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1. Introduction

Regardless of the principle of averaging the physical parameters a of the statistical system, the problem
of deviation of the values of the means of physical quantities ∆a from their mean values a, i.e.,
fluctuations, remains relevant. However, a fluctuation measure can be equal to zero ∆a = a− a = 0,
since deviations of the given value towards larger and smaller values away from the mean are equally
likely. Therefore, the mean square of the difference (∆a)2 = (a− a)2 = (a)2 − (a)2, i.e., quadratic
fluctuation (dispersion) of a random variable, is considered to be a measure of fluctuations. Then, if
in a physical process the square a2 is viewed as its intensity, as in the case of a wave, then a = 0 and
the average energy will be calculated as W = k

∫

V a2dV , we will have the mean value W 6= 0 and the

measure of its fluctuation ∆a2.
The above mentioned proves how important an accurate statistical description of systems is. The

mean value of the energy of the system of N particles is equal to WN = NW1. Then, given N → ∞
the relative fluctuation of the additive quantity εW = 1√

N

√

W 2/W1
2 − 1 goes to zero, which is proved

by the experimental fact that the equilibrium state of the system is the most stable. Therefore, an
error analysis must be necessarily performed for statistical algorithms of experimental data processing,
both obtained by direct measurements and in the process of further mathematical transformations.
Given an arbitrary transformation function, direct and inverse problems of errors are distinguished. In
terms of the direct problem, an estimate of the variance and standard deviation of the transformation
function is obtained based on the specified errors of the argument. The calculation of the variance of
the errors of the arguments based on the specified variance of the error of the transformation function
refers to the inverse problem.

Corresponding mathematical transformations can be quite complex; therefore, the error transfer
method is often used [1–5]. It is especially important for normally NX(mX , σX) distributed random
variables (RV) X. A normal distribution is the most common. It is the limiting law that other
distribution laws tend towards. It is obtained by summing a considerably large number of independent
(or weakly dependent) RVs and the larger the number of the summed random variables, the more
precise it is. A normal distribution is typical of all RVs, whose deviations from the mean values are
caused by a large set of random factors, each of which is individually insignificant [1, 6–8].

A normal distribution is stable and capable of self-reproduction, therefore it is successfully used
in physical modelling, for example, laser cooling of atoms [9], phenomena of quantum mechanics [10];
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powerful computing resources for computer simulation of the dynamics of atomic-molecular compounds
have been created [11]; a specific area of statistical optics has been developed [12], etc. Thus, it is
subject to comprehensive research [13]. In the continuous RV model, a normal distribution is an
infinitely divisible distribution with finite variance and probability density

fX(x) =
CX√
2πσX

exp

{

−
(

x−mX√
2σX

)2
}

, −∞ < X < +∞, CX = 1. (1)

From the perspective of physical modelling, the range of dispersion of experimental values of BB is
limited, therefore, a truncated normal distribution is considered. Thus, this approach is used to model
the reliability of physical and technical systems [14], physical processes of charge transfer in electronic
devices [15,16]. The corresponding theoretical model was built a long time ago, in the works of Einstein
and Smolukhovsky [17, 18]. In fact, they proposed one of the first algorithms for mathematical data
processing for the purpose of estimating the distribution function and probability density of empirical
dependencies based on a sample of experimental data. The connection between Brownian motion
and the Gaussian distribution is evidenced by the well-known Fokker–Planck equation (or Kramers
equation) in physics [19, 20].

2. Results and discussion

This study is a continuation of the research [21]. In this paper, the problem of constructing statistical
models of direct transformations of RV by functions g(X) = eX , cosX RV X, of N(mX , σX) type
formulated to investigate the possibility of error transfer when transformations are performed by inverse
functions g−1(X) = lnX, arccosX. To do this, we consider case of transformations RV into two

X →
{

g(X) = Q→ g−1(Q),
g−1(X) = W → g(W )

}

→ X, (2)

in each of which it is possible to consider restrictions of set of allowed values of argument X depend-
ing on the type of variable conversion X by functions (1). According to the authors, the choice of
declared functions of RV transforms is relevant primarily for the application in physical problems of
the decomposition of trigonometric functions in a series with a basis of exponential functions

2.1. Case 1

X → expX → ln expX → X (3)

In case of conversion

Y = expX (4)

a nonnegative RV has a logarithmically normal distribution if its natural logarithm

lnY = X

is distributed normally. Then the law of distribution of the RV Y (4) is logarithmically normal:

f(y) =

√

p

π

1

y
exp

{

−p(ln y −mX)2
}

.

Applying functions Y = exp(X) and the inverted to them for converting to dimension units is
incorrect. Therefore instead of X, we introduce a new variable in relative units:

X = σXΘ.

Because σX > 0, the set of allowed values Θ remains the same as for X ∈ (−∞,+∞) and became the
normalization constant CΘ = CX = 1 and the statistical average g(Θ) = expΘ will be equal to:

expΘ =
CΘe

− m2
X

2σ2
X√

2πσX

∫ +∞

−∞
eθe

− θ2

2
+

mX
σX

θ
dx =

e
− m2

X

2σ2
X√

2π

+∞
∫

−∞

e−rθ2+(1+s)θdθ = exp

(

1

2
− mX

σX

)

,

{

r = 1
2 ,

s = mX

σX
.
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Using the table integral (2.3.15) in [13], we calculate (expΘ)2:

(expΘ)2 =
CΘ e

− m2
X

2σ2
X

√
2πσX

∫ +∞

−∞
e2θe−rθ2+sθdx =

e
− m2

X

2σ2
X

√
2π

∫ +∞

−∞
e−rθ2+(2+s)θdθ = exp

(

1− mX

σX

)

.

Thus, the variance DexpΘ of statistically independent RVs Θ, cosΘ, (cosΘ)2 will be equal to:

DexpΘ = (expΘ)2 −
(

expΘ
)2

= e

(

1−mX
σX

)

− e

(

1−2
mX
σX

)

= e

(

1−mX
σX

)

(

1− e
−mX

σX

)

.

Calculating the statistical average g−1(Θ) = ln expΘ:

ln expΘ =
CΘe

− m2
X

2σ2
X

√
2π

∫ +∞

−∞
ln eθe−rθ2+sθdθ =

e
− m2

X

2σ2
X

√
2π

∫ +∞

−∞
θ e−rθ2+sθdθ =

mX

σX
= Θ.

To calculate the conversion variance g−1(Θ) = ln(expΘ):

Dln expΘ =
CΘ√
2π

∫ +∞

−∞

(

ln exp θ − ln expΘ
)2

e−rθ2+sθdθ = (ln expΘ)2 −
(

ln expΘ
)2

we find the statistical mean (ln expΘ)2:

(ln expΘ)2 =
CΘ√
2π

e
− m2

X

2σ2
X

∫ +∞

−∞
(ln eθ)2e−rθ2+sθdθ =

e
− m2

X

2σ2
X

√
2π

∫ +∞

−∞
θ2e−rθ2+sθdθ =

= e
− m2

X

2σ2
X

∂

∂s

[

s

2r
exp

(

s2

4r

)]

=

[

1

2r
+
( q

2r

)2
]

= 1 +

(

mX

σX

)2

.

Then

Dln expΘ =
CΘ√
2π

∫ +∞

−∞

(

ln exp θ − ln expΘ
)2

e
− (σXθ−mX )2

2σ2
X dθ = Θ2 −

(

Θ
)2

= 1 +
m2

X

σ2
X

− m2
X

σ2
X

= 1.

Thus, the statistical averages and the variance of the transformation functions according to the
algorithm (3) are related to the parameters of the original RV mX , σX system of equations:







expΘ = e
1
2
−mX

σX ,

DexpΘ = e
1−mX

σX

(

1− e
−mX

σX

)

,
and

{

ln expΘ = Θ,

Dln expΘ = 1.

2.2. Case 2

X → lnX → exp lnX → X. (5)

Unlike the transformation model (3), the model (5) at the beginning of the variable conversion scenario
X, the natural logarithm function limits its set of allowed values to half a limited interval [0,+∞). Then
according to (2.3.15) in [13], for n = 0 the normalization constant in this interval CΘ[0,+∞)

= CX,[0,+∞),
so the statistical mean of the logarithmic transformation of a variable Θ[0,+∞) is equal to:

lnΘ[0,+∞) =

√

2

π
K(mX , σX)

∫ +∞

0
ln θ e

− θ2

2
+

mX
σX

θ
dθ =

√

2

π
K(mX , σX)

∫ +∞

0
ln θ e−rθ2+sθdθ,

K(mX , σX) =
e
−m2

X

σ2
X

1 + erf
(

mX√
2σX

) .

(6)

The integral (6) is not expressed by elementary functions, so we calculate it with the approximation

method X →
√
X →

(√
X
)2 → X:

lnΘ[0,+∞)
∼= lnΘ[0,+∞) −

1

2

σ2
Θ

(

Θ[0,+∞)

)2 , (7)
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where σΘ[0,+∞)
=
√

DΘ[0,+∞)
. Average (Θ[0,+∞))2 =

(X[0,+∞))2

σ2
X

, where

(X[0,+∞))2 =

√

2
πK(mX , σX)

σX

∫ +∞

0
x2e−px2−qxdx = K(mX , σX)

∂2

∂q2
1

K(q, p)

= σ2
X

(

1 +
m2

X

σ2
X

)

+

√

2

π
mXσXK(mX , σX).

Average

Θ[0,+∞) =
X[0,+∞)

σX
=

mX

σX
+

√

2

π
K(mX , σX),

so if Θ[0,+∞), Θ[0,+∞), (Θ[0,+∞))2 are statistically independent, the variance DΘ is equal to

DΘ[0,+∞)
= (Θ[0,+∞))2 −

(

Θ[0,+∞)

)2
= 1 +

m2
X

σ2
X

+

√

2

π

mX

σX
K(mX , σX)−

(

mX

σX
+

√

2

π
K(mX , σX)

)2

= 1−
√

2

π

mX

σX
K(mX , σX)− 2

π
K2(mX , σX) = σ2

[0,+∞).

Then according to (7),

lnΘ[0,+∞) = lnΘ[0,+∞) −
1

2
(

Θ[0,+∞)

)2

(

1 +

√

2

π

mX

σX
K(mX , σX)

)

,

where

lnΘ[0,+∞) = ln
X[0,+∞)

σX
= lnX[0,+∞) − lnσX .

Average

lnΘ[0,+∞) = lnΘ[0,+∞) −
1

2

σ2
X

(

Θ[0,+∞)

)2 = ln
X[0,+∞)

σX
− σ2

X

2

1−
√

2
π
mX

σX
K(mX , σX)− 2

πK
2(mX , σX)

(

X[0,+∞)

)2 .

Calculating the mean (lnΘ[0,+∞))2 with the method:
{

mg
∼= g(mX) + 1

2g
′′(mX)σ2

X ,

σ2
g
∼=
(

g′(mX)
)2
σ2
X +

(g′(mX ))2(µ4X−σ4
X
)

4 + g′(mX)g′′(mX)µ3X
∼=
(

g′(mX)
)2
σ2
X + 1

2σ
4
X

(

g′′(mX)
)2
.

(8)
We obtain

(lnΘ[0,+∞))2 ∼=
(

lnΘ[0,+∞)

)2
+

σ2
Θ

(Θ)2

(

1− lnΘ[0,+∞)

)

.

Then if RVs Θ[0,+∞), lnΘ[0,+∞),
(

lnΘ[0,+∞)

)2
are statistically independent, the variance of the trans-

formation lnΘ[0,+∞) is equal to:

DlnΘ[0,+∞)
∼=

σ2
Θ[0,+∞)

(Θ[0,+∞))2

(

1− lnΘ[0,+∞)

)

= σ2
X

1−
√

2
π
mX

σX
K(mX , σX)− 2

πK
2(mX , σX)

(

X[0,+∞)

)2

×



1− ln
X[0,+∞)

σX
− σ2

X

2

1−
√

2
π
mX

σX
K(mX , σX)− 2

πK
2(mX , σX)

(

X[0,+∞)

)2



 .

Average conversion exp(lnΘ[0,+∞)) is equal to

exp lnΘ[0,+∞) =

√

2

π
K(mX , σX)

∫ +∞

0
eln θe−rθ2+sθdθ =

√

2

π
K(mX , σX)

∫ +∞

0
θ e−rθ2+sθdθ = Θ[0,+∞)
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and the conversion variance exp lnΘ[0,+∞) of statistically independent values Θ[0,+∞), lnΘ[0,+∞),
(lnΘ[0,+∞))

2 is equal to

Dexp lnΘ[0,+∞)
= (exp lnΘ[0,+∞))2 −

(

exp lnΘ[0,+∞)

)2
= (Θ[0,+∞))2 −

(

Θ[0,+∞)

)2

=
1

σ2
X

(

(X[0,+∞))2 −
(

X[0,+∞)

)2
)

.

Thus, the statistical averages and the variance of the conversion algorithm functions 5 are related
to the parameters of the original RV by the system of equations:














lnΘ[0,+∞) = lnΘ[0,+∞) − 1
2

σ2
Θ

(

Θ[0,+∞)

) ,

DlnΘ[0,+∞)
=

σ2
Θ[0,+∞)

(

Θ[0,+∞)

)2

(

1− lnΘ[0,+∞)

)

,
and







exp lnΘ[0,+∞) = Θ[0,+∞),

Dexp lnΘ[0,+∞)
=

(X[0,+∞))2−
(

X[0,+∞)

)2

σ2
X

.
(9)

2.3. Case 3

X → cosX → arccos cosX → X. (10)

Transformation g(X) = cosX is implemented for multiple argument values X ∈ (−∞,+∞), so average

cosX =
1√

2πσX

∫ +∞

−∞
cos x e

− (x−mX )2

2σ2
X dx = cos(mX) e−

σ2
X
2 ,

and dispersion

DcosX =
1√

2πσX

∫ +∞

−∞

(

cos x− cosX
)2
e
− (x−mX )2

2σ2
X dx = (cosX)2 −

(

cosX
)2

=
1 + cos(2mX) e−2σ2

X

2
−
(

cos(mX) e−σ2
X

)2
,

which agrees with [22] if RV X, cosX are statistically independent.
Average conversion arccos cosX is equal to

arccos cosX =
1√

2πσX

∫ +∞

−∞

(

arccos cos x
)

e
− (x−mX )2

2σ2
X dx = X

and the variance

Darccos cosX =
1√

2πσX

∫ +∞

−∞

(

arccos cos x− arccos cosX
)2

e
− (x−mX )2

2σ2
X dx

=
1√

2πσX

∫ +∞

−∞

(

x−X
)2

e
− (x−mX )2

2σ2
X dx = DX .

Thus, the statistical averages and the variance of the transformation functions according to the
algorithm (10) are related to the original RV parameters mX , σX by the system of equations











cosX = cos(mX) e−
σ2
X
2 ,

DcosX = 1+cos(2mX ) e−2σ2
X

2 −
(

cos(mX) e−σ2
X

)2
,

and

{

arccos cosX = X,

DarccosX = DX .

2.4. Case 4

X → arccosX → cos arccosX → X. (11)

This scenario starts with the conversion arccosX , which limits the set of allowed argument values X
to interval X ∈ [−1,+1]. In this case the normally distributed sample X1,X2, . . . ,Xn with parameters
mX , σX we renormalize the property of the function K(mξ, σξ) and present as a sample V :

V :
X1

mX + 3σX
= ν1,

X2

mX + 3σX
= ν2, . . . ,

Xn

mX + 3σX
= νn. (12)
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Representation of the RV X ∈ N(mX , σX) as (12) by further eliminating items by value X >

mX + 3σX , introduces an error not exceeding 1%, but allows to correctly implement algorithm (11).
The cosine function is symmetric about the y-axis, so from the point of view of the problem formulated
in this work,

0 6
X

mX + 3σX
=

X[0,∆3σX ]

∆3σX

= V 6 +1, (13)

which became the rationing CX is equal to

CX =
1

∫ ∆3σX
0

1√
2πσX

exp
{

− (x−mX)2

2σ2
X

}

dx
=

2

erf
(

3√
2

)

+ erf
(

mX√
2σX

) .

We define the constant rationing CV from CX :

CXf(x)dx = CV f(ν)dν ⇒ CV f(ν) = ∆3σX
CXf(x).

Then considering that X[0,∆3σX ]
= [0,∆3σX

] and the table integrals [24]
∫

erf(ax) dx = x erf(ax) +
x

a
√
π
exp

(

−a2x2
)

,

∫

x erf(ax) dx =

(

x2

2
− 1

4a2

)

erf(ax) +
x

2a
√
π
exp

(

−a2x2
)

,

we calculate the average V = 1
∆3σX

X[0,∆3σX ]
:

V =

∫ +1

0
ν CV f(ν) dν =

CX

∆3σX

∫ ∆3σX

0
x

1√
2πσX

e
− (x−mX )2

2σ2
X dx

=
CX

2∆3σX

{

∆3σX
erf

(

3√
2

)

+
√
2σX

3√
2

[

erf

(

3√
2

)

+
1√
π
exp

(

−9

4

)]

+
mX√
2σX

[

erf

(

mx√
2σX

)

+
1√
π
exp

(

−
(

mX√
2σX

)2
)]}

,

and the mean of the square

V 2 =

∫ +1

0
ν2 CV f(ν) dν =

CX

∆2
3σX

∫ ∆3σX

0
x2

1√
2πσX

e
− (x−mX )2

2σ2
X dx

=
CX

∆2
3σX

∫ (mX+3σX )

0
x2

1√
2πσX

e
− (x−mX )2

2σ2
X dx

=
CX

2
erf

(

3√
2

)

+
CX

∆2
3σX

√
2σXmX

{

(−x+mX√
2σX

)

erf

(−x+mX√
2σX

)

+
x

a
√
π
exp

(

− a2x2
)

}∣

∣

∣

∣

∣

∆3σX

0

− CX

∆2
3σX

2σ2
X

{[

1

2

(−x+mX√
2σX

)2

− 1

4

]

erf

(−x+mX√
2σX

)

+
x

2
√
π
exp

[

−
(−x+mX√

2σX

)2
]}∣

∣

∣

∣

∣

∆3σX

0

.

Then if random variables V , V 2 are statistically independent, the variance of the RV V will be equal
to

DV = V 2 −
(

V
)2

= σ2
V .

Now, accepting a sample with parameters V and σV for the initial, we calculate the statistical
parameters cos V and σcosV of cosine transformation by the basic sampling algorithm (11):

V → arccos V → cos arccos V → V.

Computing cos V

cos V =

∫ +1

0
cos(ν)CV f(ν) dν =

CX√
π

∫ ∆3σX

0
cos

(

x

∆3σX

)

exp

{

−
(

x−mX√
2σX

)2
}

d
x−mX√

2σX
. (14)
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To use the table integrals (861.20) [23]:
∫ +∞

0
cos(bx) exp

(

−a2x2
)

dx =

√
π

2a
exp

(

− b2

4a2

)

, (15)

and (No 25) [24]:
∫ +∞

0
sin(bx) exp

(

−a2x2
)

dx =
π

2ia
erf

(

ib

2a

)

exp

(

− b2

4a2

)

, (16)

let us transform (14) to the form:

cos V =
CX∈[0,+∞)√

π

∫ ∆3σX

0
cos

(

mx

∆3σX

+

(

x−mX√
2σX

)

σX
√
2

∆3σX

)

exp

{

−
(

x−mX√
2σX

)2
}

d
x−mX√

2σX
.

Replacement (13) covers at least 99% of the data, as we apply (15) and (16) and transform the
upper bound of integration as

∆3σX
→ +∞. (17)

Then

cosV =
CX∈[0,+∞)√

π

∫ ∞

0
cos

(

mx

mX + 3σX
+

t σX
√
2

mX + 3σX

)

e−t2dt =
CX∈[0,+∞)

2

{

cos

(

mx

mX + 3σX

)

− sin

(

mx

mX + 3σX

) √
π

i
erf

(

i
σX
√
2

2
(

mX + 3σX
)

)}

exp







−
(

σX
√
2

2
(

mX + 3σX
)

)2






, (18)

where providing (17) can be put to (2.3.15) in [13].
According to ( [24]) tabulated values of the expression

√
π

i
erf

(

i
σX
√
2

2
(

mX + 3σX
)

)

exp







−
(

σX
√
2

2
(

mX + 3σX
)

)2






=

√
π

2i
erf(iξ) exp(−ξ2). (19)

In the interval 0 < ξ < 0.924, value (19) increases monotonically, reaching maximum 0.541 at ξ = 0.924,
and then it goes down monotonously, going to the limit ξ → ∞ to zero. This means that in specific
calculations the expression (19) can be replaced by the average in the range of values ξ.

Let us compute with (17) average cos V 2, applying the conversion

cos V 2 =
1

2
+

cos 2V

2
=

1

2

(

1 + cos 2V
)

.

Then

cos 2V =
CX√
π

∫ ∞

0
cos

(

2mX

∆3σX

+
2t σX

√
2

∆3σX

)

e−t2dt

=

{

cos
(

2mX

∆3σX

)

− sin
(

2mX

∆3σX

) √
π
i erf

(

iσX

√
2

∆3σX

)}

exp

{

−
(

σX

√
2

mX+3σX

)2
}

erf
(

3√
2

)

+ erf
(

mX√
2σX

) ,

and the variance of the cosine transform is calculated as

Dcos V = (cos V )2 +
(

cos V
)2
. (20)

Part (2.6.17) (18) was taken into account by the average value of the coefficient before the sine
function: 0.1 · sin

(

2mX

mX+3σX

)

.

Taking into account (13), we make an estimation of arccos V in approximation (8):

arccos V ∼= arccos V +
V σ2

V
(

1− V
2)3/2

(21)

and conversion (arccos V )2
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(arccos V )2 ∼=
(

arccos V
)2

+ 2

(

1

1− V
2 +

arccos V V
(

1− V
2)3/2

)

σ2
V .

Then

DarccosV = (arccos V )2 −
(

arccos V
)2

=

[

2

1− V
2 +

2arccos V V
(

1− V
2)3/2

]

σ2
V = σ2

arccosV . (22)

We apply the model of the transformation of the variable X →
√
X → (

√
X)2 → X for values

X ∈ [0,+∞) to algorithm

lnX ← X → expX. (23)










DlnX[0,+∞)
= (lnX[0,+∞))2 −

(

lnX[0,+∞)

)2
,

DX[0,+∞)
= (X[0,+∞))2 −

(

X[0,+∞)

)2
,

DexpX[0,+∞)
= (expX[0,+∞))2 −

(

expX[0,+∞)

)2
.

The transformation algorithm (23) is similar to algorithm (5). Therefore, statistical averages
expX[0,+∞), lnX[0,+∞) and variances DexpX[0,+∞)

, DlnX[0,+∞)
the transformations in (23) will be

equal (9).
Transformation

arccosX ← X → cosX (24)

is also more correctly to implement for the renormalized variable (12). Then the statistical aver-
age arccos V will be equal to (21), and the variance DarccosV to (22). Statistical average cos V and
dispersion Dcos V of the cosine transform in (24) is described by formulas (18) and (20).

3. Conclusions

In this article, the statistical models of the mean and variances of functional transformations in a
straight line g(X) = cosX; expX and inverted g−1 = arccosX; lnX elementary functions of normally
distributed random variables are developed. Moreover, the statistical models are constructed for RV
samples with a semi-limited volume, and the substantiation of the transition to a two-sided confidence
interval limit for the transformation functions stated in the task of this work is carried out. The ob-
tained relationships represent an opportunity to apply the error transfer to functional transformations
of experimental data with random values.
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Моделювання статистичних середнього та дисперсiї нормально
NX(mX , σX) розподiлених даних, перетворених нелiнiйними

функцiями g(X) = cosX, eX та оберненими до них
g−1(X) = arccosX, lnX

Кособуцький П. С., Каркульовська М. С.

Нацiональний унiверситет “Львiвська полiтехнiка”,

вул. С. Бандери, 12, 79013, Львiв, Україна

Обгрунтованi аналiтичнi спiввiдношення обчислення статистичних середнiх i дис-
персiї функцiй g(X) = cosX , eX , g−1(X) = arccosX , lnX перетворення нормально
NX(mX , σX) розподiленої випадкової величини.

Ключовi слова: статистичне середнє; дисперсiя; перетворення; нормальний роз-

подiл; випадкова величина.
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