specific 
propagator implementations. The Propagator class conta-
ins two important fields – inputs and outputs – that 
represent respective cells connected to the propagator. 

The constructor of the Propagator class takes two 
lists of Cell objects as arguments – the inputs and the 
outputs of the propagator. Additionally, the constructor 
adds the propagator instance being constructed to the list 
of propagators of each input Cell object. This ensures that 
whenever the contents of the input cells change, the 
propagator will be alerted. 

The propagate() method of the Propagator class is an 
abstract method that must be implemented by each 
specific propagator. This method is called when any of the 
input Cell objects of the propagator change their value. 
When called, this method is expected to update the values 
of the output cells, ensuring that the propagator network 
remains consistent with the new input values. 

abstract class Propagator { 
  protected List<Cell> inputs; 
  protected List<Cell> outputs; 
 
  Propagator(List<Cell> inputs, List<Cell> outputs) { 
    this.inputs = new ArrayList(inputs); 
    this.outputs = new ArrayList (outputs); 
    inputs.forEach(cell -> cell.addPropagators(this)); 
  } 
 
  protected abstract void propagate(); 
} 

Fig. 4. Java class representing a propagator 

A specific propagator implementation is shown in 
Fig. 5. In particular, the addition operation is modeled. 
Every propagator implementation should declare a static 
register() method that configures the input and output cells 
by calling the internal constructor. There is no need for the 
programmer to interact with Propagator instances directly 
since they will be alerted whenever the contents of their 
associated cells change. The method propagate() is the 
core of any propagator, as it defines the actual compu-
tation steps. The Adder propagator, for example, first 
makes sure that both its inputs have values, and only then 
computes and sets the value of the output cell. Many pro-
pagators shall follow this style, as, typically, a compu-
tation makes sense only once all its inputs are provided 
with values. 

 

class Adder extends Propagator { 
  Cell<Long> in1; Cell<Long> in2; 
  Cell<Long> out; 
 
  public static void register( 
      Cell<Long> in1, Cell<Long> in2, Cell<Long> out) { 
    new Adder(List.of(in1, in2), List.of(out)); 
  } 
 
  Adder(List<Cell<?>> inputs, List<Cell<?>> outputs) { 
    super(inputs, outputs); 
    this.in1 = (Cell<Long>)inputs.get(0); 
    this.in2 = (Cell<Long>)inputs.get(1); 
    this.out = (Cell<Long>)outputs.get(0); 
  } 
 
  protected void propagate() { 
    if (in1.hasValue() && in2.hasValue()) 
      out.setValue(in1.getValue() + in2.getValue()); 
  } 
} 

Fig. 5. Propagator for the addition operation 

To express multidirectional computation using ato-
mic propagators, we need to decompose the computation 
into a series of smaller, directional computations. Each 
directional computation is represented by a specific pro-
pagator that connects input and output cells. These pro-
pagators are then combined in a network to form a larger, 
multidirectional computation. 

To illustrate this approach, it is worth considering 
the summation operation involving two inputs and one 
output. This computation can be expressed as a form of 
multidirectional computation by decomposing it into three 
directional computations: the addition operation and two 
subtraction operations. The propagators required to exp-
ress this are as follows: 

1. Subtractor Propagator: This propagator takes two 
inputs and produces an output that is the result of 
subtracting the first input from the second. 

2. Adder Propagator: This propagator takes two in-
puts and produces an output that is the result of adding the 
two inputs. 

By expressing the summation operation in terms of 3 
separate directions of information flow using propagators, 
summation can be modeled as a form of multidirectional 
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computation. Fig. 6 illustrates the blueprint of this compu-
tation. The method sum() takes two cells representing 
inputs to be added and their result is stored in the third 
output cell. However, unlike simple addition, it also con-
nects the output cell to both input cells using the Sub-
tractor propagator. This way, whenever the output cell’s 
contents change, the input cells are adjusted accordingly. 

 

public static void sum( 
    Cell<Long> in1, Cell<Long> in2, Cell<Long> out) { 
  Adder.register(in1, in2, out); 
  Subtractor.register(out, in1, in2); 
  Subtractor.register(out, in2, in1); 
} 

Fig. 6. Bidirectional propagation via summation of two values 

Fig. 7 illustrates the expression of the Pythagorean 
Theorem through a network of propagators. The Pythago-
rean class declares three fields of type Cell<Long> rep-
resenting the input values a, b, and c of the theorem. It 
also declares another three fields of the same type repre-
senting the intermediate results a2, b2, and c2, respectively. 

 

class Pythagorean { 
  Cell<Long> a; Cell<Long> b; Cell<Long> c; 
  Cell<Long> a2 = new Cell("a^2");  
  Cell<Long> b2 = new Cell("b^2");  
  Cell<Long> c2 = new Cell("c^2"); 
 
  public static void register( 
      Cell<Long> a, Cell<Long> b, Cell<Long> c) { 
    new Pythagorean(List.of(a, b), List.of(c)); 
  } 
 
  Pythagorean(List<Cell> inputs, List<Cell> outputs) { 
    this.a = (Cell<Long>)inputs.get(0); 
    this.b = (Cell<Long>)inputs.get(1); 
    this.c = (Cell<Long>)outputs.get(0); 
    quadratic(a, a2); 
    quadratic(b, b2); 
    sum(a2, b2, c2); 
    quadratic(c, c2); 
  } 
} 

Fig. 7. Expression of the Pythagorean Theorem using  
a network of propagators 

The Pythagorean class has a static method named 
register that takes three cells, representing the input values 
of the Pythagorean Theorem, which instantiates the net-
work by calling the constructor of the class. The const-
ructor takes two lists of cells, representing the input and 
output cells of the theorem, respectively. It first extracts 
the input and output cells from the lists and assigns them 
to the corresponding instance variables. It then applies the 
quadratic propagator network to the input values “a” and 
“b”, which similarly to the summation operation is a 
multidirectional operation. That is, it computes the power 
of 2 of its input cell’s value and stores the result in the 
output cell. And it is also capable of performing the 
inverse operation, taking the square root of the output, and 
storing the result in the input cell. The summation 

propagator network is then applied to a2 and b2, which sets 
the value of c2 to their sum. Finally, the quadratic network 
is applied to c, which sets its value to the square root of c2. 

Reflecting on the previously described Pythagorean 
class, two examples of its usage are presented. The first 
example, in Fig. 8, is quite straightforward; it expresses 
the computation of the hypothenuse length knowing the 
lengths of the other two sides of the triangle. The 
Pythagorean class instance is created, and values of “a” 
and “b” are then set to 3 and 4 respectively, which triggers 
the computation of c according to the Pythagorean Theo-
rem. Since the value of c was previously unknown, it is 
computed and stored in its cell, and then outputted by the 
println statement. The answer produced by the network, as 
expected, is 5. 

The second example, Fig. 9, is more interesting 
because it shows how the Pythagorean computation can be 
expressed in a multidirectional manner using a network of 
propagators. Here, c is set to 5 and b is set to 4, which 
should trigger the computation of a. The computation 
starts by calculating b2, which is 16, and then subtracting 
that from c2 which is 25. This gives us 9, which is stored 
in a2. Finally, we take the square root of 9 to get a, which 
is 3. The fact that changing the value of the output cell c 
can trigger the computation of one of the inputs shows that 
the computation is in fact multidirectional. 

The advantage of the propagator model is that it 
allows us to specify computations in terms of constraints 
rather than a linear sequence of steps. This makes it easier 
to specify complex computations involving many inter-
dependent variables, and to update the computation 
efficiently when the values of the variables change. In the 
case of the Pythagorean Theorem, the propagator model 
allows us to specify the computation in terms of constraints 
on the values of a, b, and c, rather than in terms of a 
formula that computes c from “a” and “b”. This makes it 
easier to reason about the computation, and to update the 
values of a, b, and c in any order, without having to 
explicitly compute the value of c each time the values of 
“a” and “b” change. 

 

Cell<Long> a = new Cell("a"); 
Cell<Long> b = new Cell("b"); 
Cell<Long> c = new Cell("c"); 
Pythagorean.register(a, b, c); 
a.setValue(3L); 
b.setValue(4L); 
System.out.println("c = " + c.getValue()); 

Fig. 8. Calculating the hypotenuse length 

Cell<Long> a = new Cell("a"); 
Cell<Long> b = new Cell("b"); 
Cell<Long> c = new Cell("c"); 
Pythagorean.register(a, b, c); 
c.setValue(5L); 
b.setValue(4L); 
System.out.println("a = " + a.getValue()); 

Fig. 9. Calculating the length of one of the sides 
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The Pythagorean Theorem example is just a simple 
illustration of how propagator networks can be used to 
express and solve a system of constraints. In more 
complex systems, there may be many interdependent vari-
ables, each with its own set of constraints. As the number 
of variables and constraints grow, traditional approaches 
to solving such systems become increasingly cumber-
some, error-prone, and time-consuming. 

In propagator-oriented programming, the goal is to 
express the constraints as propagators, which can then be 
composed into a network. Each propagator represents a 
single constraint or a computation, and the propagators 
interact with one another to collectively enforce the 
system’s constraints. By propagating information in a 
multidirectional way through the network, propagators can 
update their inputs and outputs in response to changes in 
other parts of the network. This allows for complex, 
interdependent systems of constraints to be modeled and 
solved in a flexible, modular way. 

The key advantage of this approach is that it 
emphasizes information propagation rather than limited 
linear computation. Instead of explicitly solving for each 
variable in a step-by-step fashion, propagator networks 
use constraints to implicitly enforce the relationships 
between variables, allowing them to update and propagate 
information in a more flexible and adaptive manner. This 
allows propagator networks to efficiently handle complex 
systems with many variables and constraints, and to 
provide a more elegant, maintainable, and scalable solu-
tion than traditional approaches. 

VI.  EVALUATION 
To compare the effectiveness of the propagator-

oriented programming model with a conventional object-
oriented approach in a real-world scenario, an experiment 
was conducted on the development of a software tool that 
performs calculations, organizes and manipulates data, 
and presents information in a tabular format, with an 
interface resembling that of a spreadsheet. The experiment 
involved two teams of software engineers from the in-
dustry, with approximately equal levels of skill and expe-
rience in Java programming. All members had a minimum 
of five years of experience in software development, with 
expertise in software design, development, and testing. 
One team employed a conventional object-oriented 
approach to software development, while the other team 
was introduced to the propagator-oriented model and had 
a week prior to the beginning of the experiment to get 
familiar with the model. The experimental development 
process comprised an incorporation of five distinct user 
stories that encompassed various functional requirements. 
Three of the user stories mandated the incorporation of 
new functionality, while the remaining two required the 
modification of significant segments of pre-existing code. 

The team that used the conventional object-oriented 
approach implemented the fundamental version of the 
application within 9 days. Incorporating each novel 
feature mandated an additional timeframe ranging from 

two to six days for successful implementation. However, 
incorporating breaking changes led to a marked decrease 
in the development pace, requiring complete attention of 
all team members, and leading to a supplementary 13 days 
of development time. In summary, the entire development 
process lasted for a total of 24 days. 

On the other hand, the team that adopted the 
propagator-oriented model developed a basic version of 
the application within a period of 10 days. Incorporating 
new features demanded a timeframe ranging from one to 
four days for successful implementation. Moreover, the 
incorporation of breaking changes did not pose significant 
challenges, as the system exhibited notable flexibility and 
adapted seamlessly to such modifications. Consequently, 
the entire development process was completed within a 
timeframe of 20 days. 

The comparative evaluation of both approaches 
adopted for the development of the application indicates a 
noteworthy reduction of 17 % in total development time, 
and 30 % in duration required for implementation of new 
features and modification of existing ones to meet user 
requirements. 

As is characteristic of any software system, new 
feature requests from users are likely to occur as the 
system evolves over time. Based on the experiment 
conducted, it is evident that the propagator-oriented model 
represents a more efficient approach towards maintenance 
and evolution of software. Therefore, it is reasonable to 
expect that the difference in development time between 
both approaches will increase as the system grows in 
complexity, and more changes are necessary. The propa-
gator-oriented programming model will thus become 
progressively more valuable as the system expands and 
develops, offering a more inclusive and adaptable frame-
work for software development. 

VII. CONCLUSION 
In conclusion, the propagator-oriented programming 

model presents a nontraditional approach to solving 
complex problems by building systems that can handle an 
arbitrary number of constraints and cells, and support the 
flow of information in more than one way. Unlike the 
conventional linear computation style, the model empha-
sizes the importance of information propagation and the 
interdependence of variables, allowing for more flexible 
and comprehensible systems. 

Through the Pythagorean Theorem example and its 
generalization, it can be observed how this model can be 
applied to various real-world problems, ranging from 
building systems that solve engineering problems to 
designing systems that lend themselves better to informal 
reasoning. The model offers a framework for building 
reactive, logic, and constraint programming systems that 
can adapt and update in response to changes. 

The outcomes of the experiment demonstrate a 30 % 
decrease in the duration required to implement novel 
functionality and modify existing features to meet user 
requirements. 
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