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The regulator problem for both discrete-time and continuous-time linear systems is con-
sidered. The control and its increments are under non-symmetrical constraints and the
domain of constraints includes the origin on its boundary. We derive necessary and suffi-
cient conditions which ensure the satisfaction of all the constraints and also the asymptotic
stability by a state feedback. An illustrative example shows the application of our method.
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1. Introduction

A constraint is anything that prevents the system from achieving its goal. There are three major
types of constraints frequently encountered in applications, i.e., constraints on amplitude variation,
constraints on incremental variation, and constraints on output or state [1]. If constraints of the
considered system are not paid attention to, the closed loop control performance could be severely
deteriored [2| in the presence of constraints. Many authors have studied the problem of regulation [3-§],
and there are several approaches proposed in the literature, we can cite, not exhaustively, the positive
invariance concept 9], predictive control [10,11], the maximal admissible sets concept [12,13] and other
approaches.

Incremental input constraints are serious challenges in many automatic control application like
Aerospace systems [14, 15|, wastewater treatment [16], chemical processes [17,18|, climatic variables
inside buildings [19], mechatronics [18|, automatic drug dosing [20|, sterilization processes [16], high
energy physics [21,22].

Problems of designing stabilizing regulators for linear systems subject to control saturations and
asymmetric constraints on its increment or rate are solved in [23,24], the authors have considered an
asymmetric domain of control constraints that contains the zero of R™ in its interior. However, in many
engineering problems, like obstacle avoidance problem, the regulation around an equilibrium situated
on the boundary of the domain of attraction is necessary [25,26]. In our paper we consider a regulation
problem for linear systems with asymmetric constraints on both control variables and its increments and
with the zero on the boundary of control domain constraints. From a practical point of view, probably
the most successful approach that makes possible to consider simultaneously control and increment
constraints is the predictive control approach [27]. Unfortunately the implementation of Predictive
Controllers is complex. In this paper we select the positive invariance approach [23,28| because it
proposes simple methods to calculate constant state feedback controllers, in both the continuous and
the discrete-time cases. This approach is based on constraint avoidance [29]: preventing the saturation,
the closed-loop system, therefore, stays in a region of linear behavior.

The paper is organized as follows. The problem set-up is introduced in section 2. Some preliminar-
ies, that consist of necessary and sufficient conditions of positive invariance of incremental domain with
respect to autonomous systems are given in section 3. Section 4 is devoted to state the main result. In
this section we obtain sufficient conditions that ensure the determination of a stabilizing linear state
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feedback controllers that respect both constraints on control and its increment. A simulation example
is given in section 5.
Notations. For a scalar a € R, we define a® = sup(a,0) and a~ = sup(—a, 0). Furthermore, for a
matrix A = (a;5), 1 < 4,5 < n, the tilde transforms are defined by
< At AT
A= _ )
A- A+
_ (ot -
where A™ = (a};), A™ = (a;;) and

- [ A A
= a]

with

4, o @i fori=g [0 fori=j
b a?; for i #j, ’ 2T a;; fori#j.

We denote by o(A) the spectrum of the matrix A and by D; the stability domain for eigenvalues (that
is, the left half plane in the continuous-time case or the unit disk in the discrete-time case). For any
two vectors x,y € R"™, = < y (respectively = < y) if z; < y; (respectively x; < y;),i=1,...,n.

2. Problem statement

Consider a linear time invariant system represented in the state space by
ox(-) = Ax(-) + Bu(), (1)
where z(-) € R™ is the state of system, dz(-) represents its derivative with respect to time in the

continuous-time case or x(t + 1) in the discrete-time case. A € R™*" B € R™™ and u(-) € R™ is the
input variable subject to constraints

—q2 < u(-) < qi, (2)
where ¢ and g2 are vectors of R'[".
The control increment is constrained as follows

—do <wu(i+1)—u(i) <dy, for discrete-time systems, (3)
—ds < U(t) < dy,  for continuous-time systems, (4)

where dz and d; are elements of R[".
We suppose that the equilibrium u = 0 is on the boundary of the domain of control constraints,

that is, the vector ¢ = < Zl > has at least one component null. This implies that there exists a
2
permutation matrix P and an integer p such that

Pq:’y:<g°>,

where v9 > 0 is a vector in RP that contains all the non negative components of g. The inverse of P is
its transpose, that is P~ = PT.
The problem studied in this paper is the following: find a stabilizing state feedback as

u(-) = Gz(-), GeR™™

ensuring closed-loop asymptotic stability of the system with non saturating control that also respects
incremental constraints.

3. Preliminary results

Consider the following linear autonomous system

du(-) = Kv(-), v(to) = vo, ()
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where v(-) € R™ is constrained by

—@<v()<q (6)
and its increments constrained by
—dy <wv(i+1) —wv(i) <dy, for discrete-time systems, (7)
—ds < 0(t) < dy, for continuous-time systems. (8)
Define the domain D(q1, g2) by
D(g1,q2) = {veR™, —g2 <v<q1}. (9)

Definition 1. A domain D is positively invariant with respect to motion of system (5) if for any
initial condition vy € D, the corresponding trajectory v(t,tg, vo) remains in D for all t > tg.

Define the augmented state space variables

Y() = ( _28 ) and X() = PY().

Then
Y () =KY () and 6X()=TEX(),
where
7K = PKPT. (10)
Define the matrix
o = pK PT. (11)

Let decompose the matrices T5 and ®¥ as follows
- (G B ) o= ( ok o)
138 T4 3 Dy
where Tf, @K ¢ RP¥P; T ol ¢ RpxC@m—p), TK I ¢ RCm=P)*P and TK | oK ¢ REm—p)x(2m=p),
Lemma 1. The domain D(q1,q2) given by (9) is positively invariant with respect to system (5) if
and only if
TE~y <0 and TE = 0, for the discrete-time case, (12)

<
Py <

0 and ®X~q < 0, for the continuous-time case. (13)

Proof. For discrete-time case, it is known, see [9], that the domain (9) is positively invariant with
respect to system (5) if and only if K¢ < ¢, or equivalently

T{{70 < 0,

P 1y < Ky g

Since T5 > 0 (and also T4) and 9 > 0 then T = 0. For continuous-time case, it follows from [30]
that D(q1, q2) is positively invariant with respect to system

0(t) = Ko(t) (14)
if and only if K.q < 0, which is equivalent to

q){{/y(] < Yo,

Ky

Lemma 2. Suppose that the domain (9) is positively invariant with respect to system (5). The
increment condition is verified iff matrix K satisfies:

([?\—_/I )q < d, for discrete-time systems, (15)

Kq<d, for continous-time systems, (16)

where d = <3;)
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Proof. It is easy to verify that the proof of this result given in [31], in the case ¢ > 0, remains also
valid when some components of ¢ are null. [
Using Lemma 1 and Lemma 2 we can derive the following result.

Lemma 3. Domain D(q1,q2) given by (9) is positively invariant with respect to motion of system (5)
and the increment constraints (7) are respected if and only if

T30 < 70, K~y <0,
T?,K =0, for the discrete-time case; (I)g(’yo <0, for the continuous-time case.

4. Main results
Consider the system (1) with control variable u(-) subject to constraints (2) and (3) (or (4) for
continuous-time case), and the feedback law
u(-) = Gz(-), GeR™™ (17)
with rank G = m and
0(A+ BG) C Dg. (18)
Using state feedback (17) we can write system (1) as
dz(-) = (A+ BG)z(:).
It follows that
du(-) = Gox(+)
=G(A+ BGQ)x(:).
If there exists a matrix K such that
G(A+ BG)=KG
then
ou(-) = Ku(-).
With this transformation and results of the preceding section it is possible to derive the following
result.

Theorem 1. System (1) with state feedback (17)—(18) and subject to constraints (2) and (3) (or (4)
for continuous systems) is asymptotically stable at the origin if there exists a matrix K € R™*"™ such
that

GA+ GBG =KG (19)
T{{70 < Yo,
T =0, for the discrete-time case; (20)
(K —I)g<d,
q>{{70 < 07
qu(’Yo < 0, for the continuous-time case, (21)

Kq<d,
where T and ®K are given respectively by (10), (11), I € R™ ™ is the identity matrix.

Proof. Let u(-) = Gz(-), where z is the trajectory of system (1) and suppose that the conditions
of Theorem 1 are verified. Since du(-) = Ku(-) and application of Lemma 3 we deduce that both the
constraints on u(-) and on its increments are satisfied. Bearing in mind that ¢(A + BG) C D; one can
conclude to the asymptotic stability of the closed-loop system. ]

Remark 1. The resolution of equation (19) is described in [32].
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5. Example

Consider the system
z(k+1) = Az(k) + Bu(k), z9€R?,
where z(k) € R*, u(k) € R3

04 0 0 O 1 2 -1
1 3 00 8 1 2
A= -1 2 70 B= -5 -3 0
4 3 0 6 0 ) 3
The constraints on the input u(-) are given by
—@<u() <aq
with ¢; = (0,1,0)T and g2 = (0,0,1)” or equivalently
w() =0, 0<us()<1, —1<us(-)<O0. (22)
The increments on the control are subject to constraints described by
—dy <u(i+1)—u(i) <d (23)
with dp = (1,1,1)” and d; = (1,1,1)7.
Let ¢ = (&) =1(0,1,0,0,0,1)7. Consider the matrix
00 0O0O01
01 00 O0O0
001000
P= 00010 0]’
000 01O
100000
then we have Pg = (1,1,0,0,0,0)T = (%) with 49 = (1) € R% Denote K = (k;;) and K = (k;;), then
k:;; if 1<4,j<3;
3 koo if 1<i<3and4<j<6;
kij =4 =8 .
tJ k(i_3)j if 4<i<6andl1<j<3;
+ . .
k(i—?,)(j—?,) if 4<i<6and4<j<6
Let T = (% %) = PKPT, where T} € R?*2. By identification we obtain that
o 15336 /:632 ki ki
e (e e ) () g [ e ke | [
ke koo Koz oy kse  kso ko k?f
ke ki2 iz Kio

First, we will search K such that conditions (20) of Theorem 1 are satisfied. Then we will determine
the gain matrix G by using the procedure described in [32].
By simple calculations we can establish that the matrix K will verify the conditions (20) in Theo-
rem 1 if and only if
k12 = k13 = k32 = 0;
0< kg3 <1
ka3 < 0; kyy < 1
kyy — ko3 < 1.
Consider the asymptotically stable matrix K

02 0 0
K= -4 03 o],
0 0 07

which verifies all the requirement conditions. The resolution of
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GA+ GBG =K@
gives
0.1253609  0.0893536  0.5329934  0.4601572
G = —04011306 0.3942382  0.3926859 —0.3530406
—0.5407766 —2.0535016 —2.8614331 —1.0192376
0.6 The eigenvalues of A + BG are
05+ {0.2;0.3;0.4;0.7}, which shows
o et cmene o e e that A+ BG is asymptotically
0.3 stable. In the following we give
0.21 numerical results corresponding
017, to the initial state x(0) =
0 ORI NI N IIHNNIRNN) (—6.277059¢ — 01,2.649606e —
017 x>?‘x 01,1.032181e — 01,0.000000e +
R 00). We have u(0) = Gz(0) €
% D(q1,q2). Figure 1 shows the
g;:( evolution of the second and
06 . . . . . . . . third components of the control
0 5 10 15 20 25 35 40 45 50 while the first component ob-

Fig. 1. Evolution of the second and third components of the control.

Table 1. Evolution

of the increment components.

u1(i + 1) — U1(Z)

u2(t 4+ 1) — ua(7)

uz(t +1) —us(7)

—6.106227e — 16

—3.500000e — 01

1.500000e — 01

1.443290e — 15

—1.050000e — 01

1.050000e — 01

1.3877779% — 16

—3.150000e — 02

7.350000e — 02

—1.665335¢ — 16

—9.450000e — 03

5.145000e — 02

—2.636780e — 16

—2.835000e — 03

3.601500e — 02

—2.220446e — 16

—8.505000e — 04

2.521050e — 02

—1.387779¢ — 16

—2.551500e — 04

1.764735e — 02

—5.204170e — 17

—17.654500e — 05

1.235315e — 02

—4.857226e — 17

—2.296350e — 05

8.647202e — 03

O 00| | | UY I | W N | O =

—2.428613e — 17

—6.889050e — 06

6.053041e — 03

—_
o

—1.301043e — 17

—2.066715e — 06

4.237129e — 03

N -
Sf:

—1.185846e — 20

—2.397730e — 16

4.829859¢ — 06

w
=]

—1.694066e — 20

—7.179705e — 17

3.380901e — 06

Table 2

tained is zero. In this figure we
see that the calculated feedback
u(-) = Gz(-) respects the con-
straints (22) and converges to
the origin as expected.

In Table 1 we see the sat-
isfaction of the increment con-
straints given by (23) and in Ta-
ble 2 we observe the asymptotic
stability of the state. Further
numerical simulations with any
arbitrary initial state z(0) such
that Gz(0) € D(¢1,¢2) also con-
firm the theoretical results.

. Evolution of the state components.

z1(1)

z2(1)

z3(1)

x4(1)

—6.277059¢ — 01

2.649606e — 01

1.032181e — 01

0.000000e + 00

1.248918e + 00

—3.328241e — 01

3.801536e — 01

—7.159417e — 01

1.149567e + 00

—2.995548e — 01

2.965095e — 01

—5.984521e — 01

7.948268e — 01

—1.940973e — 01

1.918899e — 01

—4.011084e — 01

5.164307e — 01

—1.169650e — 01

1.197080e — 01

—2.566352e — 01

3.347223e — 01

—7.051426e — 02

7.544512e — 02

—1.648831e — 01

2.203539¢ — 01

—4.367549¢ — 02

4.872006e — 02

—1.079819e — 01

1.476951e — 01

—2.795704e — 02

3.224203e — 02

—7.215340e — 02

1.004739e — 01

—1.842101e — 02

2.175699e — 02

—4.899596e — 02

O 00| | O U x| WD =] Of =

6.907917e — 02

—1.240436e — 02

1.488464e — 02

—3.365125e — 02

—_
o

4.782815e — 02

—8.477679¢ — 03

1.027506e — 02

—2.328510e — 02

W
©|-

4.282060e — 08

—17.447060e — 09

9.161066e — 09

—2.083069e — 08

ot
(=)

2.997442e — 08

—5.212942e — 09

6.412746e — 09

—1.458148e — 08
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6. Conclusion

In this paper, we have considered the regulator problem for linear systems with non-symmetrical con-
straints on control and its increments and with the origin on the boundary of the constraint domain of
control variable. Both continuous and discrete systems are studied. On each case, sufficient conditions
that allow the existence and the determination of a state feedback which ensure the satisfaction of all
the constraints and also the asymptotic stability of the system are given.
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Mopganbwi pe3ynbTaTn WOA0 3a4a4i peryatoBaHHsS AN NiHIRHNX
cucTtemMm 3 oOMe>KeHHSIMN Ha KepyBaHHSI Ta MOro npupicr

Abempxak A., Y-azzy P.

Kagedpa mamemamuru, Aa00pamopis JuPePeHUIaIbHUT PIBHARD Y YACTUHHUL NOTIOHUL,
anzebpu ma cnekmpanrvhoi 2eomempii, garxysvmem wayk, Yuisepcumem 16w Todain,
n.c. 133, Kenimpa, Mapoxxo

PoszrisnyTo 3amady peryiagropa SK JUIs JUCKPETHUX, TaK 1 /I HENEPEePBHUX JHHIHHIX
cucreM. EsleMenT KepyBaHHd Ta #0ro IPUPOCTH 3HAXOAATHCH 111/ HECUMETPUIHUMU OOMe-
JKEHHSIMU, & 00J1aCTh 0OMEXKEHb BKJIIOUAE MOYATOK KOOPAWHAT Ha fforo Mexi. OTpumano
HEOOXiHI Ta JOCTATHI YMOBH, AKi 3a0e3MeUyI0OTh BUKOHAHHS BCIX OOMEXKEHDL, & TaKOXK
ACUMIITOTUYHY CTIfKICTBH 3a JOTOMOIOIO0 3BOPOTHOTIO 3B’sI3Ky 3a cTaHoM. HaouHuii mpuk-
JiaJ| IEMOHCTPY€ 3aCTOCYBAHH 3aIIPOIIOHOBAHOTO METOJY.

Knto4oBi cnosa: ainilini cucmemu; HeCUMEmpuuni 00OMENCEHRA; KEPYSAHHA; 000amHa
THBAPIAHMHICTND.
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