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non-stationary convective heating conditions

Zhydyk U. V., Klapchuk M. I., Bahlai O. L., Voloshyn M. M., Ivasyk H. V., Morska N. O.

Lviv Polytechnic National University,
12 S. Bandera Str., 79013, Lviv, Ukraine

(Received 29 January 2024; Revised 10 April 2024; Accepted 13 April 2024)

The study considers a rectangular isotropic plate with a layered irregular structure. It is
convectively non-stationarily heated by an external environment. The initial relationships
of the non-stationary heat conduction and thermoelasticity problem are formulated using
a five-mode mathematical model based on the shear deformation theory of thermoelas-
ticity. Using the methods of Fourier and Laplace integral transforms, general solutions
have been obtained for the non-stationary heat conduction problem and the quasi-static
thermoelasticity problem for a hinge-supported plate along its edges. A numerical analysis
of the temperature field, radial deflections, normal forces, bending moments, and normal
stresses, depending on geometric parameters and the Bi criterion, has been performed
for a three-layer plate. The materials of its layers are made of ceramics and metal. The
temperature and mechanical parameters have been analyzed for the layering configuration
of the plate: metal-ceramic-metal.

Keywords: three-layer plate; convective heat transfer; non-stationary heating; tempera-
ture; thermoelastic state.
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1. Introduction

Multilayer materials are frequently employed in various fields of modern technology as components of
structures operating under high-temperature conditions. Multilayer structures are used for protection
against aggressive environments, reinforcement of constructions, thermal insulation, or enhancement
of heat transfer. Therefore, research in this direction remains pertinent.

Scientists have extensively investigated the components of layered structures [1-3]. Precise solu-
tions for thermoelasticity problems of layered plates based on three-dimensional equations have been
developed in [4,5]. Refined models have been proposed using two-dimensional equations [6-8|. Analyt-
ical solutions for the bending of inhomogeneous and composite plates under thermomechanical loading
have been derived in [9-13]. Interrelated thermoelasticity equations have been utilised to analyse the
influence of the coupling coefficient on the nonlinear behaviour of plates [14]. The finite element method
has been employed for studying thermomechanical processes in layered plates [14,15|. Attention has
been focused on thermoelastomechanical analysis of non-ferromagnetic plates under electromagnetic
impulses in a study [16]. Temperature stability of plates made of composite material has been inves-
tigated in [17]. A more detailed overview of various models and research methods for inhomogeneous
thin-walled structures is provided in works [1,2,18-20].

The aim of this article is to investigate the thermoelastic state of a three-layer rectangular plate
with irregular symmetric structure under heating from its surroundings through heat exchange, based
on the equations of thermoelasticity theory for plates with five degrees of freedom and two-dimensional
heat conduction equations.

2. Determination of the temperature field

Consider a rectangular plate of dimensions a x b and constant thickness 2h made of an isotropic
material inhomogeneous in the transverse direction. The points of the plate space belong to the
orthogonal coordinate system z,y, z and occupy the region [0,a] x [0,b] x [—h, h].

(© 2024 Lviv Polytechnic National University 413
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Suppose that at the initial time the temperature of the plate is zero. Starting from 7 > 0, the plate
is heated by the environment, whose temperature on the surface z = +h is t} (z,y,7) = te(x,y) tT(7),
and on the surface z = —h is t7 (z,y,7) = 0. Convective heat transfer with a constant heat transfer
coefficient a, occurs between the environment and the surfaces z = £h. The temperature field of the
plate t(z,y, z,7) is determined from the system of two-dimensional heat conduction equations with a
linear dependence of temperature on the transverse coordinate [7]:

T T
AMATy — 20, Ty + BMAT, — Aca ! BC@ = —a,t],
or or
AN o1y oTh
B AT, + DMAT, — 20, | Ty — B¢~ — D°Z= = —q,tT. 1
L 2 <h2+a> or or sle )

Here . .
{AA,BA,DA}:/ Az2){1,z/h, (2/h)?}dz, {AC,BC,DC}:/ co(2){1, 2/h, (z/h)?*}dz,  (2)
—h —h

2 2 2j—1 (" j—1 ,
A = (811 +822) s T7 = 2h] htZ dZ, (j = 1,2)

are the integral characteristics of temperatures; ¢, = cp, &y = 9/0x, Jy = 9/dy, A(z) is the thermal
conductivity coefficient, c(z) is the specific heat capacity, p(z) is the specific density, 7 is the time
variable, t(x,y, z,7) is the temperature field function.

The system (1) is subjected to homogeneous boundary and initial conditions:

r=0,a: Ty =T,=0,
y=0,b: Ty =T5,=0, (3)
r=0: T1=T=0. (4)
The solution of the system (1) under the conditions (3) and (4) has been found by the methods of the

integral Laplace transform in time and the finite Fourier transform in coordinates. Then we obtain
the following integral characteristics of temperatures:

T = 20* Z Z Z Qnm [(C'spg — g1) — (Cap; — g2)] sin %13: sin %y,

n=1m= 127&] 1

20* Z Z Z Qnm [(Clpg —ag1) — (Capj — 93)] sin %na: sin %y (5)

n=1m=1i#j=1

Ty =

Here

= Ay (po 4+ pn) +Bi,  ga=g3= N (15 + 1), g4 =As(ps +pd) +Bi+ Ay,

h h h A )

Bi:Oi\O, ,un:%, ,um:$, T/:C?)%T, C* = C1C3 — C3,
1 C C C

{A1, Ay, As} = 2h/\ ——{A"B" D"}, {C1,05,C3} = M{A ,B°, D},

Ao and Y are some characteristic coefficients of thermal conductivity and heat capacity, respectively;
—p1 and —po are the roots of the quadratic equation

C*p* + [Crgs + Cag1 — Ca(gs + 92)] P + 9194 — 9293 = 0,
4 a b
Qmn = E/o /0 te(z,y)sin %az sin %y dz dy, (6)

2,(+) = /0 ) ey, (=1,2). 7
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3. Determination of the stress-strain state

To investigate the stress-strain state of the plate caused by the temperature field (5), we use the
basic thermoelastic equations of the first-order shear theory [7], written for isotropic plates in terms of
generalized displacements u;, w, v; (i = 1,2).

Physical equations for stresses at any point of the plate take the form:

E
on =1 _(zy)2 [O1ur + v Doug + 2 (0171 + vdav2) — (1 +v) au(2) 8],
E(z)
099 = T2 [Oug + v O1ug + 2z (Ooy2 + vO171) — (1 +v) ay(2) t]
__E®) _ B _ B
o192 = ST +0) (Oouy + Oug), o013 = 21+ ) (m +01w), o2 = ) (v2 + aw),  (8)

where E(z) and o!(z) are the modulus of elasticity and the coefficient of thermal linear expansion,
which depend on the coordinate z; v is the Poisson’s ratio, which is assumed to be constant; wu;, w
are the displacements of the points of the average surface; 7; are the angles of rotation of the normal.
Physical equations for forces and moments in the middle surface of the plate can be written as:

(81u1 + 7/62u2) + B (81’71 + 1/82’72) — AtTl — BtTQ/h,
(62u2 + u@lul) + B (82’72 + 1/81’71) AtTl BtTQ/h
= (61u1 + V82'LL2) + D (81’71 + 1/82’72) DtTg/h,
= B (Oqug + voiu1) + D (9272 + v0i1vy1) — — D'"Ty/h,
1 _
Nyig = TV(A(aﬂLQ + agul) + 3(81’72 + 82’71)),
1 _
My = TV(B(51U2 + Oour) + D (12 + Bom1))s
1—v 1—v
Ql = k,AT (’Yl + 81'10), QQ = k,AT (’YQ + 82'10) (9)

Here

h
(A, B,D} = 1_1V2/ BE){1,2 2z (AL B D) = - ! . D an(2){1, 222} dz;
-z, —

N;, Nio, QQ; are normal, shear, and shear forces, respectively; M;, Mjs are bending and torsional
moments; k" is the shear coefficient [21].
The equilibrium equations take the form:

1-—
A(@%l + 622>'LL1 + A 612'&2 + B (511 +

1—1—1/

1—

1
822>’71 + B 612’72 AtalTl + Bt81T2/h,

1-—

1—
812'&1 + A<622 + 811>u2 + B 81271 + B <822 + B V8%1>’72 = Atang + Bt82T2/h,

1— 1— 1—
[ > LA (92 + a;)] w+ T”Ak’am n T”Ak’am —0,

1— 1+ 1— 1— 1—
B <a%1 + Tya%2> ul + B V812UQ — TVAk,alw + |:.D ((9%1 + Tya%2> — 5 Vk/A:| Y1

1
4D —I-V

612’72 BtalTl + Dtang/h,

1 + v 1-—
612'&1 + B <a§2 + T8%1> ug — —k A82'LU + D 81271

— 1—
+ [D <a§2 + T”a%1> - Uk ] o = B'OyTy + D'0yTy/h. (10)
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Boundary conditions at the edges have the following form:
r=0,a: uwuy=w=7v=0, N =M =0,
y=0,b: uy=w=v=0, No=DMy,=0. (11)
The system of differential equations (10) together with the boundary conditions (11) constitutes
the boundary value problem of temperature stresses for isotropic inhomogeneous rectangular plates in
generalized displacements. This problem has been solved by the finite double Fourier transform method

in the 2 and y coordinates. From the known generalized displacements, the temperature stresses (8)
and the force-moments (9) were found.

4. Results and discussion

As an example, consider a three-layer shell of irregular symmetrical structure Let the physi-

B

cal and mechamcal characteristics of these layers be equal to ¢V = ¢® = {CU ,5“ , “ , cy },

¢? = { Ci; ,5“ ) 522),61, } and their thicknesses are hy = hs and hg, (2hy + ho = h). Then

the expressions for the integral characteristics A7 = {A, At AN AC}, B? = {B, B!, B?, BC} and
D1 = {D, Dt D*, Dc} through the characteristics of the layers are determined by the formulas [3]

3
AT = b 24 — %(q@) —¢M|, Br—o, pr=2 { M 1 (4@ — ) <1 - %) } .

3
Numerical studies were performed for the following ambient temperature distribution functions:
te(w,y) =t"N(z) N(y), (13)
tH(r)=1-—¢e77, (14)
where

N(z)=S_(x — (z0 — ap)) — Sy (= — (zo +ao)), N(y)=5_(y— (yo—bo)) —S+(y— (o +bo));
St (x) are asymmetric unit functions; 2ag and 2by are the dimensions of the heating region; (xq,yo)
are the coordinates of the center of this region; 5* is a parameter characterizing the rate of increase in
the temperature of the medium to a given surface distribution; t*, 8* = const.

From the relations (6) and (13) the expressions for the Fourier coefficients @y, are obtain

16t* . mnag . mnxg . wmby . TMY
Qnm = 5 sin sin sin sin
mnmw a a b b
In the case of uniform heating over the entire surface of the plate (zg = §, yo = %, ap =75, by = %) we
obtain Qnm = 7):15;2 (1 —cos7n) (1 — cosmm).

The time function is calculated using the formulas (7) and (14)

The materials of the shell layers were metal (Ti-6Al-4V) and ceramics (ZrOz) with the following

physical and mechanical characteristics [13]:

— metal: v =0.321, E,, = 66.2GPa, o, = 10.3-10751/K, \,, = 18.1 W/mK, ¢ = 808.3J/(kg K);

— ceramics: v = 0.333, E. = 117GPa, ol = 7.11-10751/K, A\, = 2.036 W/mK, ¢ = 615.6 J/(kg K).
The values of the other parameters are as follows: h/a = 0.025, a/b = 1, ¥’ = 5/6, 7/ = 3,

Eo =102GPa, af, = 107° 1/K, \o = 1W/mK co =6-10%J/(kgK).

The dimensionless temperature t' = t*’ temperature characteristics 1} = %, radial deflections
w' = ht*Lg’ normal forces Nj = t*hjj\é r bending moments M| = t*hélef) and normal stresses o] =

#Eoar Were calculated in the center of a square three-layer plate metal/ceramic/metal (M/K/M) with
g
a uniform distribution of ambient temperature over the surface.
Figure 1 shows the values of these quantities for Bi = 1, 8* = 0.5, and different values of the ratio

of the thickness of the middle layer to the front layer ho/hi. For M/K/M plates, as the ratio ho/h;
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increases, the role of ceramics increases, and the stresses on the surface z = h increase, since the elastic
modulus for ceramics is greater than for metal.

Fig. 1.
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Temperature characteristics T}, radial deflections w’, normal forces Nj, bending moments Mj and

normal stresses o] depending on the ratio of the thickness of the middle layer to the front layer ha/hy have
been calculated at Bi = 1, * = 0.5.
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Fig. 2. Temperature characteristics 7}, radial deflections w’, normal forces Nj, bending moments M] and
normal stresses o} depending on Bi have been calculated at ho/h; = 1, f* = 0.5.
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Figure 2 illustrates the dependence of the temperature and the stress-strain state of the plate on
the heat transfer between the front surfaces of the plate and the environment. The calculations were
performed for ho/hy = 1, f* = 0.5, and different values of the heat transfer coefficient Bi. It can
be seen that with an increase in heat transfer, the temperature and, consequently, the plate stress
increases.

/
T 70 W
045 T
] ! .
0.45 \ 60
040+ e
] - 50
4 - !
035 T
404
30
20
/8*
10 T T T T T
0 2 4 6 8 10
/
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Fig.3. Temperature characteristics T/, radial deflections w’, normal forces Nj, bending moments M; and
normal stresses o} depending on §* have been calculated at ho/h; =1, Bi = 1.

Figure 3 shows the values of the temperature and stress-strain state of the plate for hg/hy = 1,
Bi = 1, and different values of the coefficient 8*, which characterize the speed of reaching the steady-
state temperature field and stress-strain state by the characteristics of the temperature field.

5. Conclusions

Based on the equations of the first-order linear shear theory with five degrees of freedom, a methodology
for solving the problems of thermal conductivity and thermoelasticity for a layered plate of irregular
structure with layers made of ceramics and metal is developed. The plate is heated by the environment
by heat transfer through the side surfaces according to Newton’s law. The effect of the heat transfer
coefficient, time parameter, and the order of layers of different materials and their thicknesses on
the components of the stress-strain state and temperature field was investigated. It follows from the
numerical analysis that by changing the order of layers and their thicknesses, it is possible to influence
the magnitude of stresses in a multilayer structure.
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TepmoHanpy>xeHuii CTaH TPULLIAPOBOI NPSIMOKYTHOI NJIaCcTUHM
3a YMOB HECTALOHAPHOIro KOHBEKTUBHOINO HarpiBaHHS

Kumuk VY. B., Kimamayk M. 1., Barnait O. 1., Bojgomua M. M., Isacuk I'. B., Mopcbka M. O.

Hauionarvrut ynisepcumem “/Ivsiscora nosimexnira”,
eyn. C. Bandepu, 12, 79013, Jlveis, Yrpaina

Poszrusnaerses npsaMoKyTHa 130TpPOIHA IJIACTUHA IIAPYBATOI HEPETYISPHOI CTPYKTYPU.
Bona KoHBeKTHBHO HeCTAITiOHAPHO HATPIBAETHCS 30BHINIHIM cepefoBuIeM. /g Bu3HaIeH-
Hs 11 TEpMOHAIIPY2KEHOT'O CTAHY 3aIMCAHO BUXIiJHI CIIiBBiIHOIIIEHHS HECTAI[IOHAPHOI 331241
TEILTOIPOBITHOCTI Ta TEPMOIIPYKHOCTI 3 BUKOPUCTAHHSIM IT' ATUMOJAJIBLHOI MaTEeMATUIHOL
MOJIeJIi 3CYBHOI TeOpil TEPMOIIPYKHOCTI. 3 BUKOPUCTAHHSIM METO/IIB iHTErpaJIbHUX IIEpe-
TBopenb Pyp’e i Jlamraca 3Haiieno 3arajbHi PO3B’sA3KH HECTAITIOHAPHOI 3a/1ad9i TeILIO-
MIPOBITHOCTI Ta KBa3iCTATUIHOI 38,121 TEPMOIIPY2KHOCTI1 /I MAaPHIPHO OMEPTOl Ha Kpasax
PO3IJIAyBaHO] ILTACTUHU. UUCIOBUN aHAJII3 TEMIIEPATYPHOTO MMOJIsl, PaJiaJbHIX ITPOTUHIB,
HOPMAaJILHUX 3YCHJIb, 3TUHHAX MOMEHTIB 1 HOPMA/JIbHIX HAIPYKEHb 3aJIE2KHO BiJ] TeoMeT-
pUYHUX MTapaMeTpiB Ta Kpurepito Bio BuKoHaHO /It TpHUIIApoBOi miacTunu. Matepiaan
11 1mapiB BUTOTOBJIEHI 3 Kepamiky i mertasy. IIpoanaigizoBano TemmepaTypy i MexaHidHi
rmapaMerpu JUisi CTPYKTYPH MIAPiB MIACTUHA — “MeTaI-KepaMiKa—MeTas .

Kntouosi cnoBa: mpuwaposa naacmuna; KOHEEKmMuUSHUl meniooomin; Hecmauionaprul
HA2PIB; MEMNEPATYDA; MEPMOHANDYAHCEHUT CTNAMH.
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