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In this study, an attack on the El-Gamal encryption scheme ELG-LUC3-ECC is proposed,
which is based on a third-order Lucas sequence over an elliptic curve finite field, using
Hastad’s and Julta’s theorems. Hastad’s theorem was used to solve the problem of multi-
variate modular equations system, whereas Julta’s theorem was used to find the solutions
of multivariable modular equation. As a result, the minimum amount of plaintext required
for a successful attack may be determined. Thus, similar attacks can be prevented if the
quantity of plaintext remains within the appropriate range.
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1. Introduction

Cryptography is a study of encrypting plaintext using an encryption key and decrypting ciphertext
using a decryption key. Public Key Cryptography (PKC) is a cryptographic system that exposes
encryption keys which was proposed by Diffie and Hellman [1] in 1978.

In 1985, El-Gamal [2] proposed a digital signature scheme which was using Diffie-Hellman key
exchange method to generate the encryption key and now known as the El-Gamal encryption scheme
(ELG). Smith and Skinner [3] extended ELG in 1994, by integrating it with the second order Lucas
function, dubbed LUCELG. In 2014, Wong and his team [4] modified LUCELG by incorporating it in an
elliptic curve over a finite field, that is now referred as ELG-LUC-ECC. Based on the characteristics
of elliptic curve and second order Lucas function, the security of modified cryptosystem had been
improved [5-7]. Said and Loxton [8] proposed LUC3, a cubic cryptosystem based on the Lucas sequence.
Miller [9] developed a cryptography based on elliptic curve in 1985. At the same time, Koblitz [10]
developed the cryptography based on elliptic curve too. Now, these cryptosystems call as Elliptic
Curve Cryptography (ECC). The foundation of these cryptosystems is a discrete logarithm problem
in the group of point of an elliptic curve defined over a finite field.

In 2021, Wong et al. [11] introduced ELG-LUC3-ECC, a new cryptosystem that combines the ELG,
LUC3, and ECC cryptosystems. A security analysis on ELG-LUC3-ECC is presented in this paper
utilising Hastad’s and Coppersmith’s theorems.

2. ELG-LUC3-ECC

Suppose that
y? =2 +ax+b (1)

is the equation of elliptic curve with a and b are elements for a finite field F}, and 4a3 +27b% £ 0, then
exist a set of group G

G(Z) ={(z,y) € Z x Z|y* = 2° + ax + b} U {o0} (2)
for field H contains F),.
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In ELG-LUC3-ECC, the system modulus denoted as n, where n is the order of group G, and the
encryption key, e = stR € G is generated by a key exchange method, whereas R € G is a secret number
known to both sender and receiver, s € G is a secret number for sender, and ¢ € G is a secret number
for receiver. In this case, the encryption key for ELG-LUC3-ECC is not the receiver’s public key. The
receiver’s public key is Q = tR € G.

In the process of encryption, the sender will generate the ciphertexts as follows:

Cc1 = SR, (3)
c2 = Vig(mi,ma,1) mod n, (4)
c3 = Vsg(ma,mq,1) mod n, (5)

where my and ms denoted as plaintexts and ¢; and ¢y denoted as ciphertexts.

Before recovering the original plaintexts, the receiver should be calculating the decryption key
while the decryption key is depending on encryption key. Therefore, the receiver needs to calculate
the encryption key by

e = tey. (6)
After getting the encryption key, the receiver can generate the decryption key by
d=e"' mod ¢(n), (7)
where
n?+mn+1, if g(x) mod n is an irreducible cubic,
¢(n) =< n?—1, if g(z) mod n is product of irreducible quadratic and a linear factor, (8)
n—1, if g(z) mod n is roduct of three linear factors,
with g(z) = 2° — coz? + c3z — 1.
In essence, the receiver is able to compute the original plaintexts by
my = Vy(ea,c3,1) mod n, (9)
mg = Vy(es,c2,1) mod n. (10)

3. An attack

There are several theorems will be used in Hastad’s attack. The first theorem will be discussed is

Hastad’s theorem which is a theorem to solve the multivariate modular equations system.

Theorem 1. Let N = Hle n; and n = 1m1nk(nl) Given a set of k equations Z?:o am:z:j =0
<i<

mod n; where all the modulus n; are relatively prime to each other and gcd((ai,j>?:0,ni) =1 for all

values of i. Then, x < n in polynomial time can be found if N > 20+100+2)/4(5 1 1)3+1,000+1)/2,

Proof. Refer [12,13]. |
Theorem 2. Assume that the p modular polynomial system with degree < k and [ variables denoted
as

Jitjet...+a<k o '

Wijy oyl @ o]t =0 mod ng, (11)
Ji,j2,51=0
fori = 1,...,p, ¥1,...,0; < n and n = 1%12k(nz) Let N = [[2 n;, [ = an:lm(mt}b_l)
and g = anzo m (M=) if all the modulus n; are relatively prime to each other, then
142+ <O : :

ged (<ai7j1,j27~~~,jz>;i,jg72...,jl i ,ni) =1fori=1,...,p and if

N> 29(g+1)/4ggnf (12)

the result is a real-valued equation in polynomial time which is equivalent to Eq. (11).

Proof. Refer [13]. n
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Coppersmith’s theorem [14] is an extended result from Hastad’s theorem. This theorem is used
to find the solution of a modular equation. It is specific for a single variable integer polynomial with
degree k. The integer polynomial in ELG-LUC3-ECC is a multivariable polynomial. Thus, Julta’s
Theorem [15] is used to solve this problem. Before discussing Julta’s theorem, it is important to
understand Coppersmith’s theorem, which is specific to single variable integer polynomial.

Theorem 3. Suppose that a single variable integer polynomial P(x) with degree k and a positive
integer N of unknown factorization, then in time polynomial in log(N) and k, all integer solutions xg
to P(zg) =0 mod N with | zg |< N'/* can be found.

Proof. Refer [13,14]. [
In 1998, Julta [15] improved Coppersmith’s theorem, in which it is able to find the integer solution

for multivariable polynomial.

Theorem 4. Let P(z1,...,2y,) =0 mod N be a m variables polynomial with total degree k and a

root g, then exist an algorithm with determines ¢(> 1) integer polynomial equation of total degree in

emklog(N), in time polynomial in emklog(N), such that xy as a root for each of the equation.

Proof. Refer [15]. [
Let my and mo are the plaintexts of ELG-LUC3-ECC, then
mi1; = aymy + B;  mod ng, (13)
and
mo; = aymao + i mod n;. (14)

The corresponding ciphertexts can be generated by computing

i — SiRi, (15)
2 = Vs,0,(mai,mog, 1) mod n, (16)
c3,i = Vs,Q,(mai,m1;,1) mod n. (17)

Since the third order of Lucas sequence in ELG-LUC3-ECC is equal to two variables of Dickson
polynomial [16,17], then
Vs;i(mai,mai, 1) = Dy, q, (M1, ma, 1)
[5iQi/2] |5:iQi/3]

ZQZ SZ'QZ' — 7 — 2j 7 —|—j $:0i—2i—3j i
Z Z SzQz —1— 2] < 1+7 ) < ) My ma s (18)

where 21435 < 5;Q;. Slmllar for Vsz-Qi (ma,m14,1). Thus, cz; and c3; can be considered as polynomial
in term of my; and my; with degree s;Q;.

Corollary 1. Suppose that N = Hle n; and n = 112121<nk(n2) Given a set of k equations
;1;;2%6 a,vjl,]za:llxéz = 0 mod n; where all the modulus n; are relatively prime to each other and
gcd((amlw);ﬁfgé,ni) = 1 for all values of i. Then, x < n in polynomial time can be found if
) 1 2(64+1)(6+2) .
N > 2(6+1)(0+2)(8+36+4)/16 (5(5 )6+ 2)> 1 58(6T1)(542) (19)
Proof. In two variable case for Theorem 1.
é
f:n;m <m$ 1) - %5(5+1)(5+2), (20)
g m+1 1
g:g_:om< o ):55(5+1)(5+2), (21)
Replace Eq. (20) and Eq. (21) into E;l (12) will get Eq. (19). [
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Corollary 2. Let k be the number of set of the plaintexts in ELG-LUC3-ECC such as
(m1,1,m21),...,(m1k, may), then the original plaintexts can be recovered if

k> %SQ(SQ +1)(sQ +2), (22)

and

(sQ+1)(sQ+2)((sQ)2+35Q+4)
n > 2 16

> %(5Q+1)(5Q+2)

%(SQ +1)(5Q +2) , (23)

where sQ) = max (s;Q);).
Q 1<Kk( Qi)

Proof. The proof can be accomplished by verifying the conditions of Corollary 1 are satis-
fied. Since there are k set of plaintexts in ELG-LUC3-ECC, then exist k set of ciphertexts

(c1,1,¢2,1,€31)5 -+, (€1 kg, C2k, C3 %), and 2k equations

Py i(m1,mg) = Ds,g,(m1,i,ma;,1) —ca; =0 mod ny, (24)
and

P, i(ma,m1) = Ds,q,(ma2,,m1,,1) —c3; =0 mod n;, (25)

where 1 < i < k. Assume that all the modulus n; and the coefficients of Eq. (24) and Eq. (25) are
relatively prime to each other, then

k £5Q(sQ+1)(sQ+2)+1
N = an = ny ng
i=1 1=2
1
(5Q+1)(sQ+2) (@2 +35Q+1) 1 3(5Q+1)(sQ+2)
2 16 (5(362 +1)(sQ + 2)) (26)
if satisfied Eq. (22), Eq. (23) and n = min (n;). n
1<i<k

Based on Corollary 2, we find the maximum number of plaintexts in ELG-LUC3-ECC to avoid
this type of attack. This mean that the system is secure if the number of plaintexts is less than the
maximum number.

Table 1. Examples of the maximum number of plaintexts for ELG-LUC-ECC and ELG-LUC3-ECC.
sQ 1001 (10-bits) | 3997 (12-bits) | 15843 (14-bits)

ELG-LUC-ECC 501501 79900003 125508 246
ELG-LUC3-ECC 670674004 | 42602695996 | 2647054861 360

Therefore, Table 1 gives examples of the maximum number of plaintexts for ELG-LUC-ECC and
ELG-LUC3-ECC in different bits system.

4. Conclusion

For the ELG-LUC3-ECC cryptosystem, the two-variable Dickson polynomials were used to trans-
form the third-order Lucas sequence into two-variable polynomials. According to the theorems and
corollaries presented in Section;3, if the number of plaintexts encrypted by ELG-LUC3-ECC exceeds
%SQ(SQ + 1)(s@ + 2), then the corresponding plaintexts can be recovered without the recipient’s
knowledge. Additionally, Table;1 indicates that the maximum allowable number of plaintexts for
ELG-LUC3-ECC is greater than that for ELG-LUC-ECC.

In other words, ELG-LUC3-ECC requires a higher minimum number of plaintexts than ELG-LUC-
ECC to execute an attack successfully. Thus, the results demonstrate that ELG-LUC3-ECC offers
greater security than ELG-LUC-ECC.
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ATtaka Ha ELG-LUC3-ECC 3 BukopuctaHHsM
Teopemu Xactaga ta HOntn

Bonr T. Txx.52, Ky JI. @.1, Carap M. X. A3, Paceni A. ®. H.4, Cap6ini 1. H.5

L Vnieepcumem ITympa Manatisia, Kamnyc Binmyay, dopoza Hwvabay, 97008 Binmyay, Capasax, Manatisis
2 [ledazozivnuiti xosedsic HAYKO8O-MeTHIuMHO20 Ynieepcumemy Brympiwmnvoi Monezoaii Baomoy,
dopoza Kewye N3, Baomoy 014030, pation Hurwans, enympiwmsa Moweoaia, Kumai
3 Vuisepcumem ITympa Manatzis, 43400 UPM Cepdane, Cenaneop, Manratizia
4 Viisepcumem icaamcvrux nayx Manatisii, 71800 Hinati, Heeepi- Cembinan, Manatisis
5 Capasarcoruti ynisepcumem Manatizii, 94300 Koma Camapazan, Capasar, Manratizis

YV mpoMy HOCTIKeHH] 3allpOIIOHOBAHO aTaKy Ha cxeMmy mudpysanuas Eap—Tamasns, 3ac-
HOBaHy Ha MOCTiOBHOCTI JIykaca TpeThoro mopsiaky HaJ CKIHYEHHUM TOJIEM €IMTHIHOT
KPUBOI 3 BUKOpPHUCTaHHsAM Teopemu Xacraja Ta FOuru. Teopema Xacrasga OyJia BUKOPH-
CTaHa JJjisi PO3B’sI3yBaHHS 33/1a9i CUCTEMHU 0AraTOBUMIPHUX MOJYIbLHUX PiBHSHDL, TOMI K
teopema HOJTa BUKOPUCTOBYBAJIACS JIJIsi 3HAXO/PKEHHSI PO3B’I3KiB 6AraTOBUMIpHOTO MO-
JIyJIBHOTO PiBHsIHHS. ¥ PE3yJIbTaTi MO2KHA BU3HAYUTHU MiHIMAJBHUN 00CAT BIIKPUTOTO TEK-
CTy, KWt HeoOXimHuit mist yemimuol araku. OTxKe, MOmMIOHIM aTakaM MOXKHA 3aro0irTH,
AKIO KIJBKICTh BIJIKDUTOTO TEKCTY 3aJIUMIAETHCA B MEXKAX BU3HAYEHOT'O Jlialla30Hy.

Kntouosi cnosa: xybiunuti; Eav-Tamans; meopema Xacmada; meopema oicyama; no-
catdosnicms Jlykaca.
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