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Abstract. The paper is dedicated to researching the influence of normal vibration on the
vibratory conveying velocity of particles on an inclined track that performs independent longitudinal
and normal oscillations (two-component vibration). The study considers the optimizing conditions of
the conveying velocity for different laws of oscillating components (harmonic, polyharmonic,
oscillations with piecewise constant acceleration) with a limited value of the longitudinal
acceleration of conveying track and with maximal normal acceleration that does not exceed the
gravitational acceleration (non-hopping modes of moving, when particles slide without detachment
from the surface). The optimization criterion is the maximal distance, traveled by the particle during
the oscillation period, or the maximal value of dimensionless conveying velocity, depending on several
dimensionless parameters. The maximal conveying velocity with polyharmonic normal oscillations is
achieved at a certain ratio of the amplitudes of harmonic oscillation, which essentially depends on the
track’s inclination angle to the horizon. The ratios of the amplitudes of harmonic oscillation, which
practically do not reduce conveying velocity at any inclination angles, are proposed.

Two-component vibratory conveying under normal oscillations with piecewise constant
acceleration is considered in optimal non-hopping modes of a particle moving with one forward (or
upward on an inclined track) sliding stage and one backward (or downward) sliding stage during the
oscillation period. The equations for determining the dimensionless conveying velocity are derived
for different values of dimensionless parameters, such as the inclination angle parameter (a ratio of
an inclination angle tangent to a frictional coefficient) and the intensive vibration parameter (a ratio
of the amplitudes of longitudinal and normal oscillations, divided by the frictional coefficient). The
effectivity of polyharmonic normal oscillations in two-component vibratory conveying is compared
with the effectivity of normal oscillations with piecewise constant acceleration. Maximal conveying
velocity is achieved at certain values of phase difference angles between longitudinal and normal
oscillations, which are called optimal. The value of dimensionless conveying velocity V' increases
with the increase of asymmetry of normal oscillations, which is described by the ratio n of the
maximal acceleration of the track when moving down to the acceleration of gravity. This ratio »
corresponds to the number of harmonics for polyharmonic oscillations. A comparison of values of V'
for normal oscillations with piecewise constant acceleration shows an advantage in velocity
compared to polyharmonic normal oscillations at the same number # of harmonics, especially with
increasing inclination angles.

The research was carried out by the numerical step-by-step integration method, which allows
for performing calculations with any given accuracy. The obtained results are demonstrated in
figures and comparative tables.
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Introduction

Vibratory conveying devices are widely used in different industrial enterprises, especially for piece
goods transportation [1-3]. The most common and simple vibratory conveying devices provide the linear
vibration of conveying track, usually using the modes of moving with hopping for reaching the high
conveying velocity. For conveying massive heavy goods or fragile and explosive products with high
velocity, it is necessary to ensure the moving of products without hopping, when particles slide without
detachment from the surface. However, the vibratory conveying devices with linear vibration do not allow
for achieving high conveying velocity in the moving modes without hopping, especially when conveying
upward on an inclined track. An increase in conveying velocity in non-hopping modes can be reached in
vibratory devices with two-component vibration: independent longitudinal (along the conveying track) and
normal (in the direction perpendicular to the conveying plane) oscillations of conveying track. They also
make it possible to increase the track’s inclination angles for conveying upward and provide the reverse of
moving.

Problem Statement

To achieve the high conveying velocity, the devices with two-component vibration must ensure
certain correspondence of parameters of longitudinal and normal oscillations (ratios of oscillation
amplitudes, phase difference angles between oscillations” components, the form of oscillations with a more
complex vibration law). The simplest two-component vibration — elliptical vibration, when the both
components (longitudinal and normal oscillations) are sinusoidal with phase difference between them, and
conveying track vibrates by elliptical trajectory. Elliptical vibration allows us to achieve not only high
conveying velocity but to increase the lifting angles of the load. Even greater advantages in increasing of
conveying velocity and angles of lifting loads are achieved when using polyharmonic oscillations or
oscillations with piecewise constant acceleration. However, these advantages can be achieved only with
certain values of oscillations parameters, and failure to observe which may not lead to an increase in
velocity and lifting angles, but on the contrary to a significant decrease.

Review of Modern Information Sources on the Subject of the Paper

The theory of vibratory conveying of a material point using two-component independent
longitudinal and normal oscillations was studied in many papers. The simplest case — elliptical vibration is
considered in [2, 4, 5], and optimization of its parameters is carried out in the author’s papers [6, 7].
Vibratory conveying by two-component biharmonic oscillations was considered by A. Dunayevetsky, and
V. Yefimov, but optimal parameters of vibration were not determined. The author’s research determined
them for conveying by harmonic longitudinal and polyharmonic normal oscillations with the number of
harmonics from 2 to 7 [8, 9].

Vibratory conveying with piecewise constant acceleration is considered in [10, 11]. The optimal
relative to velocity law of two-component vibration with a limited value of acceleration was obtained by
E. Lavendelis: both components should be oscillations with piecewise constant acceleration (and piecewise
linear velocity). The vibratory conveying with harmonic longitudinal oscillations and normal oscillations
with piecewise constant acceleration was studied by the author [10], using the approximate harmonic
balance method. In these papers, the optimal values of phase difference angles are not determined, but they
significantly affect the conveying velocity.

Objectives and Problems of Research

The investigations show that normal oscillations have a decisive influence on the value of conveying
velocity because they affect the distribution of frictional forces throughout the vibration’s period. The
effectiveness of the vibratory conveying process can be determined by the dimensionless conveying velocity
as an optimization criterion — the maximum distance traveled by the particle during the oscillation period
divided by the amplitude of oscillation velocity, which depends on several dimensionless parameters.
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Numerical methods are used in the article, which ensures any given accuracy of the study of the
influence of normal vibration parameters, namely polyharmonic oscillations and oscillations with
piecewise-constant acceleration, on the conveying velocity.

Optimal parameters of biharmonic normal vibration determining
with conveying by harmonic longitudinal vibration

The mean conveying velocity v is calculated by formula [6]:

v=Aol, (1)
where A and o — amplitude and frequency of longitudinal (along the X-axis, in the conveying direction on
a conveyor’s track, inclined at an angle a to the horizon) oscillations; /' — dimensionless conveying
velocity — parameter, depending on several dimensionless parameters. In the author’s papers [8, 9] the
vibratory conveying using harmonic longitudinal and polvharmonic normal oscillations is considered,
described by equations:

x = A,sin(@f +€),

n
v = Asin[(iof + %(z’ 1)1 )
i=1
where 4;— amplitude of i-th harmonic of normal (along the Y-axis, perpendicular to the conveying surface)
oscillations; » — number of harmonics; ¢ — phase difference angle, r — time. According to the studies, the
value of dimensionless J velocity depends on the next dimensionless parameters: K, — the inclination angle
parameter; K — the intensive vibration parameter; G — the gravitational overload parameter, which are
calculated as follows:

2
A
K(x:tana: KB::xa G:ﬁj
W 1 g cosa

where g — is the gravitational acceleration; 4,, — amplitude of normal oscillations in a moment when its
acceleration is maximum; g — the frictional coefficient. To achieve maximum velocity in non-hopping
modes the condition G = 1 is necessary.

The equation of a particle’s motion without hopping on a track in coordinate system XOY, connected
with vibratory track, vibrating according to Eq. (2), using dimensionless values can be represented as
follows [8]:

n .
1" =lysin —k )~ 94 + Y —Lsin{it —[is ——( - D]}, 3)
i—2WiKply 2
\/1+KBZiZKB cose sine K. +1
where [ = , Ky =arctan ————— 9 =—% "
Kp - cose = K T owiKply
. . . X . . . d’x .
T = of — dimensionless time; = dimensionless distance; x”z—z. The signs “+7 and “-”
x dat

correspond to the particle’s sliding forward (or upward on an inclined track) and backward (or downward
on an inclined track) respectively. The initial moments of the sliding motion forward 7 = 7, and sliding
motion backward 7= t_are determined as the roots of the system of two nonlinear equations [8]:

cos(t, -k, )—cos(t_ -k )+3,.(t —1_)+

2w N (et VN T Ut VN
+ g‘éiileBlJr {cos|it —(ie 5 )] - coslit_ — (ie 5 )]}=0,
cos(t_ —k_)—cos(t, —kK_)+3_(2n +1_ -t ,.)+ 4
20w _ N Ul VN _ N Ul VN
+ g‘é‘lwll{g I {cos[it_ + (it 5 )] —coslit, + (ie 5 )]=0.
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Dimensionless velocity can be found by the formula:
S, +S

2n ©)
where S, and S — dimensionless distances of a particle moving forward and backward respectively during
the vibration period, is calculated by integrating Eq. (3), using the methodology, described in [9].

The calculations using MathCAD-programs show that the maximal value of velocity V' is reached
with a certain ratio of harmonics’ amplitudes, which is dependent on the parameter K, and is practically
independent of K. The velocity ¥ dependence on parameter K, with different numbers # of harmonics with
their optimal ratios is shown in Fig. 1 by continuous lines. Deviations from the optimal values of harmonic’s
amplitudes ratio can lead to a significant decrease in velocity. However, studies and calculations have shown
that at certain ratios of them, the reduction in velocity is relatively insignificant compared to the optimal
values of harmonics™ amplitudes for any values of K, . Usually, these values of harmonics’ amplitudes ratios
(we called them the fixed values) correspond to their optimal values for K,=0.9.

V =

The velocity V' dependence on parameter K, with these fixed values is shown in Fig.1 by dashed
lines. These values also are shown in Table 1.
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Fig. 1. Dependence of dimensionless velocity 77 on inclination angle parameter K,
with values of parameters Kp =100 and different number of harmonics »

Table 1
The normal acceleration amplitudes w; which are suitable for any parameter Kq and Kg
number of r
harmonics 7 w; W Wj Wy Ws We W (at K,=0) .
fixed optimal
2 1.414 0.500 - - - - - 0.839 0.846
3 1.617 0.916 0.300 - - - - 0.905 0.912
4 1.728 1.199 0.628 0.205 - - - 0.938 0.943
5 1.795 1.386 0.898 0.458 0.151 - - 0.956 0.959
6 1.839 1.514 1.103 0.691 0.350 0.118 - 0.966 0.969
7 1.869 1.606 | 1.260 | 0.890 | 0.549 | 0.278 | 0.096 0.973 0.976
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The far-right column of the table shows the difference in the value of velocity V at fixed and optimal
values of harmonics’ amplitudes ratio for horizontal conveying (K, = 0). The difference between these
values is insignificant, therefore the ratio of harmonics™ amplitudes, which are given in table 1, can be used
in practice if it is necessary to frequently change the angles of inclination «.

As seen from Fig. 1 and Table 1, a further increase in the number of harmonics is impractical
because a kind of law of change of acceleration of polyharmonic normal oscillations approaches law with
piecewise-constant acceleration, which is easier to implement in practice.

Investigation of optimal law of normal oscillations with piecewise constant acceleration
Let us consider the normal oscillations with piecewise constant acceleration (piecewise linear
velocity). Their optimal parameters are appropriate for a law with maximum asymmetry in the directions
of movement up and down as described in [10]. To correspond to the phase of polyharmonic oscillations,
we represent the variation of acceleration in the form (Fig. 2, @), described by Eq. 6:
-w, 0<1<1)y

Vi =<nw, Ty <T <13 (6)
-w, T3<T<2m
3n 3n T
where w:gcosa,tzz——6,13:7+6,6: T
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Fig. 2. Normal oscillations with piecewise constant acceleration:
a — acceleration; b — velocity; ¢ — displacement
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By integrating Eq. (6) twice, we obtain the equations for the variation of oscillation velocity (Fig. 2, b)
and displacement (Fig. 2, ¢) in the normal direction: piecewise linear velocity and displacement in the form
of two segments of parabolas during vibration period:

2

—lz(’c—+C1'c)+C, T] <T <Ty
2

y = ®© > (7)
! 2
w At
_2[T+(C1 +C2)'C +C3]+C, Toy <T <73
(O]

where 1) =713 —2n . The values of the integration constants are determined from the condition of

. : 3 2 Gn+1)?

continuity of the function y,(r), namely: C; = z. G, = o , C3= n- Gnth”
2 2 8 n+1

does not affect the vibratory conveying velocity; it is selected from the conditions of the best drive

operation.

. The value of constant C

Investigation of dimensionless velocity V" dependence on vibration parameters with
longitudinal harmonic oscillations and normal oscillations with piecewise constant acceleration

Vibratory conveying with longitudinal sinusoidal oscillations and normal oscillations with piecewise
constant acceleration was considered in [10] by approximate harmonic balance method. The obtained
values of dimensionless conveying velocity V, depending on inclination angle parameter K, , are suitable
only when longitudinal oscillation amplitudes are essentially larger than normal amplitudes. The optimal
values of phase difference angles are not determined, but these angles have a significant effect on
conveying velocity.

Vibratory conveying with longitudinal sinusoidal oscillations and normal oscillations with piecewise
constant acceleration is described by equations:

x] = A, -sin(@f+¢€),

3
—lz((;)zt2 +Tot), —%—i—S <ot <X 5
n=y 2 , , . ®)
3n+1
l[n(;)ztz—37[110)t—i-ﬂ—-w], 31—8 <03t<3l+6
202 8 n+l 2 2

As the studies show [6, 8], with intensive vibration (K> 10) the particles move on the vibrating
track in the mode with one sliding motion forward and one sliding motion backward during the vibration
period without sticks relative to the track or in the mode with one sliding motion forward and one stick.
Consider the vibratory conveying process with two-component oscillations of the track, described by Eq.
(8), in mode without sticks. The variation of a particle’s velocity at four stages during vibration period
occurs according to different dependencies (Fig. 3).
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Fig. 3. Conveying velocity variation during vibration period
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The equation of a particle’s motion without hopping on a track, vibrating according to this law:

"

X" =sin(tT +e)+3;,,. ©)
The values of & ,. in Eq. (9) are different for different stages: $; = gK, when 71 <1 <15, $. =
q(1+n£K,) when 1, <t < 13, where g =1/Kj. The signs “+” and “-” correspond to the particle’s sliding
forward and backward respectively.
Integrating Eq. (9), we obtain the dependencies of variation in a particle’s velocity at four stages:
vi=cos(t_+e)—cos(t +&)+q[(l+n)t_—-1)+ K, G_-T)| if 13-21 <T <1y;
w5 =cos(t_+e)—cos(t +e)+q(l+n+ K, )t_—-1) if 1H<T<T_]
r3=cos(t_+e)—cos(t +e)+q(l+n—K )t —t_) if 1_<T<T,] (10)
ra=cos(t,+e)—cos(t +e)+q(l+n+ K, ), —-t) if 71, ,<T<13.
The initial moments of the sliding motion forward t = 7. and sliding motion backward 7 = t_are
determined as the roots of the system of two nonlinear equations:
cos(t, +e)—cos(t_+e)+q[(l+n+ K, ), -1 )+ +n)(ty —13)—- 21K, ]=0,
cos(t_+e)—cos(t,+e)+q(l+n—K, )t —-1_)=0. (11)
Integrating the Eqs. (10) at the corresponding stages, we obtain the values of dimensionless distances,
travelled by a particle at different stages:
S =cos(t_+e)(ty) —13+2n) +sin(t3 +&) —sin(ty +€) +

(t_ —‘|:2)2 o I +2Tt)2

+ql(l+m@E_ —12)r —t3+21) - K 2 1:
S>, =cos(t_+e)(t_ —1,)+sin(t, +&)—sin(t_ +s)—q(l+n+Ka)%; (12)
2
S3=cos(t_+&)(t—T_)+sin(t_ +s)—sin(t++s)+q(1+n—Ka)%;

2
Sy=cos(ty +e)(r3—1,)+sin(t, +&)—sin(t3 +s)—q(1+n+Ka)%.

Dimensionless velocity ¥ is determined in accordance with Eq. (5) by formula:
V:S1+S2+S3+S4, (13)
2%

So by setting the values of dimensionless parameters K,, K;, n, &, we can calculate the value of
dimensionless velocity V.

The Eqgs. (10)—(12) are valid under the condition that the stage of sliding motion backward are inside
region (1,<1< 13), Or T.>T, and t.<t3 . If this condition is not fulfilled, the equations take another form, and
there are only three stages during the vibration period.

If  <r, and 7,<1; , which may occur when the value of ¢ increases, then we obtain

— the dependencies of variation in a particle’s velocity at different stages:

11 =cos(t_+e)—cos(t +e)+qgK, (t_—t) if T3-21 <T <1y,

13 =cos(t, +e)—cos(t +&)+q(l+n-K ) —-t,) if 71,<1<71,,
14 =cos(t, +e)—cos(t +e)+qg(l+n+ K )ty —-1t) i 71,.<t<713,
—the system of two equations for determining the values of 7 and 7, :
cos(t, +&)—cos(t_+e)+q[(l+m)t, -1 )+ K, (z,-T1_)]=0,
cos(t_+e)—cos(t,+e)+q[d+n)(t3 -1 )+ K, t_—-1, +21m)]=0,
— the values of dimensionless distances, travelled by a particle at different stages:
(- —15)° —(_-13+21)°
5 ;

S)=cos(t_+e)(ty —T3+2n)+sin(t3 +&)—sin(t, +&) — gk

P _T+)2 )

$2=0; Sy=cos(t,+€)T,—Ty)+sin(ty +e)—sin(t,  +e)—qg(l+n—-K,) 5 ;
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(T, _"53)2
2
If 7. >1, and 7.>7;, which may occur when the value of ¢ decreases, then we obtain
— the dependencies of variation in a particle’s velocity at different stages:
1 =cos(t, +e)—cos(t +&)+gK, (., —T-2n) i T3-27 <T <15,

Sy =cos(t, +e)(t3—1,)+sin(t, +e)—sin(t3 +e)—g(l+n+K,)

w5 =cos(t_+e)—cos(t +e)+q(l+n+ K, )r_-1) if 1H<T<T_,
vi=cos(t_+e)—cos(t +e)+q(l+n—-K )t —-t_) if 1, <1 <13,
— the system of equations for determining the values of r_and z,:
cos(t, +e)—cos(t_+e)+q[(l+mty—1_)+ K, (T, —1_-2m)]=0,
cos(t_+e)—cos(t. +e)+qll+n)r3 -1 )+ K, (z_—-1,.)]=0; (14)
— the values of dimensionless distances, travelled by a particle at different stages:
. 2
Sy =cos(t, +€)(T, —T, +2n ) +sin(t, +€)—sin(t, +&) — gk, M;
2
(t_-1t2)" .
2 >
(t3-1.)°
5 .

Under certain conditions the system of eqs. (14) is not solved, and a mode with one sliding motion
forward and one sliding motion backward, and one stick during the oscillation period are possible. In this
case, the first stage of moving forward begins at 7 = ;. And the dependence of the particle’s velocity
variation at the first stage:

Sy =cos(t_ +e)(t_ —15)+sin(t, +&)—sin(t_ +&)—g(l+n+K,)

Sy =cos(t_+&)r3—1_)+sin(t_+g)-sin(t3 +&)+qg(l+n-K,)

11 =cos(t; +&)—cos(t +&)+gK, (t; —7)]
The system of equations for determining their roots as the values of 7 and 7
cos(t,+e)—cos(t_+8)+q(l+n—-K, )a_-1,.)=0,

cos(t_+ge)—cos(tz+e)+q[d+mi_—-1 )+ K, G_—-13+2n)]=0. (15)
The dimensionless distance at the first stage:
2
Sy =cos(ty +8 )Ty —11) +sin(ty +&) —sin(, +&) - gKy, %

S and S3 are determined by Eqgs (12). And with an increase in # the system of equations (15) is not
solved, and a mode with one sliding motion forward and one stick without sliding motion backward during

the oscillation period is possible. In this case S3=0.

Table 2
Comparison of dimensionless velocity values V for normal polyharmeonic oscillations

and oscillations with piecewise constant acceleration for different values of K, and Kg =100

number of Dimensionless velocity V

harmonics or ratio atkK,=0 | atK,=0.9
of acceleration’s acceleration of normal oscillations
amplitudes . . . . ) .
" polyharmonic piecewise constant polyharmonic piecewise constant

1 0.636 0.707 -0.297 0.079
2 0.846 0.871 0.001 0.545
3 0.912 0.935 0.343 0.735
4 0.943 0.959 0.548 0.827
5 0.959 0.974 0.672 0.879
6 0.969 0.984 0.751 0.910
7 0.976 0.991 0.807 0.930
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Calculations of dimensionless velocity J” values with different values of dimensionless parameters
K., Kp, n, ¢ were performed using MathCAD-programs. Some results are shown in Fig. 4 and in Table 2.
The maximum value of V is reached at certain (optimal) value of phase difference angle € = ¢,, which is
depend on values of K,, Kz and ». Graphs of dimensionless velocity V" dependence on inclination angle
parameter K, are shown in Fig. 4 for normal oscillations with piecewise constant acceleration by
continuous lines, and for normal polyharmonic oscillations are shown by dashed lines for comparison.

V = —— 9
== —
s S
SIS O
06 \\\‘ \<2 >\\‘\: \
NN N
SON N )
NONON Y
0.2 \ \\l\\ \‘\\
\ N

\\ \\\“H

0.2 04 0.6 0.8 K o

Fig, 4. Dependence of dimensionless velocity 7 on inclination angle parameter K.,
with values of parameters Kz =100 and different ratios of normal acceleration »

Comparison of V values for normal oscillations with piecewise constant acceleration with the values
for polyharmonic normal oscillations at the same value of » shows the superiority of the former, especially
with increasing K, . The value of K in the range 10< K <100 practically does not affect V" but significantly

affects €,. An increase in # gives an increase in the velocity V, especially at values of K, close to the limiting
values. But as 7 increases, the increase in V decreases significantly, so it is hardly worth using #>10.

Conclusions

The paper studies the vibratory conveying process with normal oscillations with piecewise constant
acceleration and harmonic longitudinal oscillations of track for non-hopping modes of particles moving
(when particles slide without detachment from the surface). The dimensionless velocity V' dependence on
several dimensionless parameters is investigated. These dimensionless parameters are the inclination angle
parameter (a ratio of an inclination angle tangent to a frictional coefficient) and the intensive vibration
parameter (a ratio of the amplitudes of longitudinal and normal oscillations, divided by a frictional
coefficient). The velocity J decreases with increasing inclination angle parameter K, (increasing of
inclination angle o when moving upward) and practically does not change in the range of values
10<K;<100.

The velocity V increases with an increase of the asymmetry of normal oscillations, which is
characterized by parameter », but with a subsequent value of » increasing this increase decreases. The
maximum value of velocity is achieved at certain values of different phase angles ¢ between longitudinal
and normal oscillations, which also depend on parameters K, and Kp.
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In further research, it is necessary to investigate in detail the dependence of the optimal phase
difference angle &, between longitudinal and normal oscillations on the dimensionless parameters, namely

n, K, and Kp. It is also proposed to develop the experimental vibratory drives of harmonic longitudinal
oscillations and normal oscillations with piecewise constant acceleration, which will allow us to verify the
obtained theoretical results in practice.
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