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We consider the problem of determining the stresses and strains of a two-layer body con-
sisting of an orthotropic layer of constant thickness connected to an orthotropic half-space.
The surface of the layer is subjected to known external loads, such that the deformation
of the body is plane. At infinity, the stresses are zero. The stress-strain state of the body
is determined using the method of integral Fourier transforms. The features of solutions
of the system of differential equations of the problem are investigated. The solutions of a
particular problems are obtained and analyzed.
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1. Introduction

The widespread use of layered bodies in construction and mechanical engineering has led to an increased
interest in the problems of studying the stress-strain state of each layer, the transfer of forces and
loads from one layer to another, and the problems of determining contact interactions. The study of
the properties of orthotropic materials holds a special place in these tasks [1], as well as structures
with orthotropic layers and the task of developing mathematical models describing real materials by
orthotropic schemes.

Methods for determining deformations (plane and spatial) for multilayer plates with elastic con-
nections between the layers were considered in [2–4], where the solution was found using the method
of elasticity functions with the application of the Fourier integral transform.

The calculations of the plane deformed state of multilayer curved orthotropic plates using the finite
element method are described in [5]. The application of the numerical method of spline approximation
to find the stress-strain state of rectangular laminated orthotropic plates is described in [6]. The
determination of deformations of an orthotropic sandwich layered shell (each layer of which is of finite
length) under internal and external pressure is given in [7].

Problems on the interaction of an orthotropic layer with an orthotropic half-space were considered,
for example, in [8–13]. Paper [8] presents the problem of incomplete contact between a layer and a
half-space solved by the Fredholm integral equation. The problem of determining the stress intensity
coefficients for a moving interfacial crack between an orthotropic half-plane and a heterogeneous or-
thotropic layer is considered in [9]. The analysis of the bending of an orthotropic layer connected to a
half-plane under a compressive load is considered in [10, 11]. In [10], the effect of an interfacial crack
on the bending under plane deformation is studied. With the help of Fourier transforms, the boundary
value problem is reduced to a system of homogeneous singular integral equations of the Cauchy type
of the second kind, which is solved numerically to determine the critical deflection loads.

The development of new approaches and extension of existing ones to the problem of determining
deformations and stresses in layered structures with consideration of material orthotropy determines
the relevance of the research.

This work aims to extend the method of solving elasticity problems for multilayer foundations
with isotropic layers, based on the methods of integral Fourier transforms and the method of yielding
functions, to the case of foundations with orthotropic layers.
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2. Statement of the problem

We consider the problem of calculating stresses and displacements at any point of an orthotropic body
consisting of an orthotropic layer of depth h coupled to an orthotropic half-space. The layer is bounded

Fig. 1. Statement of the problem.

by two parallel planes. An external load P acts
on the upper boundary of the layer. At infinity,
the stresses tend to zero. The deformation of
the layer and the half-space is plane.

We will denote by the index j = 1 all values
related to the layer and j = 2 those related to
the half-space. To build a mathematical model
of the problem, we introduce coordinate systems
O1X1Y1 for the layer and O2X2Y2 for the half-
space, as shown in Figure 1.

Geometric areas occupied by the layer and
half-space:

G1(x1, y1, z1) : {−∞ < x1 < +∞,−h 6 y1 6 0,−∞ < z1 < +∞},
G2(x2, y2, z2) : {−∞ < x2 < +∞,−∞ < y2 6 0,−∞ < z2 < +∞}.

f

f

Fig. 2. Illustration of the problem statement.

The upper boundary of the layer is y1 = 0.
The materials of the layer and the half-space are
characterized by elastic constants ν1,2ij , E1,2

j .

The external load P 1(x, z) is such that the
deformation of the layer and half-space is plane,
the displacements of the body points are parallel
to the plane O1X1Y1 (O2X2Y2):

W (x1, y1, z
∗
1) = uz(x1, y1, z

∗
1) = 0, W (x2, y2, z

∗
2) = uz(x2, y2, z

∗
2) = 0,

U(x1, y1, z
∗
1) = ux(x1, y1, z

∗
1) = ux(x1, y1), U(x2, y2, z

∗
2) = ux(x2, y2, z

∗
2) = ux(x2, y2),

V (x1, y1, z
∗
1) = uy(x1, y1, z

∗
1) = uy(x1, y1); V (x2, y2, z

∗
2) = uy(x2, y2, z

∗
2) = uy(x2, y2).

Thus, we come to a plane problem of elasticity (Figure 2).
Boundary conditions:

• on the boundary y1 = 0:

σ1
y(x1, 0) = f1(x1), τ1xy(x1, 0) = f2(x1); (1)

• common boundary of the layer and the half-plane:

σ1
y(x1,−h) = σ2

y(x2, 0), u1x(x1,−h) = u2x(x2, 0) = 0; (2)

• at infinity:

lim
x2

1
+y2

1
→∞

σ1
y(x1, y1) = 0, lim

x2

1
+y2

1
→∞

τ1xy(x1, y1) = 0,

lim
x2

2
+y2

2
→∞

σ2
y(x2, y2) = 0, lim

x2

2
+y2

2
→∞

τ2xy(x2, y2) = 0.
(3)

The materials of the layer and half-space are characterized by the elastic constants ν1xz, ν
1
xy, ν

1
yz,

ν1zy, E
1
x, E

1
y and, respectively, ν2xz, ν

2
xy, ν

2
yz, ν

2
zy, E

2
x, E

2
y . Thus, it is necessary to find a solution to

the system of differential equations of the plane theory of elasticity for an orthotropic material that
satisfies the boundary conditions.

To determine the stress-strain state of bodies, we will apply the method of one-dimensional integral
Fourier transform [12, 13] to the stress function ϕ(x, y) in the variable x with the transformation
parameter ξ:

ϕ(ξ, y) =

∫ +∞

−∞
ϕ(x, y) eiξx dx, ϕ(x, y) =

1

2π

∫ +∞

−∞
ϕ(ξ, y) e−iξx dξ. (4)
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The first formula defines the direct one-dimensional integral Fourier transform for the function
ϕ(x, y), and the second defines the inverse. The function ϕ(ξ, y) is called the Fourier transform of the
function ϕ(x, y), for which the property [14] is true:

∫ +∞

−∞

∂kϕ(x, y)

∂xk
eiξx dx = (−iξ)k ϕ(ξ, y). (5)

The solution to the boundary value problem is sought in the space of transformants of the one-
dimensional integral transform. In this case, all the basic equations of the problem and boundary
conditions are directly transformed by the one-dimensional Fourier integral transform.

We find the solution of the analog of the biharmonic differential equation of a plane problem for
an orthotropic material [15, 16], to which we apply the Fourier integral transform:

A1
∂4 ϕ

∂y4
− 2A3ξ

2∂
2 ϕ

∂y2
+A2ξ

4 ϕ = 0,

where c11 = 1−νxzνzx
Ex

, c22 =
1−νyzνzy

Ey
, c33 = 1

Gxy
, c12 = c21 =

νxy+νxzνzy
Ey

=
νyx+νzxνyz

Ex
, Gxy =√

ExEy

2(1+
√
νxyνyx)

are the elastic constants in Hooke’s law, A1 = c11, A2 = c22, A3 = c33−2c12
2 , ϕ = ϕ(ξ, y)

is the Fourier transform of the variable x from ϕ(x, y). All values related to the layer are denoted by
indices j = 1, and for the half-plane j = 2.

Based on the results of [17, 18], the transformants of the layer stress function ϕ21(ξ, y) and the
half-plane stress function ϕ22(ξ, y) take the form:

ϕ21 = A21 sinh
(

ry
√
a1
)

+B21
√
a1y sinh

(

ry
√
a1
)

+ C21 cosh
(

ry
√
a1
)

+D21
√
a1y cosh

(

ry
√
a1
)

,

ϕ22 = A22 sinh
(

ry
√
a2
)

+B22
√
a2y sinh

(

ry
√
a2
)

+ C22 cosh
(

ry
√
a2
)

+D22
√
a2y cosh

(

ry
√
a2
)

,
(6)

where r = |ξ|,√aj =
√

A3/A1, A2j , B2j , C2j ,D2j are functions of the parameter ξ, j = 1, 2.
The stress function ϕ(x, y) is chosen to satisfy the conditions exactly:

σx(x, y) =
∂2ϕ(x, y)

∂y2
, σy(x, y) =

∂2ϕ(x, y)

∂x2
, τxy(x, y) = −∂2ϕ(x, y)

∂x ∂y
.

Taking into account the connection of the stress function ϕ(x, y) with the stresses σx, σy, τxy and
the Fourier transform property (5), we obtain the corresponding expressions in the space of Fourier
transforms:

σx(ξ, y) =

∫ +∞

−∞

∂2ϕ

∂y2
eiξx dx =

∂2

∂y2

∫ +∞

−∞
ϕeiξx dx =

∂2ϕ

∂y2
,

σy(ξ, y) =

∫ +∞

−∞

∂2ϕ

∂x2
eiξx dx = −ξ2ϕ,

τxy(ξ, y) =

∫ +∞

−∞
− ∂2ϕ

∂x∂y
eiξx dx = − ∂

∂y

∫ +∞

−∞

∂ϕ

∂x
eiξx dx = iξ

∂ϕ

∂y
.

(7)

Substituting the stress functions for the layer ϕ21(ξ, y) and the half-plane ϕ22(ξ, y) in expres-
sions (7), we obtain:

σj
x(ξ, y) =

(

D2j
√
ajry + rC2j + 2B2j

)

ajr cosh
(

ry
√
aj
)

+
(

B2j
√
ajry + rA2j + 2D2j

)

ajr sinh
(

ry
√
aj
)

,

σj
y(ξ, y) = ξ2 cosh

(

ry
√
aj
)(

D2j
√
ajy +C2j

)

− ξ2 sinh
(

ry
√
aj
)(

B2j
√
ajy +A2j

)

,

τ jxy(ξ, y) =
(

A2j
√
ajr +B2jajry +D2j

√
aj
)

iξ cosh
(

ry
√
aj
)

+
(

C2j
√
ajr +D2jajry +B2j

√
aj
)

iξ sinh
(

ry
√
aj
)

,

(8)

where the index j = 1 denotes a layer and j = 2 denotes a half-space.
Applying the Fourier transform property (5) to the formulas εx = c11σx − c12σy, γxy = c33τxy, we

obtain the displacement transformants [17]:

ux(ξ, y) =
i

ξ

(

c11 σx(ξ, y)− c12 σy(ξ, y)
)

, uy(ξ, y) =
i

ξ

(

c33 τxy(ξ, y)−
∂ux
∂y

)

. (9)
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Substituting the transformants ϕ21(ξ, y) and ϕ22(ξ, y) from formulas (9), we obtain the displacements:

ux =
i cosh(ry

√
aj)

ξ

(

D2ja
1.5
j c11r

2y +D2j
√
ajc12ξ

2y + ajrc11(rC2j + 2B2j) + C2jc12ξ
2
)

+
i sinh(ry

√
aj)

ξ

(

B2ja
1.5
j c11r

2y +B2j
√
ajc12ξ

2y + ajrc11(rC2j + 2B2j) + iA2jc12ξ
2
)

,

uy =
(

c11a
1.5
j (A2jr + 3D2j)−

√
aj(c33 − c12)(A2jr +D2j)

− ryajB2j(c33 − c12 − ajc11)
)

cosh(ry
√
aj)

+ sinh(ry
√
aj)

(

c11a
1.5
j (C2jr + 3B2j)−

√
aj(c33 − c12)(C2jr +B2j)

− ryajD2j(c33 − c12 − ajc11)
)

,

(10)

where the index j = 1 denotes a layer and j = 2 denotes a half-space.
Boundary conditions (1)–(3) in the transformant space take the form:

σ1
y(ξ, 0) = f1(ξ), τ1xy(ξ, 0) = f2(ξ), σ1

y(ξ,−h) = σ2
y(ξ, 0), u1x(ξ,−h) = u2x(ξ, 0) = 0,

lim
x2

1
+y2

1
→∞

σ1
y(ξ, y1) = 0, lim

x2

1
+y2

1
→∞

τ1xy(ξ, y1) = 0, lim
x2

2
+y2

2
→∞

σ2
y(ξ, y2) = 0, lim

x2

2
+y2

2
→∞

τ2xy(ξ, y2) = 0.

Let us substitute the stress functions of the layer ϕ21(ξ, y) and the half-plane ϕ22(ξ, y) into the
formulas with the stresses (5) σx, σy, τxy and obtain:

σ1
y(ξ, 0) = −ξ2C21, τ1xy(ξ, 0) = iξ

√
a1(rA21 +D21),

σ1
y(ξ,−h) = ξ2 cosh(rh

√
a1)(D21

√
a1h− C21)− ξ2 sinh(rh

√
a1)(B21

√
a1h−A21),

σ2
y(ξ, 0) = −ξ2C22, u2x(ξ, 0) =

ia1rc11(rC22 + 2B22) + iξ2c12C22

ξ
,

u1x(ξ,−h) =
i cosh(rh

√
a1)

ξ

(

ξ2c12C21 + a1rc11(rC21 + 2B21)− hξ2
√
a1(c12D21 + a1c11D21)

)

+
i sinh(rh

√
a1)

ξ

(

hξ2
√
a1(c12B21 + a1c11B21)− ξ2c12A21 − a1rc11(rA21 + 2D21)

)

.

(11)

The formulas for the stress transformants σj
y(ξ, y), τ

j
xy(ξ, y) are linear combinations of the functions

cosh(ry
√
aj), sinh(ry

√
aj) and y cosh(ry

√
aj), y sinh(ry

√
aj) each of which is unboundedly increas-

ing for r 6= 0 and y → ∞. Thus, A2j sinh(ry
√
aj) + C2j cosh(ry

√
aj) and B2j

√
ajy sinh(ry

√
aj) +

D2j
√
ajy cosh(ry

√
aj) tends to 0 at infinity in the cases A2j = C2j and B2j = D2j , j = 1, 2.

From the boundary conditions on the upper boundary of the layer, the conditions of contact between
the layer and the half-plane, and the conditions at infinity, we obtain a system of linear algebraic
equations with respect to the unknown functions A21, B21, C21, D21, A22, B22, C22, D22. The solutions
of the system are given by expressions:

A21 = C21 = −f1
ξ2

, B21 = D21 =
−i(if1

√
a1r + f2ξ)

ξ2
√
a1

,

A22 = C22 =

(

sinh(ry
√
a1)− cosh(ry

√
a1)

)(

f1
√
a1rh− if2hξ + f1

)

ξ2
,

B22 = D22 =
sinh(ry

√
a1)

(

if2rhξ(
√
a2 −

√
a1)− f1r

2h(
√
a1
√
a2 + a1) + f1(iξ −

√
a2r)

)

ξ2
√
a1

− cosh(ry
√
a1)

(

if2rhξ(
√
a2 −

√
a1)− f1r

2h(
√
a1
√
a2 + a1) + f1(iξ −

√
a2r)

)

ξ2
√
a1

.

(12)

The resulting expressions (12) are substituted into the stress and displacement transforms (8) and
(10), and then subjected to the inverse integral Fourier transform from formula (1) to obtain their true
values.
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3. Numerical results and discussion

Consider an orthotropic layer whose material is characterized by elastic constants νxy = 0.26, νxz =
0.19, νyz = 0.41, νzy = 0.30, Ex = 38600MPa, Ey = 8270MPa.
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Fig. 3. True values of σx(x, y) of the layer (a ,b) and half-plane (c,d).
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Fig. 4. True values of σy(x, y) of the layer (a ,b) and half-plane (c,d).

The orthotropic half-space is
characterized by the constants
νxy = 0.26, νxz = 0.235, νyz =
0.17, νzy = 0.3, Ex = 1730MPa,
Ey = 3310MPa.

At the upper boundary of the
layer y1 = 0, the load σy(x, 0) =

1
x2+1 is set, τxy(x, 0) = 0. Thus, the

transformants σ1
y(ξ, 0) = πe−|ξ|,

τ1xy(ξ, 0) = 0.
Applying the inverse transfor-

mation to the transformants (5)

σj
x(ξ, y), σj

y(ξ, y), τ jxy(ξ, y), we ob-
tain the true values of the layer and
half-plane stresses (Figures 3–5).

The nature of the layer load-
ing determines the symmetry of
the stress distribution in the layer
and the half-plane, with the max-
imum modulus stress values ob-
served along the line of action of the
maximum normal load.

As can be seen in Figures 3–
4, the values of stresses σx(x, y),
σy(x, y) of the layer and the half-
plane take the largest values near
x = 0 for each y, and at a dis-
tance from x = 0, the stress values
decrease and tend to zero at infin-
ity. This indicates the fulfillment of
conditions (3) at infinity, and the
fulfillment of conditions (1) at the
y = 0 boundary. The results also
indicate that the condition (2) of
contact between the layer and the
half-plane (adhesion) is met.

At the points of the layer sym-
metric with respect to the x =
0 plane, we observe the symme-
try of the distribution of tangential
stresses. These graphical results
indicate that the boundary condi-
tions (1) and (3) are met. Com-
parison of Figures 5a, 5c indicates
that condition (2) is met. The re-
sults show an increase in the abso-
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lute values of τxy with increasing depth in the layer. In the half-plane, the behavior persists until
reaching a maximum value at y2 = −3, followed by a monotonic decrease, and at infinity, it tends to
zero.
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Fig. 5. True values of τxy(x, y) of the layer (a ,b) and half-plane
(c,d).

0
20

0
-20

x

-40

y

-0.15

-0.10

-0.05

0

0.05

0.10

0.15

10

-1
-0.8

-0.6
-0.4

-0.2
40

-4

a

0
20

0
-20

x

-40

y

-0.10

-0.05

0

0.05

0.10

10

-50
-40

-30
-20

-10
40

-3

b

Fig. 6. True values of ux(x, y) of the layer (a) and half-plane (b).

0
20

0
-20

x

-40

y

0.2

0.3

0.4

0.5

0.6

10

-1
-0.8

-0.6
-0.4

-0.2
40

-3

a

0
20

0
-20

x

-40

y

0.50

0.10

0.15

0.20

0.25

10

-50
-40

-30
-20

-10
40

-2

b

Fig. 7. True values of uy(x, y) of the layer (a) and half-plane (b).

By applying the inverse Fourier
transform (1) to the displacement

transforms (7) ujx(ξ, y), ujy(ξ, y) we
obtain the true values of the layer and
half-plane displacements (Figures 6–
7).

The results obtained for the dis-
placements ux(x, y), uy(x, y) are in
full agreement with the expected pat-
tern of displacements. A symmetri-
cal nature of deformation is observed.
The maximum values of normal dis-
placements uy(x, y) correspond to the
line of action of the maximum normal
load. The absolute values of displace-
ments decrease with depth and tend
to zero.

To verify the adequacy of the pro-
posed approach, we compared the
solution obtained for the problem
with isotropic materials with the so-
lution obtained by the finite element
method (FEM) using the QFEM fi-
nite element package [19]. In Fig-
ures 8a, 9a, 10a, 11a, the solutions
obtained using QFEM are shown, in
Figures 8b, 9b, 10b, 11b – according
to the proposed scheme. The calcula-
tions were performed with the follow-
ing parameters: ν1xy = ν1xz = ν1yz =
ν1zy = 0.2, E1

x = E1
y = 3.86 × 1010 Pa.

ν2xy = ν2xz = ν2yz = ν2zy = 0.3, E1
x =

E1
y = 3.31 × 109 Pa. The layer thick-

ness is h = 1m. Parameters of the
body for the FEM calculations:

G1 : {−50<x1<+50,−16y160},
G2 : {−50<x2<+50,−1006y260}.

At the upper boundary of the
layer y1 = 0, a load is set σy(x, 0) =

1
x2+1

, τxy(x, 0) = 0. The obtained so-
lutions are in full agreement, which
indicates the adequacy of the devel-
oped approach.

In Figures 8–11, we observe the same distribution of the corresponding stresses and displacements.
The numerical results obtained by both methods can be considered as coincident.
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Fig. 8. Values of σy(x, y).
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Fig. 11. Values of uy(x, y).
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The obtained solutions are in full agreement, which indicates the adequacy of the developed ap-
proach and the possibility of its application to determine the stress-strain state of layered bodies with
sufficient accuracy for technical applications.

4. Conclusions

A plane problem of the theory of elasticity is considered to determine the stress-strain state of an
orthotropic layer coupled to an orthotropic half-space subjected to external loads.

The proposed approach to solving the problem is based on the application of the one-dimensional
integral Fourier transform method. The search for unknown quantities is carried out in the space of
Fourier transforms. A numerical-analytical solution to the problem is obtained, numerical calculations
are performed, and their analysis is performed. The results obtained indicate the adequacy of the
developed approach.

The next stage of research is to extend the described approach to the class of problems on deter-
mining the stress-strain state of multilayer bases with orthotropic layers.
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Напружено-деформований стан двошарового ортотропного тiла
за умов плоскої деформацiї

Дзундза Н. С., Зiновєєв I. В.

Запорiзький нацiональний унiверситет,

вул. Жуковського, 66, 69600, Запорiжжя, Україна

Розглядається задача про визначення напружень i деформацiй двошарового тiла, що
складається з ортотропного шару постiйної товщини, зчепленого з ортотропним пiв-
простором. На поверхню шару дiють вiдомi зовнiшнi навантаження, такi що дефор-
мацiя тiла є плоскою. На нескiнченностi напруження дорiвнюють нулю. Напружено-
деформований стан тiла визначається за допомогою методу iнтегральних перетворень
Фур’є. Дослiджено особливостi розв’язкiв системи диференцiальних рiвнянь задачi.
Отримано розв’язки конкретних задач та проведено їх аналiз.

Ключовi слова: ортотропний шар; ортотропна пiвплощина; плоска деформа-

цiя; напружено-деформований стан; функцiя напружень; iнтегральне перетворення

Фур’є.
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