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Machine learning algorithms have become very frequently used in natural language pro-
cessing, notably sentiment analysis, which helps determine the general feeling carried
within a text. Among these algorithms, Support Vector Machines have proven powerful
classifiers especially in such a task, when their performance is assessed through accuracy
score and f1-score. However, they remain slow in terms of training, thus making exhaustive
grid-search experimentations very time-consuming. In this paper, we present an observed
pattern in SVM’s accuracy, and f1-score approximated with a Lagrange polynomial.
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1. Introduction

SVM models are parametric algorithms used for machine classification and regression. Their func-
tioning is based on a matrix kernel that may be linear, polynomial, gaussian or sigmoid based, which
makes this type of algorithms enormously powerful estimators regardless of data linearity. Neverthe-
less, the size of kernel increases proportionally with the number of samples in the training dataset.
This means that larger datasets lead to larger kernel matrices, and consequently taking much longer
to fit. This issue becomes more imminent in an experimental environment where the goal is to explore
various combinations of hyper-parameters to improve performance metrics. Moreover, in the case of
text classification tasks in general, frequency-based vectorization algorithms such as TF-IDF tend to
generate multiple columns, each representing a word, making the calculation of kernel values more
time and memory consuming. Henceforth, the need of a predictable performance pattern is considered
a promising solution, as it would help obtain the parameters to an optimal performance score without
experimental tests.

2. Background

Several hyper-parameter optimization algorithms can be classified as model-free, gradient-based, and
Bayesian optimization. This section will discuss the advantages and disadvantages of some well-known
hyper-parameter optimization approaches.

2.1. Manual approach

As the name suggests, the manual approach consists of manually changing parameters until a satisfying
result is obtained. This method requires not only a tedious human intervention but also human
experience in terms of hyper-parameters that are objects of optimization [1]. A more automated
approach is often preferred when different algorithms are considered in an experimental study.

2.2. Random search

One of the most used hyper-parameter optimization algorithms in machine learning is random
search [2], which power relies on choosing random combinations of hyper-parameters with no reg-
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ular pattern or distribution. Despite the gain in training time, the probability of such algorithms
landing on an optimum is equal to skipping it, as parameters randomly fluctuate within their respec-
tive domains of definition. Ref. [3] has proven that a random search is an ineffective approach when
applied to Deep Belief Networks (DBNs). This implies the necessity of a more rigorous approach.

2.3. Grid search

In contrast to random search algorithms, grid search tends to exhaustively test every possible combi-
nation of hyper-parameters to find the best values for performance metrics. Ref. [4] used grid-search
hyper-parameter optimization (GSHPO) on an EDHS dataset for HIV/AIDS prediction, resulting in
an accuracy of 87.6 on the Gradient Boosting algorithm. While [5] have reached an accuracy score of
0.95 by using GSHPO on a sentiment analysis dataset of hotel reviews collected from Booking.com.
However, this approach remains time and resource-consuming, especially in a low-space configuration.

2.4. Cuckoo search

Cuckoo search (CSO) belongs to the family of nature-inspired algorithms of optimization, as it simulates
cuckoos’ nesting process which consists of finding the best host nest to lay their eggs. Analogically,
the CSO attempts to find the combination of hyper-parameters which gives the highest performance.
Given a set of combinations, one is arbitrarily chosen to be compared to a newly generated combination
using the formula indicated by the equation (1):

xi+1 = xi + m · a, (1)

where xi are solutions in the hyper-parameter space, a is the scaling factor, and m is the local random
walk, which can also be calculated via the Lévy flight formula (2) as the authors in [6] proceeded in
their study.
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where β is the step length, γ is a scaling parameter for Lévy’s formula, and δ is the minimum step
length. Figure 1 explains the workflow of the optimization process.

2.5. Particle swarm

Another algorithm inspired from nature is Particle Swarm Optimization (PSO); one of the most widely
used metaheuristics which was introduced by [7]. Its concept relies on the ensemble retrieval of the
global optimum, by generating a set of particles denoted P such that P is a subset of the hyper-
parameter space. Each particle pi is defined by its vectors Xi(t) and V i(t), which represent respectively
a hyper-parameter combination within the defined space and the velocity of the particle pi at the
iteration t. The vector coordinate of each particle changes according to its velocity, as shown in the
equation 3:

Xi(t + 1) = Xi(t) + V i(t + 1). (3)

Particle velocity is computed at each iteration via the formula (4):

V i(t + 1) = w · V i(t) + c · r1
(

best(pi) −Xi(t)
)

+ s · r2
(

Bt −Xi(t)
)

, (4)

where w is the constant weight inertia, r1 and r2 are random values between 0 and 1, c is the cognitive
coefficient, s is the social coefficient, best(pi) is the value of Xi(t) that yielded the best result so far
and Bt is the global optimum at the iteration t. The coefficients w, c and s are the parameters of
the PSO algorithm, they help control the balance between exploration and exploitation. The power
of the PSO resides in the use of several particles scattered around the hyper-parameter space, which
increases the probability of finding a better optimum in less iterations, however, this could still be
cost-ineffective regarding execution time when we consider that the objective function to optimize is
an SVM classifier. This caveat can be overcome by executing the optimization in parallel for each
particle, nevertheless, it would require a large computational power for a large set of particles.
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Fig. 1. Cuckoo search optimization flowchart.
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Fig. 2. Particle swarm optimization flowchart.

2.6. Polar bear optimization

Similarly, Polar Bear Optimization (PBO) [8] is an algorithm imitating the natural life cycle of polar
bears. It simulates the birth of a new bear by combining features from the best models in the opti-
mization space, and death is simulated by the generation of a new model with a random combination
of hyper-parameters from the optimization space.
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The algorithm resembles CSO in its iterative nature, however, the performance is ensured to be
improved since at each iteration the weakest model is replaced by a potentially more robust classifier,
which leaves at the end of the optimization process a set of more powerful estimators.
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Fig. 3. Polar bear optimization flowchart.

Table 1. Comparison between hyper-parameter optimization approaches.

Algorithm
Criteria
Efficiency Speed Human intervention

Manual optimization Depends on human experience Slow Yes
Random search Random Fast No
Grid search Depends on defined domain Slow No
Cuckoo search Efficient Medium No
Particle swarm Efficient Medium Initial parameters
Polar bear optimization Efficient (Eliminates weaker models) Medium No

Table 1 sums up the comparison between the different approaches we have discussed in this section.

3. Experimental study

Our experiment consists in training SVM models on four different datasets: Arabic Sentiment Twit-
ter Dataset (ASTD) [9], Moroccan Sentiment Twitter Dataset (MSTD) [10], Arabic Speech Act and
Sentiment (ArSAS) [11], and Multi-Domain Arabic Resources for Sentiment Analysis (MARSA) [12].
Since each dataset was designed for a different purpose, we have only conserved Positive and Negative
tweets in each dataset to assess SVM’ s performance on 2-way sentiment classification applied to var-
ious datasets with several features. We have varied the regularization hyper-parameter C during our
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experimental phase while fixing the kernel type as Radial Basis Kernel, in order to obtain an optimal
performance based on this parameter.

To analyze the performance of SVMs, we plotted accuracy scores against the parameter C such
that it varies between 0 and 1, during the rest of the study, we will denote by YM and ŶM respectively
the real values and the interpolated values.
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Fig. 4. Comparison between true performance scores
and interpolated scores on ASTD dataset.

Fig. 5. Comparison between true performance scores
and interpolated scores on ArSAS dataset.
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Fig. 6. Comparison between true performance scores
and interpolated scores on MARSA dataset.

Fig. 7. Comparison between true performance scores
and interpolated scores on MSTD dataset.

Upon looking through these observations, we calculated the mean absolute error and mean squared
error between real and interpolated scores.

Table 2. Error scores between real evaluation metrics and their interpolated values.

Dataset
Mean absolute error Mean squared error

Accuracy F1-score Accuracy F1-score

ASTD 26.81 87.73 2285.05 24357.73
ArSAS 39.35 66.11 4874.12 14119.45
MARSA 4.03 27.72 64.59 2699.11
MSTD 44.83 193.49 5955.81 112251.75

Experimentally, we observed that one dataset has significantly lower error values than others.
Therefore, we investigated four datasets we used so we can find potential correlations between error
values and any dataset related parameter, notably balance parameters in terms of speech act and
sentiment polarity. In this context, we calculated and normalized the number of tweets per class for
each dataset, as shown in Table 3.

Table 3. Percentage of tweet sentiment class and distribution coefficients per dataset.

Dataset Positive tweets (%) Negative tweets (%) ∆C ∆S

ASTD 32.12 67.88 0.2529 0.1068
ArSAS 37.07 62.93 0.1829 0.1059
MARSA 45.37 54.63 0.0655 0.1025
MSTD 23.84 76.16 0.3700 0.1228
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By ∆C(D) and ∆S(D), we respectively denote the standard deviation of tweet percentage per
sentiment class and speech act within the dataset D. By reading the results in Tables 2 and 3, we
have eye-witnessed a correlation between ∆C and ∆S on one hand, and error scores on the other hand.
Table 4 shows correlation values, which proves empirically that the accuracy of the interpolated F1-
score is linearly correlated with the balance of the dataset, either by classes or speech acts. Accuracy
scores do still correlate despite their lower coefficients of correlation. These results can be interpreted
as it is easier to anticipate the performance of the model on a balanced dataset than on an imbalanced
dataset.

Table 4. Correlation coefficients between interpolation errors and dataset balance
parameters for each evaluation metric.

Dataset balance parameter
Mean absolute error Mean squared error
Accuracy F1-score Accuracy F1-score

∆C 0.7582 0.9921 0.7521 0.9589
∆S 0.7184 0.9872 0.7655 0.9980

4. Conclusion and Future avenues

This study of hyper-parameter optimization applied to support vector regularization will potentially
reduce time and effort deployed to obtain a powerful SVM sentiment classifier, therefore, studies can
be further expanded to cover more hyper-parameters of different classification algorithms. Moreover,
this study has only been conducted on 2-way classification tasks, however, many benchmark datasets,
including those we used in our experimental setup, are designed for multi-way classification tasks.
Therefore, a potential research axis is to explore the validity of our theory on the datasets in their full
extent, as well as to explore the correlations with resulting coefficients of the Lagrange polynomial to
find new rules to estimate the accuracy score in advance.
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До полiномiальної апроксимацiї точностi методу опорних
векторiв, застосованого до аналiзу тональностi

твiтiв арабською мовою

Бану З., Ельфiлалi С., Бенлахмар Х.

Факультет наук Бен М’Сiк – Унiверситет Хасана II,

бульвар Коменданта Дрiс Аль Хартi, 7955, Касабланка, Марокко

Алгоритми машинного навчання стали дуже часто використовуватися в обробцi при-
родної мови, зокрема в аналiзi тональностi, який допомагає визначити загальне вiд-
чуття, яке мiститься в текстi. Серед цих алгоритмiв метод опорних векторiв (SVM)
є потужними класифiкаторами, особливо в такому завданнi, коли їхня продуктив-
нiсть оцiнюється через показник точностi та показник f1. Однак вони залишаються
повiльними з точки зору навчання, що робить вичерпнi експерименти з пошуку по
сiтцi дуже трудомiсткими. У цiй статтi представлено спостережувану закономiрнiсть
точностi SVM i показник f1, апроксимований полiномом Лагранжа.

Ключовi слова: полiном Лагранжа; метод опорних векторiв; машинне навчання;

аналiз тональностi текстiв; гiперпараметрична оптимiзацiя.
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