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The spatial structure of a protein determines its biochemical properties and, consequently,
its function. The same applies to elements of secondary structure, which adopt shapes of helices,
coiled coils, strands, sheets and other formations in three-dimensional space. Automatic detection
of such formations based on their corresponding amino acid sequences in the protein will enable
the cataloging of these sequence fragments, examining and systematizing their correspondence to
spatial protein formations. This, in turn, should simplify the task of searching for complementary
and functional similarities among different proteins. For this purpose, a method based on
covariance, autocorrelation, and spatial-spectral analysis of embeddings of their amino acid
sequences has been developed and tested.

Key words: protein structure prediction; ESM-2 model; embeddings; autocorrelation
analysis; protein secondary structure.

Introduction. Problem statement

The application of a large language model (Large Language Model, LLM) to the decoding results of
protein amino acid sequences [1] has enabled the rapid construction of an exceptionally comprehensive
database of their spatial structures. This database, named ESM-2 [2], is openly accessible, allowing a wide
range of researchers in the fields of biochemistry and bioinformatics to study the functional features of
proteins in relation to their spatial structure.

An important stage of such study is the analysis of the impact of individual regions of the protein on
its functional features in relation to the structural characteristics of these regions, as well as the influence of
a specific sequence of amino acids on the spatial structure of the corresponding region.

The use of LLM has provided a digital representation of the protein by a multidimensional vector of
embeddings of its amino acids. This model numerically formulates the probability of spatial proximity of
the mutual arrangement of amino acids of a protein folded in a certain way.

The reliability of the models is verified by the CASP project, within which the computed models are
compared with experimentally determined structures [3].

Analysis of recent research
Representing the protein sequence as a multidimensional vector of embeddings that encode
contextual information about the sequence and its spatial structure has made it possible to apply analysis
methods for detecting patterns in the folding process. Traditional approaches to embedding analysis used
models such as SeqVec [4] and Spike2Vec [5], based on the LSTM architecture, to generate sequence
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embeddings. Although these methods were quite effective, they rely on the architecture of artificial neural
networks, which is becoming less popular due to the widespread use of neural network models known as
transformers in structural analysis of proteins.

The method described in [7] is based on a combination of LSTM-based sequence embeddings and
structural information obtained from PDB (Protein Data Base [6]). The results showed that combining
sequence embeddings and spatial information improves prediction efficiency compared to using these
embeddings separately. However, a possible issue with this approach is the use of data from different
sources. The employed methods, SeqVec and Spike2Vec, despite providing a sufficiently accurate
representation of the sequence, are fundamentally separated from the structural data obtained from PDB
files, which could lead to worse outcomes.

The AlphaFold 2 model [8] made a significant breakthrough in the field of structural biology by
proposing a solution to the protein folding problem using deep learning algorithms for accurate prediction
of protein structures. This model uses evolutionary data obtained from MSA for constructing sequence and
pairwise embeddings. The pairwise embeddings are then refined with the information from a database of
known protein structures, which increases prediction accuracy. However, a key feature of the ESM-2
model is that it requires only sequence for structure prediction. This highlights the potential of ESM-2
embedding analysis for discovering patterns in the protein folding process. The ESM-2 model directly
analyzes amino acid sequences, creating sequence and pairwise embeddings that contain information about
the protein structure. Compared to the approach presented in [7], the analysis of ESM-2 model embeddings
offers a potentially more efficient approach for studying protein structure, as it suggests consistency of
embeddings and a correlation between sequence features and structure.

Research purpose
This research involves a preliminary analysis of the ESM-2 model, using covariance and
autocorrelation methods to study sequence embeddings and evaluate the pairwise embeddings it
generates. These embeddings encapsulate both contextual and spatial information about amino acids,
providing data for discovering patterns that indicate secondary and tertiary structural elements of the
protein. This analytical approach aims to assess the accuracy of the ESM-2 model in predicting
elements of protein structure.

Problem formulation

Given a language model, denoted as M, for predicting the three-dimensional structure of a protein
from the sequence S. The input data for the model is the sequence of amino acids in the protein S =
{s1, 82, ..., Sy}, Where s; represents an individual element of the sequence (the letter corresponding to the
amino acid), and N indicates the number of amino acids in the sequence. The model M is defined by a set
of pre-learned parameters 6.

After processing the sequence S, the model outputs a set of parameters Y = {y,, y,, ..., yn}, Where N
is the number of parameters generated by the model, and each y; corresponds to a specific parameter. The
mapping of S to Y can be formally described as the function fu(S) =Y, where f, summarizes the
computational logic of model M with parameters 6.

Among the set of output parameters Y, we focus on two specific parameters S and S#, which are the
subjects of this study. These parameters are directly influenced by changes in the length of the input sequence S.

The parameter S is a matrix that represents the mapping of the input sequence into a higher-
dimensional space (N, 1024). Hence, S € RN*1024 \where each row in SS corresponds to an element from
S transformed into a 1024-dimensional vector, which encodes contextual information about the given
element, its properties, and its interaction with other elements in the sequence. This matrix is constructed
by concatenating parameters from each internal layer of model M.
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The parameter S is a matrix that represents the mapping of the input sequence into a higher-
dimensional space (N, N, 128). Therefore, SZ € RN*N*128 \where each row in SZ corresponds to an
element from S transformed into a two-dimensional matrix (N, 128) of embeddings, which encode spatial
information about the relationships of the given element relative to all other elements in the sequence.
Thus, this matrix stores information about pairwise relationships between elements in the sequence and
reflects the structure of the protein.

Methodology

Autocorrelation Function

We define the autocorrelation function for a vector V € RY, where N is the length of the vector,
using a sliding window of size w, and denote it as ACF, (V,w). By applying the autocorrelation function to
each window w sliding over the input vector V, we obtain a matrix of autocorrelation functions A €
RN-W=1XW \We then normalize the matrix A using the normalization function N(A).

ACF,(V,w) = {RXX(Vi:j+w)} 1)

where Ryy is the autocorrelation function, i €{1,...,N},j € {1,...,N-w-1}.

Normalization Function

We define the normalization function N(X) for the autocorrelation function that takes as input a
matrix X and normalizes it by the maximum value of the corresponding row, resulting in a matrix X’,
where each row is divided by its maximum value:

NX) = —=

max(X;)

2
wherei €{1, ..., N}.

Self-Similarity of Embeddings
Given the matrix S € RVN*1024 that represents the embeddings of the protein sequence, we
transpose this matrix (S5)T € R1924*N to compute autocorrelation. Thus, computing self-similarity
between corresponding dimensions of embeddings across the entire sequence. We define the self-similarity
function for the sequence ACE, (P, w):
ACE,(P,w) = {ACF,((S{)T, w)} = AL024xN-w=1xw 3)
wherei €{1, ..., 1024}.

Similarity of Two Sequences

For the first sequence, we compute ACF, (S, w) = A;°***N=W=1X¥ ‘and for the second sequence,
accordingly ACE,(S5,w) = A}02»M=w=1XW_\We then calculate the Pearson correlation coefficient
between each fragment of ACF of length w from the first sequence relative to all fragments of ACF from
the second sequence in the given dimension.

Let v, be the set of ACF fragments from A of length w where n = {1, ..., N-w-1}, and v,,, be the set
of fragments of length w from A,, where m = {1, ..., M-w-1}.

For each fragment of v,;, we compute the Pearson correlation coefficient with each fragment of v,,.
The result is a correlation matrix Corr € RN-W=1xM-w=1"\yhere each element Corr,,, represents the
correlation coefficient between fragments of v,, and fragments of v,,.

cov(Vn,Vm) (4)

()X 0(vm)

By applying this function to all dimensions, we calculate a correlation matrix of two sequences
Corr € R1024XN-w=1xM=-w=1 The resulting matrix will contain information about the mutual similarity
between the ACF of the sequences, describing the local similarity of the two protein sequences.

Cortym =

Processing Pairwise Embeddings

Given the matrix S% € RNV*N*128 ‘which represents the pairwise embeddings of a given protein
sequence. These embeddings contain information about the protein structure, namely the contacts between
amino acid residues. A common approach to comparing embeddings is the measure of cosine similarity.
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Thus, we define the cosine similarity function CosSim for the matrix S*:
ei'jX ei;j' (5)

lewjlx lew |

where e; ; and e; j, are corresponding vectors from the matrix S*. By applying the function CosSim to all

pairs of embeddings, we obtain a matrix CosSim € RN*N*N 'where N is the length of the input sequence.

CosSim =

Experimental Results

Modern models for predicting protein structure (such as AlphaFold 2 [6]) operate on two
representations of the amino acid sequence in their architecture. The first representation is based on evolutionary
similarity to other sequences, generated by searching large datasets of protein sequences obtained through
DNA sequencing and aligning these sequences against the target, a method also called multiple sequence
alignment (MSA). Correlated changes in the positions of two amino acid residues in the MSA sequences
can be used to infer which amino acid residues might contact each other. The second representation is the
pairwise representation of contacts between the amino acid residues of the target sequence.

Unlike AlphaFold 2, one of the key features of the ESM-2 model is that it does not use the MSA
representation, but instead predicts the spatial structure of the protein using only a single sequence.

Analysis of Sequence Embeddings

We analyze several pairs of protein sequences by evaluating the correlation between their
embeddings using the established methodology. We experimentally verify the ability of the ESM-2 model
to learn the dependencies and evolutionary context of sequences. The resulting correlation matrix was
visualized as a heatmap and compared with an MSA generated using the T-Coffee program [9] to validate
the results of comparing two sequences. We present three cases of protein sequence comparison:

The left part of Fig. 1 displays a heatmap that represents the comparison of two protein sequences,
which was obtained by applying formula (4) that calculates the correlation between the ACF of individual
regions of the two sequences. The horizontal and vertical axes represent the sequences of two proteins, in
this case, denoted as 1ROR_1 and 1MEE_1. The brighter areas indicate where the sequences are similar or
identical. The diagonal line indicates sequence alignment or areas of high similarity, which may suggest
similarity in function and structure of the proteins.
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Fig. 1. Comparison of the correlation heatmap of
the 1ROR_1 and 1MEE_1 protein sequence embeddings with the MSA alignment of these sequences

The right part of Fig. 1 shows the sequence alignment of 1IROR_1 and IMEE_1. Under the sequence
alignment of each block, a symbolic conservation score is displayed. An asterisk ** signifies that the amino
acid is the same for the sequences at that position. A colon "' indicates that the sequences contain different
amino acids in that position, but the chemical properties are quite similar. When an amino acid is replaced
with a very similar amino acid in the alignment position, it is called a conservative substitution. A space "'
means that the amino acids are very different at that position, i.e., the substitution is non-conservative. A
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period " indicates a semi-conservative substitution, which is something in between a conservative and a
non-conservative substitution. This means that the chemical properties of the amino acids at that position
are somewhat similar. The color panel indicates the quality of the alignment from low (green) to high (red).

The next example is displayed in Fig. 2 with more complex sequences, where the alignment is
partial. Again, we see the main diagonal line indicating regions of similarity between these two sequences.
However, unlike the first example, the sequence similarity shifts starting from the middle of the map and
reappears after a certain interval of the sequence. Comparing the heatmap and the alignment of these
sequences, there is a pattern between the bright areas on the map and the corresponding areas in the MSA,
characterized by asterisks and colons, then the alignment shifts (the -' symbol in the second sequence
alignment), which corresponds to the shift of the diagonal on the heatmap.
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Fig. 2. Comparison of the correlation heatmap
of the 1ROR_1 and 1V6C_1 protein sequence embeddings with the MSA alignment of these sequences

In Fig. 3, we consider a case where the similarity between sequences is very low. On the heatmap,
we will see that the lack of clear patterns corresponds with sparse and less frequent matches in the MSA.
This indicates that any similarities between proteins 2WP0_1 and 7AL8_1 are limited and may represent
only isolated regions of common structure or function, rather than overall similarity.
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Fig. 3. Comparison of the correlation heatmap
of the 2WPO _1 and 7AL8 1 protein sequence embeddings with the MSA alignment of these sequences

Therefore, we can conclude the correctness of the applied algorithm for analyzing sequence
embeddings and that the ESM-2 model is capable of learning the characteristics and evolutionary context
of the sequence without prior training on MSA representations.
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Analysis of Pairwise Embeddings

By applying formula (5) to pairwise embeddings, we construct a contact map between the amino acid
residues of the target protein, and compare it with a distance map between residues, constructed from the actual
three-dimensional structure of the protein. Fig. 4 demonstrates two maps: the contact map (a) and the distance
map (b). The contact map is based on the cosine similarity of pairwise embeddings, a high similarity index
(close to 1) indicates that the residues are in contact and in close proximity within the protein structure, or they
share a similar environment within the structure, such as being on the same surface.

The diagonal line from the top left to the bottom right corner represents the similarity of each
residue to itself, which is always equal to 1. Clusters of red regions off the diagonal indicate residues that
are in contact with each other, and an analysis of these regions can yield insights into the elements
constituting the secondary structure of the protein.
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Fig. 4. Comparison of filtered contact and distance maps of 1DBW _1 protein

The distance map (Fig. 4. b) is constructed based on the actual three-dimensional structure of the
protein, measuring distances between the C-alpha atoms of each pair of amino acid residues, where the
distance is represented in units of length — angstroms (A). The C-alpha atom is often used as a representative
point for the location of an amino acid in structural models.

Patterns on the two maps are inversely proportional: high similarity off the diagonal on the contact
map should coincide with small distances in the corresponding region on the distance map. This confirms
that the representations of the ESM-2 model are accurate and identify contacts in the protein structure.

For a better visualization of patterns (regularities) on the maps, a value threshold filter is applied.
Applying a threshold value of 0.76 for the contact map, so only the closest predicted contacts are
displayed. A threshold of 8A for the distance map describes the physical proximity between residues,
where distances are less than or equal to this value.

On the contact map (Fig. 5. a) and the distance map (Fig. 5. b), the presence of wide regions along
the diagonal line indicates regions where alpha helices can be found. Alpha helices are characterized by
hydrogen bonds that lead to a helical structure, and the proximity of such helices is reflected by diagonal or
anti-diagonal scattered clusters of contacts.

Conversely, narrow regions along the diagonal line represent beta-sheets or coils. Beta-sheets are a
collection of beta-strands that usually run adjacent to one another, resulting in a series of neighboring
parallel or antiparallel lines on the distance map. Coils, on the other hand, are less structured areas that
connect secondary structure elements and can be represented as shorter diagonal lines or scattered contacts
on the map.
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Fig. 5. Comparison of filtered contact and distance maps of LDBW_1 protein with highlighted patterns

The distance map (Fig. 5. b) empirically confirms the predicted contacts, showing the actual
proximity of each pair of residues. Here, a similar pattern of a wide diagonal line confirms the presence of

alpha helices. Lines parallel to the diagonal indicate the presence of beta-strands.
Thus, the ESM2 model is capable of learning the connections between amino acid residues using

pairwise sequence representation, as observed by comparing the contact map obtained from embeddings
and the distance map, between which structural similarity is clearly visible.

Spatial visualization of sequence contacts
For a clear visualization of contacts on the distance map, we used the CMView program [10], which
allows us to construct a map and display the contacts on the three-dimensional structure of the protein

using the PyMOL [11] molecular visualization system.
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Fig. 6. Projection of beta strands contacts on the spatial structure of the 1DBW_1 protein

In Fig. 6, it can be seen that starting from the 6th to the 12 th amino acid, two parallel line patterns
extend from the diagonal. The highlighted region on the main diagonal, and the second pattern highlighted
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by the nature of contacts correspond to elements of a beta-sheet, and we can see that the representation on
the three-dimensional structure of the protein corresponds to this.

Consider another example where contacts are formed by alpha helices. Contacts of this secondary
structure are characterized on the diagonal as a wide area of consecutive contacts, and off the diagonal, the
proximity to an alpha helix is usually reflected as a scattered cluster of contacts, due to its spatial structure.

idbwA 36 41 46 51 56 61 B6 71 76 B1 B6& 91 96 106
AVKMHOSAEAF LAF APDVRNGYLYTDLRMPOMSGVEL LRNL GDLKINIPSIVI TGHGDYPMAVEAMKAGAVIF 1EKPFEDTVI]
_——

Fig. 7. Projection of alpha helix contacts on the spatial structure of the 1DBW _1 protein

In Fig. 7, both cases are displayed, where the highlighted region appears as a scattered cluster of
contacts and corresponds to the proximity of two alpha helices. Then, a wide area of contacts on the main
diagonal forms an alpha helix itself.

Conclusions

The results of this study confirm the ability of the ESM-2 model to predict protein structures using
only individual sequences. This underscores the utility of the ESM-2 model approach, which simplifies and
accelerates the prediction process while maintaining high accuracy.

The application of covariance and autocorrelation analysis to ESM-2 sequence embeddings showed
that the model can learn the evolutionary character of sequence development and sequence interrelationships.
By evaluating the correlation between embeddings of different protein pairs, we observed clear patterns,
and experimentally verified the results with MSA alignment of these sequences, which further confirmed
the proposed analysis method.

The analysis of pairwise embeddings and the application of the cosine similarity measure allowed
for the construction of a distance map that represents the protein's structural information. Comparing the
contact map with the distance map, constructed from the actual spatial structure of the protein, confirmed
the ESM-2 model's ability to accurately identify contacts between amino acid residues of a given protein
sequence.

The correspondence of certain patterns on the distance map with the local three-dimensional structures,
such as alpha helices and beta sheets, was visually demonstrated.
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IIpocTopoBa cTpykTypa 0ljika BU3HA4a€ iforo 6ioxiMiuHi BJIacTHBOCTI, a oTxke i QpyHKHil0.
Te sk cTOCyeThcs HOro BTOPHHHMX eJeMEHTIB, 110 HA0yBalOTh y TPbOX-BHMIpHOMY HNpocTOpi
¢opmu anbpa-cnipaseii, 6eTa-JIaHIIOTIB, NeTeJIb Ta IHIIMX YTBOPeHb. ABTOMATHYHE BUSIBJICHHS
TAKUX YTBOPeHb 32 BiINMOBIAHMMH M NOCJTIJOBHOCTAMM aMIHOKHCJIOT Yy OUIKY JacThb 3MOry
KaTaJorizyBatu i (parMeHTH MOCJAiTOBHOCTEH, AOCHIIMTH Ta CHCTeMATH3YBaTH iX Biamo-
BiIHiCTh MPOCTOPOBHMM GIJIKOBUM YTBOPEHHSIM, LII0 Y CBOIO YepPry Ma€ CNPOCTUTH 3aJa4y NMOUIYKY
KOMILIEMEeHTapHoI i pyHKnioHANBHOI MoAi0HocTI pisHMX OlIKiB. 3 mi€l0 MeTo10 po3podieHO Ta
BHNPOOYBAHO MeTO[, 110 0a3y€ThCsl HA KOBapialiiiHOMY, aBTOKOpeJISINiifHOMY Ta IPOCTOPOBO-
CIeKTPAJLHOMY aHaJi3i eMOeiHIiB X aMIHOKHMCJIOTHUX NMOCTiT0BHOCTEI.

KoaiouoBsi ciioBa: mporno3yBannsi CTPyKTYypH 6ijika; mogeas ESM-2; em0eainru; aBToxope-
JANiHKMIA aHATI3; BTOPHHHA CTPYKTYpa OliIKa.



