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Temperature stresses in a rectangular two-layer plate under
the action of a locally distributed temperature field
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A rectangular isotropic two-layer plate of an irregular structure is considered, the edges
of which are freely supported, and a constant temperature is maintained on them. Two-
dimensional Kirchhoff-type thermoelasticity equations and two-dimensional heat equations
written for an inhomogeneous material were used to study the temperature stresses in
the plate. Using the method of double trigonometric series in spatial variables and the
Laplace integral transformation over time, the general solutions of boundary value prob-
lems of thermoelasticity and heat conductivity for this plate under the action of a locally
distributed temperature field specified at the initial moment of time are written down.
The normal stresses in the layers of the plate are numerically analyzed depending on the
geometric parameters, heat transfer coefficient, and time.
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2010 MSC: 74K25 DOI: 10.23939/mmc2023.02.435

1. Introduction

Rectangular plates of a layered structure are widely used in many branches of modern technology,
in particular for protection against unwanted thermal effects, to increase the strength and rigidity of
structures, in the construction industry. Therefore, the calculation of temperature stresses in such
structures is an important engineering task.

Elements of inhomogeneous structures under the action of thermomechanical loadings were stud-
ied [1-5] by many scientists and analytical solutions based on two-dimensional equations of classical
and various refined theories were constructed [5-9]. Using Green’s function method, three-dimensional
thermoelastic fields in plates under the action of heat sources were studied in [10]. Numerical methods
were used [11,12] for the analysis of non-stationary heat processes in inhomogeneous plates. In [12]
studies of the influence of thermomechanical connectivity on the stress-deformed state of composite
structures were performed. The behaviour of composite plates under the condition of loss of tempera-
ture stability is considered in papers [12,13]. The solution to the dynamic problem of thermomechanics
for an electroconductive non-ferromagnetic plate under the action of electromagnetic impulses of micro-
and nanosecond duration was constructed [14]|. In [15], the stress-strain state of a layered cylindrical
shell under local convective heating was investigated. A more detailed review of various models and
methods of studying the non-homogeneous thin-walled structures is given in works [1,2,16,17].

This article investigates the thermostressed state of layered isotropic rectangular plates under the
action of a non-stationary temperature loading, given at the initial moment of time.

2. The basic systems of equations

Consider a rectangular plate with dimensions a X b and a constant thickness 2h, which is made of an
inhomogeneous isotropic material in the transverse direction. We refer the points of the plate space to
the rectangular Cartesian coordinate system z, y, z .

Let the plate be heated by heat sources and the external environment by means of convective heat
exchange through the side surfaces z = +h. To determine the thermoelastic state of such a plate,
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we will use the two-dimensional mathematical model of Kirchhoff. This model for thermostressed
problems consists of two independent systems of equations: a system of thermoelasticity equations
and a system of heat conductivity equations.

The system of equations of thermoelasticity. The equations of equilibrium of the plate in
the displacements u, v, w of the middle surface have the form:

2 _ 2 2 3 3 t
A<8 1 I/8> 1+I/A8 B<8 0 > A8T1+B8T2

02 T T2 a2 2 " ozoy’ 023 ozoy? oz | h oz’
1+v , 02 0 1—-v 0? o3 oIy BT,
A A _qdh DO
2 8x8y ut <8y 2 922 ( 8x28y> v Oy + h oy’
P o L 9
_B<@+axay2>“_3< T o 2@ ) < T o +28x28y2>w
2 a? Dt

Here {A,B,D} = ﬁ{El,Eg,Eg}, {A!, B!, D'} = ﬁ{,@l,ﬂg,ﬁg}, t(a:,y,z,T) is temperature field,

T, = 2th1 hhtzj_l dz (j = 1,2) are integral temperature characteristics;

h h
;= 2)2 = zatzzi_lz 1=1,2,3),
B [ B = [ @@ e (=123 @)

v is Poisson’s ratio, which is considered constant, E(z) and a;(z) are the modulus of elasticity and the
coefficient of linear thermal expansion, which depend on the coordinate z.
Physical equations for stresses and displacements have the form:

(C) @—l-u@— 82_w+ya2_w — (14 v)u(2)t
e 102 | o oy “\ 922 Oy? RS
 E(2) [ Ou  Ov O*w 9w
O'y—l_V2 [V%+a—y—2<yw+a—y2>—(1+V)at(2:)t:|,
_ E(2) ou v 0*w
oy = 2(1+v) <8_y or 2Z8:E8y> ' ®)

Physical equations for internal forces N, Ny, N, and moments M,, M,, M, in the middle surface
of the plate are obtained from relations (3 ) by mtegratmg them over the thlckness of the plate. We

obtain
Nx—A<%+Vg—:>—B<§; 8622>w AtT1—%tT27
N,=A G% + g—z> B <1/8$2 ) w— AT, — —Tg,
Mx:B<% V%>_D<8x2 8y2>w BTl—QtT2,
My:B<V%+g—Z>—D<V§§2 8:2>w BTl—TtTg,
Vo =150 (A5 ) 2B
Vo =57 B (5 + gy ) 20 axay] @

For the uniqueness of the solution of system (1), it is necessary to set the appropriate boundary
conditions. In the case of hinged support of the edges of the plate, we have:

r=0,a:w=0,v=0, M, =0, N, =0;
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y=0,b:w=0, u=0, M, =0, N, =0. (5)

Conditions (5) together with the system of equations (1) make up the boundary value problem

of the theory of temperature stresses for inhomogeneous isotropic plates in displacements. Based on

the known displacements and integral temperature characteristics, from relations (4) we determine the

forces and moments of the middle surface of the plate. The temperature stresses at an arbitrary point

of the plate can be found using formulas (3). Note that in the partial case of a homogeneous material,

system (1) gives two independent systems of equations: to determine the plane stress state and plate
bending.

3. System of heat conduction equations

The integral characteristics of temperature 77 and T5, which are included in the free members of
system (1), must be determined from the corresponding equations of heat conductivity under the
boundary conditions specified on the surfaces z = +h and at the edges of the plate. For convective
heat exchange on the plate z = +h surfaces with a linear dependence of the temperature on the
transverse coordinate z, the system of heat conduction equations is written in the form
o1y 0T

- CZ = _f17
or or
oTy 0T,

—C3——

or or

ATy — EﬁTl + ATy — ESTQ Ch1——=

A
ATy — €§T1 + AgTQ — <h_21 + 63) — Cyg—— —fg. (6)

Here

A= A, ((,f—i T 5‘—22) L ALC = / "G} (2) " =123) (7)

fj = t1€ + t2€3 —j + Wt 63’ = (Oé+ — (—1)'70[_) s

PR Y T AT L .
tj—2(tz (1)tz), Wj—/hwt<h> dz, (j=1,2),;

A(z) is heat conductivity coefficient; ¢, t; are temperatures of the media on the surfaces z = h and
z = —h, respectively; a™, a~ are coefficients of heat transfer from these surfaces; c.(z) is specific heat
capacity; 7 is time variable; w; is density of heat sources.

For the uniqueness of solution (6), it is necessary to add appropriate boundary and initial conditions
to system (6). If zero temperature is maintained at the edges of the plate, and the distribution of the
temperature field is specified at the initial moment of time, then we have the following conditions:

x=0,a: Ty =15 = 0;
yZO,b:leTQZO; (8)
7 =0: Ty (z,y,0) = TY(x,y), Ta(z,y,0) = T9(z,y). 9)

4. Methods of solving problems of thermoelasticity and heat conduction

Let the plate consist of a package of rigidly interconnected N homogeneous isotropic layers with
different properties {E(k),oz( ) AF) ¢ } and different thicknesses hi. We assume that the hypothesis
about the nature of the temperature dlstrlbutlon along the thickness of the plate is fulfilled for the entire
package of constituent layers. Then, according to the methodology outlined in [3], the thermophysical
characteristics of the layered plate can be represented using asymmetric unit functions Sy (z) in the

form
N-1

=q + (Gk+1 — qr) S+(z — z). (10)
=1
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Here ¢(2) = {E(2), (2), \(2), ce(2)}, qx = {E®), o ) A c6 } are physical and mechanical charac-
teristics of the k-th layer of the plate, z; is the coordlnate of the interface between the k-th and the
k 4+ 1-th layers, zp, = —h + me:l hom

1, >0 1, z>0
S+l@) = {Ox<0’5_() {0x<0‘
By substituting relation (10) in (2) and (7), we obtain expressions of integral characteristics E;, f;,

e

A;, C; in terms of the physical properties of the layers E*), agk), A& . In the case of a two-layer

plate, we have expressions for the modulus of elasticity FE;

Ey=h [QEU) + (E(2) _ E(l)) <2 _ %)] 7

h h
— 12 @ _ g2l (o
—h [ (B — )™ <2 hﬂ
h3
Ey = oM (E(2) _E(l))

3 1+(1—%>” (1)

and for other integral characteristics the expressions will be similar.

To solve the systems of differential equations of heat conductivity (6) and thermoelasticity (1), we
use the method of double trigonometric series. To do this, we expand the functions of temperature
loads f;, the unknown functions of displacements u, v, w and integral characteristics of temperature
Tj into double Fourier series in such a way that the boundary conditions (5) and (8) are satisfied:

[o¢] [o¢]
. T™m . Tn
fi= Z Z fjmnsin —x sin -V (12)
m=1n=1 a
S m ™
U= Z Z U,y cOS —x sin Ty,
m=1n=1 a
L - m ™
v = Z Z Vinn SIn —x cos Ty,
m=1n=1 a
> ™
= Z Z W sin —:E sin — e (13)
=1n=1
T = Z Z Timn Sln :E sin W;ly,
m=1n=1
Ty = Z Z Tomn Sln :E sin W—:y (14)
m=1n=1
Then the heat conductivity equation (6) after substituting (12) and (14) in it will take the form
Yy €q g
dT; dT:
Lmn + C/ 2mn + nglmn + g2T2mn = flmna
dT1 d7'1
dT dT:
O” Lmn + 2mn + g3T1mn + g4T2mn = f2mn' (15)
dm dm
Here
g =M\ (Hoy + pp) +Bi; g2 = Ay (1o, + 1) + Big;
g3 = [1~\2 (i + 12) + Biz} C; [As (e, + 1) + By + Al} C;
mmh mnh 2)\0 Cg CQ ~ Cl ~ A Eth
= ; = — =—"1 (C'= "’ = C=—; A= ;. Bi; =
Hom a ’ Hn b ’ n hCl T Cl Cg C’g7 ! Qh)\() i 2)\0
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. . h

. . h ~
fomn = <Bl2timn + Blltgmn + W2tmn m) C= Q2mn($v y)F2 (T);

Ao is some characteristic heat conductivity coefficient.

The solution of the system (15) under the initial conditions (9) is found by the method of the
integral Laplace transform

Tipn = Z oo = {(pj — 94)QumnZ1j (1) — (C'pj — g2)Q2mn Za; (1)
ksﬁj
+ [0 = 9T — (C'pj = 92) T exp(—pym1) .

Tomn = Z C*(p {( - 91)Q2mnz2j(7') - (C//pj - 93)Q1ng1j(7')
k#]

[0 = 90T — (C"p; = 93) o] exp(~p3m) b (16)

Here

T . ™ ‘
{anm7T6nm7Tnm :%/ / {Q 10, Th xy)sm smTydxdy, (1=1,2); (17)

Zij = / F;(u) exp ( —pj(m — u))du, (i, =1,2); (18)
0
—pj are the roots of a quadratic equation C*p* + (g1 + g4 — C'g3 — C"g2) p + 9194 — g2g3 = 0;
C*=1-C'C"; Tj=T+C'TY; Ty =19+ C"TY.
The system of differential equations of equilibrium (1), after substituting solutions (13), (14) into them,

is transformed into a system of algebraic equations for determining the Fourier coefficients U,pn, Vinn,
Winn of the desired displacements. We write this system in matrix form

mi1 Mmi2 Mi3 Unmn 51 71
miz Mo M3 Vin | =1 52 | Timn+ | 72 | Tomn (19)
mi3 Moz M33 Wnn 53 T3
Here
v 1 +v B
mipp =—A <Nm + —M%> mi2 = 5 Apmpin; M3 = h (/%271 + /’1/37/) Hms;
—v D 2
mag = —A <un + =5 Hm ) ma3 = (um +pl) ;Mg = 3 (o + 112) "5
t t t t D', 2
The solution of system (19) can be found in the form
Unmn 1S s; M1 r; M1
an = M Z SiMi2 Tlmn + TiMiZ T2mn7 (20)
Winn 5iM;3 riM;3

where [M| is the determinant of the matrix, (1m5),, 4, M;; are algebraic additions to the elements of
this matrix.

Based on known displacements and integral temperature characteristics, all other components of
the stress-strain state of the plate can be found using known formulas.
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5. Analysis of numerical results

Numerical studies were performed for a two-layer plate, which is heated by the temperature field given
at the initial moment of time by the expression
TO(z,y) = cos T e TW_30) nry vy T9(, ) = 0. (21)
2a0 2b0
Here N(z) = [S—(z — (z0 — ao)) — S4(z — (zo + a0))], N(y) = [S-(y — (yo — bo)) — S+(y — (yo + bo))],
t* = const; xg, Yo are coordinates of the centre of the heating area; 2ag x 2bg is the size of this area.
Then, from equations (17) and (21), we obtain the following expressions for the Fourier coefficients

0 4t* sin TZE0 cos TR0 sin Ml‘)y‘) cos mzbo ) a b
Tonn = 2a0b | (_a )2 2 b )2 2]’ if m7é2ao’n7é2b0;
™ ab [(m) —m} [(m) —"]
0 2t* sin T2 sin THX0 cos ”?}bo , a b
Tom = b b 2 5 , if m:2a0’n# 2b0;
Tmy [(m) -n ]
0 2t* sin 7020 cos TR0 gin TR0 a b
Tmn: o o \2 9 ) if m#2a7n22b7
0
™ [(m) —-m } 0 0
* L1 TMIQ 2 TNYO
o  t'sin = Fsin =% " _a _ b
Trm = , if m=_— n=_—.
mn 2ap 2bg
During the calculations, it was assumed that the heat transfer coefficients from the plate z = +h
surfaces are equal at = o~ = a, the ambient temperature is zero, and there are no heat sources.

For the materials of the plate layers, steel and ceramics were chosen. The bottom layer is made of
steel with the following physical and mechanical properties:

EM =192GPa; v =03 oY =17-1071/K; A = 16.7W/mK; V) =500 /kg K.

The upper layer of the plate is made of ceramics, for which the physical and mechanical properties are
as follows:

E® =117GPa; v® =03; o =7.11-101/K; A® =2.036W/mK; ¢ =615J/kgK.

The values of other parameters are equal: h/a = 0.025; o = a/2; yo = b/2; ag/a = 0.25; by/b = 0.25;
o = AW,
For the given parameters, the dimensionless normal stresses o} =

and o = were

— 9z _ 9%
E(l)agl)t* E(l)agl)t*
calculated in the centre of the heating area (a/2,b/2). The change of these stresses depending on the
dimensionless transverse coordinate 2z’ = z/h for Bi =1, a/b = 3, ha/hy = 0.3 at different moments of
time 7/ is shown in Figures 1 and 2.

The stresses in the layers are linear in nature and have a break at the interface between the layers.
In the second layer, both stresses are tensile, and in the first layer, the stress o] is compressive, and the
stress o}, changes from a tensile value on the surface 2’ = —1 to a compressive value at the interface of
the layers. It was found that the maximum stress values are reached at the line of separation of layers.
Over time, the stresses decrease and level out across the thickness of the plate.

The change in maximum stresses over time for the values Bi = 1, a/b = 3 and different values of
the ratio of layer thicknesses h' = hy/h; in the first o}(1) and second o7}(2) layers are illustrated in
Figures 3—6.

It was obtained that with a decrease in the parameter A/, the maximum stresses in the first layer
decrease and increase in the second. The maximum stress values are acquired at the initial moment of
time, and with the passage of time, as a result of heat transfer, the temperature drops, and the stresses
decrease.

The dependence of the maximum stresses in each layer on the ratio of plate lengths a/b for i’ = 0.3,
7/ = 0.01 and different values of the heat transfer coefficient Bi is shown in Figures 7-10.
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Fig. 1. Change in normal stresses o} from transverse
coordinate 2’ for Bi = 1, a/b = 3, ha/h; = 0.3, at
different time points 7.
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Fig. 3. Change in time 7' of the maximum stresses

01(1) in the first layer for Bi = 1, a/b = 3, and dif-

ferent values of the parameter of the ratio of layer
thicknesses h' = ha/hy.
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Fig.5. Change in time 7' of the maximum stresses

o4(1) in the first layer for Bi = 1, a/b = 3, and dif-

ferent values of the parameter of the ratio of layer
thicknesses h' = ho/hq.
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Fig. 2. Change in normal stresses o} from transverse
coordinate 2’ for Bi = 1, a/b = 3, ha/h; = 0.3, at
different time points 7’.
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Fig. 4. Change in time 7' of the maximum stresses

01(2) in the second layer for Bi = 1, a/b = 3, and

different values of the parameter of the ratio of layer
thicknesses h' = ha/h.
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Fig. 6. Change in time 7' of the maximum stresses

04(2) in the second layer for Bi = 1, a/b = 3, and

different values of the parameter of the ratio of layer
thicknesses h' = ho/hq.
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Fig. 7. Dependence of stresses max of(1) in the first Fig. 8. Dependence of stresses max o4 (1) in the first
layer for ' = 0.3, 7/ = 0.01 from relation a/b and  layer for A’ = 0.3, 7/ = 0.01 from relation a/b and
different coefficient Bi values. different coefficient Bi values.
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Fig. 9. Dependence of stresses maxo/(2) in the se- Fig.10. Dependence of stresses maxc5(2) in the se-
cond layer for ' = 0.3, 7 = 0.01 from relation a/b  cond layer for A’ = 0.3, 7 = 0.01 from relation a/b
and different coeflicient Bi values. and different coeflicient Bi values.

The stress o4(1) and 0} (2) reach their maximum values for the square plate (a/b = 1), and the
stress o] (1) and o4(2) — for the ratio a/b = 3. As the stress ratio a/b increases, the stress decreases
monotonically. It was obtained that at a given time the stresses are greater when the heat transfer
from the plate surfaces z = +h is less.

6. Conclusions

Based on the linear equations of the Kirchhoff theory, the normal stresses of a two-layer isotropic
rectangular plate, which is heated by the temperature field specified at the initial moment, were
investigated. Heat exchange with the environment takes place through the side surfaces of the plate.
The closed solution of the considered problem was found by the methods of trigonometric Fourier series
in spatial variables and integral Laplace transform in time. The dependence of normal stresses in the
considered plate on geometric parameters, heat transfer coefficient and time is graphically illustrated.
The obtained results can be used to analyse the stress state of an isotropic rectangular plate with
coatings.
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TemnepaTypHi HanNpy>XeHHA Yy NPSIMOKYTHIA ABOLLAPOBIA NAAaCTUHI
3a Al 10KasIbHO PO3MoAisIeHOro TeMnepaTypHOro noss

Myciit P. C., 2Kunuk V. B., Iporomupenska X. T., Ceigpax 1. I'., [Huaxep B. K.

Havionasvruti ynisepcumem “JIvsiscora nosimexnixa’,
syna. C.Bandepu 12, Jlveis, 79013, Vkpaina

PosriisinyTo npsaMOKyTHY i30TPOIIHY ABOIIAPOBY ILIACTUHY HEPErYJIAPHOI CTPYKTYPH, Kpal
SIKO1 BLJILHO OIIEPTi 1 Ha HUX TiITPUMYETHCS CTaja TeMieparypa. s mpocikenns Tem-
IepaTypHUX HAIPYKeHb B IJIACTUHI BUKOPUCTAHO JBOBUMIDHI DIBHSIHHS T€PMOIPYZKHOCT1
tuny Kipxroda i nBoBuMipHi piBHSHHS TEILIONPOBIIHOCTI, 3alMCaHi JJisd HEOMHOPITHOTO
Marepiaity. 3 BUKOPUCTAHHSIM METOJ/Y HOJABLTHIX TPUTOHOMETPUIHUX PSIJIB 3& IPOCTOPO-
BUMH 3MiHHUMHU Ta iHTerpaJibHOrO IepeTBOpeHHd Jlamsaca 3a 4acoMm 3alMcaHO 3arajbHi
PO3B’SI3KU KPaoBUX 3a/1a9 TEPMOIPYKHOCTI 1 TEIJIOMPOBIIHOCTI /I TAHOT TIJIACTUHA 33,
Jil JJOKaJbHO PO3MO/ILIEHOT0 TEMIIEPATYPHOTO MOJIs, 33JaHOT0 B TOYATKOBUN MOMEHT Ya-
cy. HucnaoBo mpoaHa/Ii30BAHO HOPMAJIbHI HAIPYKEHHS B MapaxX IUIACTUHU 3aJIEKHO Bif
reOMEeTPUYHUX IapaMerpin, KoedirieHTa TeIIoBiamatd Ta Jacy.

Knto4oBi cnoBa: deowaposa naacmuna; HEPELYAAPHAG CIMPYKMYPA; AOKANGHULT MENAO-
00MIH; MEMNEPAMYPHL HANPYIHCEHM.A.

Mathematical Modeling and Computing, Vol. 10, No. 2, pp.435-444 (2023)



