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We consider the problem of determining the stresses and strains of a two-layer body con-
sisting of an orthotropic layer of constant thickness connected to an orthotropic half-space.
The surface of the layer is subjected to known external loads, such that the deformation
of the body is plane. At infinity, the stresses are zero. The stress-strain state of the body
is determined using the method of integral Fourier transforms. The features of solutions
of the system of differential equations of the problem are investigated. The solutions of a
particular problems are obtained and analyzed.

Keywords: orthotropic layer; orthotropic half-plane; plane deformation; stress-strain
state; stress function; integral Fourier transform.
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1. Introduction

The widespread use of layered bodies in construction and mechanical engineering has led to an increased
interest in the problems of studying the stress-strain state of each layer, the transfer of forces and
loads from one layer to another, and the problems of determining contact interactions. The study of
the properties of orthotropic materials holds a special place in these tasks [1], as well as structures
with orthotropic layers and the task of developing mathematical models describing real materials by
orthotropic schemes.

Methods for determining deformations (plane and spatial) for multilayer plates with elastic con-
nections between the layers were considered in [2—4|, where the solution was found using the method
of elasticity functions with the application of the Fourier integral transform.

The calculations of the plane deformed state of multilayer curved orthotropic plates using the finite
element method are described in [5]. The application of the numerical method of spline approximation
to find the stress-strain state of rectangular laminated orthotropic plates is described in [6]. The
determination of deformations of an orthotropic sandwich layered shell (each layer of which is of finite
length) under internal and external pressure is given in [7].

Problems on the interaction of an orthotropic layer with an orthotropic half-space were considered,
for example, in [8-13|. Paper [8] presents the problem of incomplete contact between a layer and a
half-space solved by the Fredholm integral equation. The problem of determining the stress intensity
coefficients for a moving interfacial crack between an orthotropic half-plane and a heterogeneous or-
thotropic layer is considered in [9]. The analysis of the bending of an orthotropic layer connected to a
half-plane under a compressive load is considered in [10,11]. In [10], the effect of an interfacial crack
on the bending under plane deformation is studied. With the help of Fourier transforms, the boundary
value problem is reduced to a system of homogeneous singular integral equations of the Cauchy type
of the second kind, which is solved numerically to determine the critical deflection loads.

The development of new approaches and extension of existing ones to the problem of determining
deformations and stresses in layered structures with consideration of material orthotropy determines
the relevance of the research.

This work aims to extend the method of solving elasticity problems for multilayer foundations
with isotropic layers, based on the methods of integral Fourier transforms and the method of yielding
functions, to the case of foundations with orthotropic layers.
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2. Statement of the problem

We consider the problem of calculating stresses and displacements at any point of an orthotropic body
consisting of an orthotropic layer of depth i coupled to an orthotropic half-space. The layer is bounded
by two parallel planes. An external load P acts

on the upper boundary of the layer. At infinity, P
the stresses tend to zero. The deformation of \l/ \L l/ \L i/ \L
the layer and the half-space is plane. n
We will denote by the index 7 = 1 all values T
related to the layer and j = 2 those related to |
the half-space. To build a mathematical model Ih 1Yy2 layer (1) / T1
of the problem, we introduce coordinate systems half-space (2) T2
01 X1Y; for the layer and O3 XoY5 for the half- 7
space, as shown in Figure 1. %1 “2
Geometric areas occupied by the layer and Fig. 1. Statement of the problem.
half-space:
Gi(z1,y1,21): {—00 <21 < +00,—h < y; < 0,—00 < 21 < 00},
Ga(z2,y2,22): {—00 < T3 < 400, —00 < Y2 < 0, —00 < 29 < 00}
The upper boundary of the layer is y; = 0. fo
The materials of the layer and the half-space are
characterized by elastic constants I/le2, EJ12 fi
The external load P!(z,z) is such that the ¢y2 1) 1
deformation of the layer and half-space is plane, ) T2
the displacements of the body points are parallel . )
to the plane O1X,Y; (02X,Y5): Fig. 2. Illustration of the problem statement.
W(ﬂfl,yl,ZT) :uz(xlvybzi() 0 W(x27y27z>2k) :uz(‘r%y?vz;) 0
U(z1,y1,21) = uz(w1, 41, 27) = ue(w1,91), U(z2,y2,25) = Uz (T2, Y2, 25) = Uz (T2, ¥2),
V(x17yl7zi<) :uy(wlaylazf) (% (‘Tl7yl) V(33279272§k) :Uy($27y2722) (2 (5527?42)

Thus, we come to a plane problem of elasticity (Figure 2).
Boundary conditions:
e on the boundary y; = 0:

oy(21,0) = fi(z1), 7, (21,0) = fa(z1); (1)
e common boundary of the layer and the half-plane:
O';(l‘l, —h) = JZ(:EQ,O), uu,lv(xl, —h) = ui(:ng,O) = 0; (2)
e at infinity:
x%j;?l_)oo oy (z1,91) =0, x#;?";oo Toy(@1,01) =0, ;
Ll e =0 i e <o, ’
The materials of the layer and half-space are characterized by the elastic constants v}, l/;y, V;Z,

Zy, El E1 and, respectively, 12, ng, 52, o, E2, E2 Thus, it is necessary to find a solution to
the system of differential equations of the plane theory of elasticity for an orthotropic material that
satisfies the boundary conditions.

To determine the stress-strain state of bodies, we will apply the method of one-dimensional integral
Fourier transform [12, 13| to the stress function ¢(z,y) in the variable x with the transformation
parameter &:

+oo

P = [ el pea) =g [ pEu e @

—0o0 —00
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The first formula defines the direct one-dimensional integral Fourier transform for the function
o(z,y), and the second defines the inverse. The function $(,y) is called the Fourier transform of the
function ¢(x,y), for which the property [14] is true:

+o00 9k
| TR e - (i) e 9
o x

The solution to the boundary value problem is sought in the space of transformants of the one-
dimensional integral transform. In this case, all the basic equations of the problem and boundary
conditions are directly transformed by the one-dimensional Fourier integral transform.

We find the solution of the analog of the biharmonic differential equation of a plane problem for
an orthotropic material [15,16], to which we apply the Fourier integral transform:

g
20 4
A1—4—2A35 +A25 =0,
y
1—ve,v 1—vy v Vgy+Vzzl Vyz+Vzal
where ¢y = pEEE, e = e, o3 = G—zy, Clg = Cg1 = —pTt = s, Gey =

) % are the elastic constants in Hooke’s law, A1 = c¢11, As = ¢o9, A3 = %, 2 =9(&,y)
is the Fourier transform of the variable x from ¢(z,y). All values related to the layer are denoted by
indices j = 1, and for the half-plane j = 2.

Based on the results of [17, 18|, the transformants of the layer stress function $21(§,y) and the

half-plane stress function $3(§,y) take the form:
P21 = As sinh (ry\/ﬂ) + Bo1y/a1y sinh (ry\/ﬂ) + Co1 cosh (Ty\/a) + Da1+/a1y cosh (ry\/a), 6)
P22 = Agg sinh (ry\/@) + Bg2+/azy sinh (ry\/@) + (59 cosh (ry\/@) + Dyy+/azy cosh (ry\/@),
where r = [£], /a; = \/m, Ayj, Baj, Coj, Doj are functions of the parameter &, j =1, 2.

The stress function p(z,y) is chosen to satisfy the conditions exactly:

Po(z.y 820(x, y O*o(x,y
O-x(l;’y) — %7 O‘y(;U,y) - %7 Twy(l’?y) = _%y)

Taking into account the connection of the stress function ¢(z,y) with the stresses o, oy, 74y and
the Fourier transform property (5), we obtain the corresponding expressions in the space of Fourier

transforms: . N )
ax(g,y):/ (92 e’ dac:a—y2/ pe't dx:a—y27

+o00 a

U_y(§7y) = f ite dx = _§2¢7 (7)
oo O

—_— oo 8290 €x 8 oo 8(10 7, T

Substituting the stress functions for the layer $21(&, ) and the half—plane @22(5,31) in expres-
sions (7), we obtain:

U_{"(&’ y) = (Dgj\/a;ry + rCaj + 2Bsj)a;r cosh (ry./a;)
+ (Baj/ajry + rAgj + 2Dg;)azr sinh (ry./a;),

0_5(5, y) = §2 cosh (Ty\/a_j) (ng\/a_jy + ng) - 52 sinh (Ty\/a_j) (ng\/a_jy + Agj), (8)

2y(&,y) = (Agj\/a;r + Baja;ry 4+ Daj\/aj)i€ cosh (ry./a;)
+ (ng\/a_jr + Dojajry + ng\/@)lf sinh (ry\/a_j),
where the index j = 1 denotes a layer and 7 = 2 denotes a half-space.
Applying the Fourier transform property (5) to the formulas €, = c1104 — €120y, Yoy = €33Tzy, We
obtain the displacement transformants [17]:

Uz (&, y) = 5(611 7z(&,y) — c12 O'y(f, ))7 U_y(fay) = % (%3@(571/) - 8u_x> . 9)

Oy
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Substituting the transformants @21 (£, y) and $22(€, y) from formulas (9), we obtain the displacements:

i cosh(ry,/a;)

Uy = —f (nga}'5cllr2y + ng\/a_j012§2y + ajrein (rCaj + 2Baj) + C2jcl2§2)
isinh(ry,/a;) . .
+ f\/_y (Bajaj ciir?y + Bojy/ajc128%y + ajren (rCoj + 2Byj) + iAgjc128?)
Uy = (Clla}'S(A%T + 3D2j) - \/a_j((:33 - 612)(A2j7‘ + ng) (10)

— rya; Boj(c3z — c12 — ajcn)) cosh(ry,/a;)
+ sinh(ry,/a;) (cua]l-"r’(C’gjr + 3By;) — \/aj(c33 — c12)(Cojr + Baj)
— rya;jDaj(css — 12 — ajein)),
where the index j = 1 denotes a layer and j = 2 denotes a half-space.
Boundary conditions (1)—(3) in the transformant space take the form:

lim  ol(§y) =0, | lim 7L(Ey)=0,  lim 02(&y2) =0,  lim 72,(& ) =0.

x%—l—y%—)oo m1+y%—> r5+Yy5 —00 x%—l—y%—)oo
Let us substitute the stress functions of the layer $21(£,y) and the half-plane $23(&,y) into the
formulas with the stresses (5) @, @y, Ty and obtain:

o1(£,0) = —€2Ca1, 7L (£,0) = i€\/ar(rAa + Day),
o}(€ —h) = € cosh(rhy/a)(Da1/arh = Cor) — € sinh(rhy/ar) (Bary/arh — Az),
. )
U_Z(f, 0) = —52022, u_%(£7 0) = ia1rcr;(rCaog + 2Bgg) + i€°c12C99

‘ | (1)
— i cosh(rh,/a
ul(§,—h) = # (5%12021 + arrer1 (rCar + 2Bay) — hé*\/ai (c12Day + aic11Do1))
isinh(rhy/a
+ % (h§2\/a_1(c12Bz1 + ajc11Bar) — 212491 — arren (rAs + 2Ds1)) .

The formulas for the stress transformants 05(5 2 Y)s ngy(f ,y) are linear combinations of the functions
cosh(ry,/a;), sinh(ry,/a;) and ycosh(ry,/a;), ysinh(ry,/a;) each of which is unboundedly increas-
ing for r # 0 and y — oo. Thus, Ag;sinh(ry,/a;) + Cajcosh(ry,/a;) and Baj,/ajysinh(ry,/a;) +
Dyj,/ajy cosh(ry,/a;) tends to 0 at infinity in the cases Ag; = Co; and Baj = Daj, j = 1,2.

From the boundary conditions on the upper boundary of the layer, the conditions of contact between
the layer and the half-plane, and the conditions at infinity, we obtain a system of linear algebraic
equations with respect to the unknown functions Asy, Boi, Co1, Do1, Aga, Bag, Ca, Dos. The solutions
of the system are given by expressions:

Agr = Cn = _gv B = Dg1 = _i(if1£;‘_1—|— f25),
Agy = Coy = (sinh(ry\/a1) — cosh(ry\/a1)) (fiv/airh — if2hé + f1)
S 52 )
B — o SN (Farh€(@ — ar) — Fr Wy +an) + G~ yar)
22 = g2 = 62\/G—1
 cosh(ryy/a) (ifarh€(y/az = v/ar) — Firh(yaiy@ + ) + (i€ — )
N .

The resulting expressions (12) are substituted into the stress and displacement transforms (8) and
(10), and then subjected to the inverse integral Fourier transform from formula (1) to obtain their true
values.
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3. Numerical results and discussion

Consider an orthotropic layer whose material is characterized by elastic constants v, = 0.26, v, =

0.19, 1. = 0.41, v,y = 0.30, E, = 38600 MPa, E, = 8270 MPa.

Fig. 4. True values of o (x,y) of the layer (a,b) and half-plane (c,d).

The orthotropic half-space is
characterized by the constants
Vpy = 0.26, v, = 0.235, vy, =
0.17, v,y = 0.3, E, = 1730MPa,
E, = 3310 MPa.

At the upper boundary of the
layer y; = 0, the load oy(z,0) =

562#“ is set, T4y (2,0) = 0. Thus, the
transformants J_:;(f, 0) = 7re_|§|,
74,(€,0) = 0.

Applying the inverse transfor-
mation to the transformants (5)

U%(fay% U?Z(fay)v Ti?ﬂ?y(fvy)v we ob-
tain the true values of the layer and
half-plane stresses (Figures 3-5).

The nature of the layer load-
ing determines the symmetry of
the stress distribution in the layer
and the half-plane, with the max-
imum modulus stress values ob-
served along the line of action of the
maximum normal load.

As can be seen in Figures 3—
4, the values of stresses o.(x,y),
oy(z,y) of the layer and the half-
plane take the largest values near
x = 0 for each y, and at a dis-
tance from x = 0, the stress values
decrease and tend to zero at infin-
ity. This indicates the fulfillment of
conditions (3) at infinity, and the
fulfillment of conditions (1) at the
y = 0 boundary. The results also
indicate that the condition (2) of
contact between the layer and the
half-plane (adhesion) is met.

At the points of the layer sym-
metric with respect to the z =
0 plane, we observe the symme-
try of the distribution of tangential
stresses. These graphical results
indicate that the boundary condi-
tions (1) and (3) are met. Com-
parison of Figures 5a, 5c¢ indicates
that condition (2) is met. The re-
sults show an increase in the abso-
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lute values of 7., with increasing depth in the layer. In the half-plane, the behavior persists until
reaching a maximum value at y3 = —3, followed by a monotonic decrease, and at infinity, it tends to
Zero.

By applying the inverse Fourier
transform (1) to the displacement

transforms (7) wh(&,y), ul(&,y) we
obtain the true values of the layer and
half-plane displacements (Figures 6—
7).

The results obtained for the dis-
placements ug(z,y), uy(z,y) are in
full agreement with the expected pat-
tern of displacements. A symmetri-
cal nature of deformation is observed.
The maximum values of normal dis-
placements w, (z,y) correspond to the
line of action of the maximum normal
load. The absolute values of displace-
ments decrease with depth and tend
to zero.

To verify the adequacy of the pro-
posed approach, we compared the
solution obtained for the problem
with isotropic materials with the so-
lution obtained by the finite element
method (FEM) using the QFEM fi-
nite element package [19]. In Fig-
ures 8a, 9a, 10a, 1la, the solutions
obtained using QFEM are shown, in
Figures 8b, 9b, 10b, 110 — according
to the proposed scheme. The calcula-
tions were performed with the follow-

Fig.5. True values of 7,(x,y) of the layer (a,b) and half-plane
(c,d).

107
0.10

0.05

ing parameters: U%y = V%Z = ylz =
vl, =02, El = E, = 3.86 x 10'° Pa.

Tz

vz

Ef = 3.31 x 10° Pa. The layer thick-
ness is h = 1m. Parameters of the
body for the FEM calculations:

Gi: {—50<1’1 <450, —-1<y; QO},
Goy: {—50<ZL‘2 <450, -100< y2 <0}

At the upper boundary of the
layer y; = 0, a load is set o,(z,0) =
12—1“, Tey(2,0) = 0. The obtained so-
lutions are in full agreement, which
indicates the adequacy of the devel-
oped approach.

In Figures 811, we observe the same distribution of the corresponding stresses and displacements.
The numerical results obtained by both methods can be considered as coincident.

_ 2 2 2 1 _
=y, = vy, =v;, =03, B =

x

Fig. 7. True values of u,(z,y) of the layer (a) and half-plane (b).
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T.=100
T T
20 -40 0 60

Fig.11. Values of u,(z,y).
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The obtained solutions are in full agreement, which indicates the adequacy of the developed ap-
proach and the possibility of its application to determine the stress-strain state of layered bodies with
sufficient accuracy for technical applications.

4. Conclusions

A plane problem of the theory of elasticity is considered to determine the stress-strain state of an
orthotropic layer coupled to an orthotropic half-space subjected to external loads.

The proposed approach to solving the problem is based on the application of the one-dimensional
integral Fourier transform method. The search for unknown quantities is carried out in the space of
Fourier transforms. A numerical-analytical solution to the problem is obtained, numerical calculations
are performed, and their analysis is performed. The results obtained indicate the adequacy of the
developed approach.

The next stage of research is to extend the described approach to the class of problems on deter-
mining the stress-strain state of multilayer bases with orthotropic layers.
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Hanpy>xeHo-gecdopmoBaHuii cTaH ABOLLIAPOBOro OpTOTPONHOro Tisa
3a YMOB nJiockoi gedopmauii

Hzyunza H. C., Binosees 1. B.

3anopizvruti HaUioHAALYHUT YHIGEPCUMEN,
syn. 2Kyroscorozo, 66, 69600, 3anopistcocsa, Yrkpaina

Posrisinaerses 3agatua nmpo BU3HAYEHHST HAIIPY2KEHbD 1 Jebopmariiit JBOMIapoBOro Tija, o
CKJIAJIAETHCST 3 OPTOTPOITHOTO MIAPY HOCTIHHOT TOBIUHY, 3YEIJIEHOrO 3 OPTOTPOITHUM ITiB-
npocropoMm. Ha moBepxHio mapy Iif0Th BiZoMi 30BHINIHI HaBAHTaXKEHHS, Taki Mo mgedop-
Malrist Tita € mrockoo. Ha HeckingeHHOCTI HaIpyKeHHs JOPiBHIOIOTH Hy/0. Hampykeno-
nedopMOBaHUil CTaH Tijla BUSHAYAETHCH 32 JOIIOMOT'0I0 METO/y IHTerpajJbHUAX IIEPETBOPEHD
Oyp’e. HocmimkeHo ocobIUBOCTI PO3B’A3KIB cucTeMU Iu(EPEHIiaIbHAX PIBHAHD 3a/1adi.
OTpuMaHO pO3B’sI3KN KOHKPETHUX 33189 Ta IMPOBEIEHO 1X aHAJII3.

Knrouosi cnoBsa: opmomponnut wap; opmomponna nieniowuna; niocka dedopma-
UiA; HANPYsHceno-0ePopmosanutll cman; GYHKYLA HANPYHCEHD; THMEZPALOHE NEPEMBOPEHHA
Dyp’e.
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